
Titre:
Title:

Low overhead hardware-assisted virtual machine analysis and 
profiling

Auteurs:
Authors:

Suchakrapani Datt Sharma, Geneviève Bastien, Hani Nemati, & 
Michel Dagenais 

Date: 2016

Type: Communication de conférence / Conference or Workshop Item

Référence:
Citation:

Sharma, S. D., Bastien, G., Nemati, H., & Dagenais, M. (décembre 2016). Low 
overhead hardware-assisted virtual machine analysis and profiling 
[Communication écrite]. 2016 IEEE Globecom Workshops (GC Wkshps), 
Washington, DC, USA (6 pages). https://doi.org/10.1109/glocomw.2016.7848953

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2975/

Version: Version finale avant publication / Accepted version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Nom de la conférence:
Conference Name:

2016 IEEE Globecom Workshops (GC Wkshps)

Date et lieu:
Date and Location:

2016-12-04 - 2016-12-08, Washington, DC, USA 

Maison d’édition:
Publisher:

IEEE

URL officiel:
Official URL:

https://doi.org/10.1109/glocomw.2016.7848953

Mention légale:
Legal notice:

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1109/glocomw.2016.7848953
https://publications.polymtl.ca/2975/
https://doi.org/10.1109/glocomw.2016.7848953


Low Overhead Hardware-Assisted Virtual Machine

Analysis and Profiling

Suchakrapani Datt Sharma∗, Hani Nemati†, Geneviève Bastien‡ and Michel Dagenais§

Department of Computer and Software Engineering

Polytechnique Montreal, Quebec, Canada

Email: {∗suchakrapani.sharma; †hani.nemati; ‡genevieve.bastien; §michel.dagenais}@polymtl.ca.

Abstract—Cloud infrastructure providers need reliable perfor-
mance analysis tools for their nodes. Moreover, the analysis of
Virtual Machines (VMs) is a major requirement in quantifying
cloud performance. However, root cause analysis, in case of
unexpected crashes or anomalous behavior in VMs, remains
a major challenge. Modern tracing tools such as LTTng allow
fine grained analysis - albeit at a minimal execution overhead,
and being OS dependent. In this paper, we propose HAVAna,
a hardware-assisted VM analysis algorithm that gathers and
analyzes pure hardware trace data, without any dependence
on the underlying OS or performance analysis infrastructure.
Our approach is totally non-intrusive and does not require any
performance statistics, trace or log gathering from the VM.
We used the recently introduced Intel PT ISA extensions on
modern Intel Skylake processors to demonstrate its efficiency and
observed that, in our experimental scenarios, it leads to a tiny
overhead of up to 1%, as compared to 3.6-28.7% for similar VM
trace analysis done with software-only schemes such as LTTng.
Our proposed VM trace analysis algorithm has also been open-
sourced for further enhancements and to the benefit of other
developers. Furthermore, we developed interactive Resource and
Process Control Flow visualization tools to analyze the hardware
trace data and present a real-life usecase in the paper that allowed
us to see unexpected resource consumption by VMs.

Keywords—Virtualization; Hardware Tracing; Intel PT; Trace
Analysis; VM Analysis

I. INTRODUCTION

The backbone of modern distributed cloud systems are

virtualization technologies that enable VMs to provide the nec-

essary infrastructure. Public and private cloud infrastructure

providers allow the users to access a pool of resources based

on a Pay-as-Use (PaU) model where numerous automated

cloud orchestration tools allow seamless control of bring-up

and tear-down of VMs. This flexibility in resource scaling

leads to imbalanced workload distribution on the underlying

hardware on which the VMs run. Users can also intermittently

run demanding applications which may need their VMs to be

migrated to difference resource groups. Cloud infrastructure

administrators therefore need modern tools for performance

analysis of such VMs. However, efficient debugging, trou-

bleshooting and analysis of such massive distributed sys-

tems is a still a known challenge [1]. For fine-grained post-

mortem root cause analysis of problems occurring on VMs,

the administrators may need highly detailed information about

the characteristics of VMs on their infrastructure - such as

profile of processes running on them, virtual CPU (vCPU)

consumption, pattern of scheduling of processes on VMs

and their interactions with underlying hypervisors. Most of

such information can be gathered by proper configuration

tools provided by the host OS kernel. Software-only diagnosis

of problems on VMs, however, calls for recording all soft-

ware events such as occurrences of vm_entry, vm_exit,

sched_switch. The added overhead from such events can

be mitigated by using tracing tools such as LTTng[5]. How-

ever, these tools also alter the execution flow of the VMs and

require careful configuration (such as adding additional static

tracepoints in QEMU and KVM). In addition, proprietary

close-sourced operating systems on specialized hardware may

not expose tracing tools or APIs and would be opaque to the

administrator. In such scenarios, pure hardware tracing can

help in diagnosing abnormal executions.

In this paper, we introduce a novel approach that uses

hardware trace support provided in modern processors for VM

analysis. Special trace data emitted by the trace hardware on

the processor can be collected and analyzed offline to gather

in-depth information about execution profiles of VMs and

hypervisors on the host. Our approach allows for a near-zero

tracing overhead and a new technique to visualize such data.

We demonstrate the uniqueness of our approach through the

hardware trace support provided in Intel’s Skylake series of

processors in the form of Intel Processor Trace (PT)[7]. These

trace blocks generate huge amounts of hardware trace data,

consisting of mostly branch related packets that can be used

to reconstruct the program flow. The trace data also contains

certain trace packets such as PIP and VMCS which we record,

extract and use with our algorithm to generate synthetic trace

events that identify important states of processes in VMs such

as entry/exit from hypervisor, to or from the VM, and schedul-

ing events between processes in VMs. We generate synthetic

events from such hardware trace packets that profile vCPU

consumption by processes, without any software and operating

system (OS) intervention, thus ensuring a low overhead and

minimum interference with the VMs. Since this approach is

OS independent, it works on any OS platform without any

necessary configuration. Through this, we were able to identify

processes inside VMs that would cause undesired vCPU load.

To the best of our knowledge, there is no pre-existing efficient

technique to gather such high level VM analysis from low level

hardware trace packets. Our main contributions in this paper

are as follows :

∙ A novel low overhead hardware-assisted approach to ex-



tract, group and analyze hardware trace packets gathered

from the processor for VM analysis. The VMs, host

hypervisor and host OS are oblivious to our tracing and

analysis phase. Therefore, there is no need for internal

access within VMs, which may not be allowed in most

situations due to security reasons.

∙ A visualization strategy to display these hardware trace

events on a time series graph, and identify hard to diag-

nose issues such as processes contending for resources

in VM. Our graphical views show CPU usage inside the

VM along with their interaction with the Virtual Machine

Monitor (VMM). We also implemented a graphical view

for the execution flow of processes inside the VM.

The rest of the paper is organized as follows: Section II

presents related work, comparing the closest approaches to

ours. Section III introduces important processor trace packets

for VM analysis and explains the different layers of the

architecture that we use in our paper. Here, we also present

the algorithm used to retrieve information from processor trace

packets. We show a use-case of our analysis in Section IV. The

added overhead with our approach is compared with existing

approaches in Section V. Section VI concludes the paper.

II. RELATED WORK

Program flow tracing based instruction counting, and track-

ing blocks of code, has been discussed earlier [3]. In order to

reduce the bandwidth of such tracing, Merten et al. [9] have

earlier proposed the use of a Branch Trace Buffer (BTB) and

their hardware table extension for profiling branches. Custom

hardware-based path profiling has also been discussed by

Vaswani et al. [16]. Linux Kernel tools such as Ftrace and

Kprobes allow such code instrumentation and program flow

deduction. Modern architectures snoop bus activity at very low

level inside the processor and allow recording each and every

instruction being executed. This, however, generates a huge

amount of data. To mitigate this, the new approach is to only

record instructions that cause the program flow to change, such

as direct/indirect jumps, calls, exceptions etc. By following

these change-of-flow instructions, it is quite easy to generate

a complete program flow with the help of additional offline

binary disassembly at the decoding phase. Dedicated hardware

blocks in the Intel architecture, such as Last Branch Record,

Branch Trace Store [15], and more recently Intel Processor

Trace (PT) follow this approach. A detailed study of hardware-

assisted tracing and profiling with Intel PT has been recently

presented in [12].

Hardware-trace based compiler optimization techniques

have also been discussed before [11] where results from

execution profiles of a software application can be fed back

to the compiler to optimize the resulting binary. Jörg et al. in

[13] present a data parallel provenance algorithm which uses

Intel PT for improving security and dependability in software.

AWS CloudWatch and Openstack Ceilometer are the meter-

ing, monitoring and alarming tools for clouds. They provide

basic metrics such as physical CPU and number of vCPU

used for each VM. The information presented by such tools

is not suitable for analyzing VMs. Most existing Linux tools

such as vmstat gather statistics by reading procfs file with

significant overhead. Therefore, they are not recommended for

implementing a low overhead tool for analyzing and debug-

ging VMs. In [6], the authors proposed a significant multi-

layer tracing and analyzing technique to detect anomalies

inside VMs. They implemented an execution flow recovery

of specific processes by tracing the host and VMs at the same

time. In their work, they need internal access to the VMs.

Furthermore, their work is limited to the Linux OS since

they use LTTng as Linux kernel tracer. PerfCompass[4] uses a

VM’s kernel trace (from LTTng) and gathers information from

syscall events to detect anomalies inside the VM. Authors in

[2] implemented a vCPU monitoring tool based on ”perf kvm

record”. With their monitoring tool, they are able to gather

statistics about CPU usage for processes and the hypervisor.

Wang in [17] used Perf to detect over-commitment of pCPUs.

From all available CPU metrics, they used LLC which has a di-

rect relationship with pCPUs over-commitment. Our profiling

technique uses hardware trace packets that show vCPU usage

along with processes execution flow, without any software and

OS intervention. Our approach adds less overhead to VMs

compared to other techniques and it does not rely on a specific

OS or hypervisor. As per our knowledge, no prior work has

been done for analyzing VMs at a high level from such low

level hardware traces yet. Our work, therefore, is unique and

novel in this aspect.

III. HARDWARE TRACING VMS

Hardware trace generation can be configured and controlled

by certain configuration registers such as MSRs in Intel or

CoreSight ETM/ETB Configuration registers on ARM. In this

paper, we select Intel PT as an experimentation platform for

our hardware-asssisted VM analysis approach. Once hardware

trace generation is enabled, the tracing blocks from processor

cores generate compressed encoded trace packets for eventual

decoding. These hardware trace packets can contain informa-

tion such as paging (changed CR3 value), time stamps, core-

to-bus clock ratio, taken-not-taken (tracking conditional branch

directions), record the target IP of branches, exceptions and

interrupts, and record the source IP for asynchronous events

(exceptions, interrupts). Keeping track of all these packets can

be quite expensive - especially, if the required analysis is at

a high level (such as VMs in our case). Therefore, we isolate

only those packets for analysis that are sufficient to reconstruct

the flow in the VMs. Some of the important hardware packets

and their role in our analysis are as follows :

1) PIP: The Paging Information Packet (PIP) is generated

whenever the CR3 register value is modified. This includes

scenarios such as a task switch, a MOV CR3 instruction or,

more importantly, a VM Entry and VM Exit at the time when

VM execution is enabled. This packet allows the decoder

to uniquely identity which process was executing on the

processor. During VM execution, the packet also contains a

Non-Root (NR) bit that can further indicate if the process

was executing in a NR context (guest mode) or in the VMM



context. Together with other packets generated for VMXON

instructions, we can generate a detailed view of the VM.

2) VMCS: This packet is generated at a successful

VMPTRLD instruction, which indicates interaction between the

VMM and the guest OS. The VMCS packet payload consists

of the VMCS pointer of the logical processor that will execute

the VM guest context. This packet helps us in determining

which vCPU was being utilized at what time.

3) Timing: : Timing information for each event can be

deduced from 3 more important packets. The first one is

Time Stamp Counter (TSC) which gives the lower 7 bytes

of the time-stamp counter - the same as the one returned

by the RDTSC instruction. The Mini Time Counter (MTC)

packet contains the 8-bit value derived from the Always

Running Timer (ART) on Intel processors. Along with a

Timing Alignment (TMA) packet, the MTC and TSC values

can be used to estimate the precise timing of each event up to

nanosecond precision [7].

For our analysis, we record all these packets and analyze

them in post VM execution scenarios. We also record the

physical CPU (pCPU) associated with the relevant packet.

We then create synthetic events with all the packets and the

relevant context information attached to them.

Fig. 1. System Architecture

A. System Architecture

As seen in Figure 1, the trace control module configures

the tracing hardware on the processor. Enabling the tracer

generates a huge amount of encoded trace data that is stored

on disk, with context information for each pCPU attached to

it. The translation module filters and extracts the raw packets

for VM analysis. The PIP, VMCS, TSC and MTC packets are

decoded from the per-CPU trace stream and converted to an

XML derived intermediate format (IF). The synthetic events

are identified from the decoded trace and stored in this format.

For example, <event> tags contain each event with their

timestamps along with event specific data. There are two event

packets - PIP and VMCS. The main driver for this module

is our Hardware-Assisted VM Analysis (HAVAna) Algorithm

that is based on the state machine which analyses the packet

IF and generates visualizations describing the VM behavior.

The XML driven visualizations are consumed by the Trace

Compass [14] trace analysis tool for an in-depth interactive

view of the VM execution.

B. HAVAna Algorithm

The main feature of our proposed technique is the state ma-

chine that classifies hardware packets and generates synthetic

events for visualization. The input to the algorithm is the raw

XML event description stored in the IF generated during trace

translation. Each event packet from the stream is sent to the

state machine shown in Figure 2. The occurrence of a VMCS

event packet in the IF, succeeding a PIP packet, marks the

process for being scheduled on the vCPU and indicates the

beginning of a VM execution at a high level. The process

enters the VMM Mode (Root Mode). A PIP packet with a

new CR3 value and Non-Root (NR) bit (extracted from PIP

hardware trace packet) as 1 indicates that a VM process is

now being executed. This is marked by the VM Mode (Non-

Root Mode). Successive transitions of PIP packets with NR bit

value indicate the execution switching between VMM and VM

mode. Along with the timestamps in all the states gathered

from the IF, we can start creating a time series graph that

shows the process activity in VM and VMM. By associating

vCPUs with VMCS base pointers, we can identify the vCPU

consumption as well. The output of the state machine are

the synthetic events that are then stored and input to the

trace visualization tool. The pseudocode for our algorithm

to uncover different states for vCPUs and processes inside

VMs is shown in Algorithm 1. It receives events as input and

updates the State History Tree [14] as output. For each packet,

it checks the name. In case of the packet name is VMCS, it

saves the VMCS based address and changes the Status of the

related vCPU as VMM (Line 4). When our algorithm receives

a PIP packet, it checks the NR field. If the NR field is 1, it first

queries the current running vCPU base address and modifies

the Status of the related vCPU as 𝑉𝑀 (Line 8) and then

it queries the current running VMM and modifies its Status

as 𝐼𝐷𝐿𝐸 (Line 9). It also changes the Status of the current

process (identified by the CR3 value) running inside the VM

as 𝑉𝑀 (Line 10). If the NR field is zero, and the current status

of the vCPU is 𝑉𝑀𝑀 , it modifies the Status of the vCPU,

process and VMM as 𝐼𝐷𝐿𝐸, (Line 13-15). In case the NR

field is zero and the current status of the vCPU is 𝑉𝑀 , it sets

all the attributes to 𝑉𝑀𝑀 , (Line 18-20).

Fig. 2. HAVAna State Machine

C. Trace Visualization

For constructing the Synthetic Events (𝑆𝐸) for visualiza-

tion, we follow a XML based scheme similar to the one used

by Kouame et al. [8]. In our case, however, we define rules



Algorithm 1 HAVAna Algorithm

1: procedure HAVANA(Input: Event Packets (𝑃𝑒[𝑖]) from IF Output:
Updated SHT)

2: 𝑆𝐸[𝑖] = 𝑝𝑎𝑟𝑠𝑒𝑋𝑀𝐿(𝑃𝑒[𝑖])
3: if (𝑆𝐸[𝑖].𝑛𝑎𝑚𝑒 == 𝑉𝑀𝐶𝑆) then

4: Modify Status attribute of SE[i].base as 𝑉𝑀𝑀
5: else if (𝑆𝐸[𝑖].𝑛𝑎𝑚𝑒 == 𝑃𝐼𝑃 ) then

6: if (𝑆𝐸[𝑖].𝑁𝑅 == 1) then

7: Query Status attribute of current running base
8: Modify Status attribute as 𝑉𝑀
9: Modify VMM Status as 𝐼𝐷𝐿𝐸

10: Modify Status attribute of 𝑆𝐸[𝑖].𝑐𝑟3 as 𝑉𝑀
11: else if (Query Status attribute of 𝑆𝐸[𝑖].𝑏𝑎𝑠𝑒 == 𝑉𝑀𝑀 ) then

12: Query Status attribute of current running base
13: Modify 𝑏𝑎𝑠𝑒 Status as 𝐼𝐷𝐿𝐸
14: Modify VM Status as 𝐼𝐷𝐿𝐸
15: Modify VMM Status as 𝐼𝐷𝐿𝐸
16: else

17: Query Status attribute of current running base
18: Modify 𝑏𝑎𝑠𝑒 Status as 𝑉𝑀𝑀
19: Modify Status attribute of 𝑆𝐸[𝑖].𝑐𝑟3 as 𝑉𝑀𝑀
20: Modify VM Status as 𝐼𝐷𝐿𝐸
21: end if

22: end if

23: end procedure

for state transitions in XML, as described in Algorithm 1, and

input them to the TraceCompass[14] tool, an open source tool

for analyzing traces and logs. It provides an extensive and well

documented interface to build analysis views and graphs. We

have also open sourced1 our hardware-assisted VM analysis

scheme and algorithm. We created two analysis views based

on the synthetic events. The first one is the VM Resource View

that shows the vCPU resource usage by VMMs as well as the

processes running on the VM. This can be useful for analyzing

transitions between the VMM and VM modes and identify

abnormal latencies in either VM, process or VMM mode. The

second view is the VM Control Flow View, which shows each

process on the VM and their flow of execution. We describe

these views with a usecase in the following section.

IV. USECASES - RESOURCE CONTENTION

To show the efficiency of our approach, we first show

our VM Resource View with an example of a 4 threaded

application which calculates prime numbers. We configured

our test VM with 4 vCPUs pinned to one pCPU, which can

represent an ideal low-tier VPS. We ran our test application

while recording a hardware trace from Intel PT in a trace

buffer. We extracted the trace data, decoded and converted it to

the XML IF and applied our HAVAna algorithm. The resulting

VM Resource view, as seen in Figure 3, shows an execution

window of about 3 seconds with the 4 threads executing on

the 4 vCPUs while contending for CPU resources. The red

bars show the process execution in the VM while the green

bars shows the VMM mode execution. As the visualization is

interactive, we can zoom the slightly anomalous looking green

bar and observe how much extra time was spent in the VMM

mode as compared to the VM to VMM switches adjacent to

that execution, as shown in the same figure. Usually such

1http://step.polymtl.ca/∼suchakra/havana.tar.gz

behavior is indicative of VM page faults and VM PAUSE

states. However further analysis of each extra time requires

detailed software trace from the host kernel.

For our VM Control Flow View, we demonstrate a

RabbitMQ based message queuing system that performs MD5

hashing. With the same VM configuration as above, we setup

3 worker threads that do the hashing in a round robin fashion

and sent 3 jobs simultaneously to them. Each worker process

would execute for some duration and the scheduler on the

VM then passes the execution to the other worker processes.

We can observe such a pattern for the 3 workers in Figure 4.

Each process intermittently does the job and then relinquishes

control to the next process in queue and so on. This view can

be used to show how the control flow was passed between

processes, their relationships with their parents, children and

abnormal executions if any.

All of these views have been populated with hardware trace

data gathered from PT, without any software trace intervention,

thus making our approach agnostic of any OS platform or

software infrastructure dependency.

V. OVERHEAD ANALYSIS EXPERIMENTS

One of the major benefits of our work is that we avoid

interacting with software altogether during the trace recording

phase - unlike the current software based tracers such as

Ftrace, LTTng or SystemTap, that cause some overhead in

the target trace execution while trace recording. To quantify

the reduction in trace timing overhead with our approach,

we used the sysbench benchmark to measure the overhead

caused when LTTng kernel tracing was enabled. We compared

it to the hardware trace overhead incurred while Intel PT was

being used. The test machine was an Intel i5-6600K processor

clocked at 3.5GHz with 16GB of main memory. We ran our

tests and benchmarks on a vanilla Linux kernel v4.5. We

used KVM as kernel hypervisor and QEMU as its userspace

counterpart. Our results have been summarized in Table I.

TABLE I
PT BASED VM TRACE AND LTTNG TRACE OVERHEAD

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑(%)

PT LTTng

File I/O 1.00 28.724
Memory 0.00 0.087
CPU 0.00 0.026

We observed that, for the File I/O benchmark, the hardware

tracing overhead for the analysis was only 1%, as compared

to a similar VM analysis trace overhead with LTTng at 28.7%

where tracing was activated on the host kernel[10]. This large

overhead was mostly due to the trace storage competing with

the benchmark for disk bandwidth. In other cases, the PT

overhead was not statistically significant, and hence was ne-

glected, while the LTTng overhead stood at around 3.6%. Even

though LTTng’s trace analysis could give deeper insights about

the host and VM than our pure hardware trace approach, the

completely non-intrusive, platform OS independent, approach



Fig. 3. Resource View showing 4 vCPUs and their execution distribution on single pCPU along with a zoomed view of the VMM mode

Fig. 4. Control Flow View showing 3 RabbitMQ worker processes contending for existing pCPU

of hardware tracing can yield similar end results at a much

lower execution cost on host and VM.

VI. CONCLUSION

The use of tracing allows cloud infrastructure providers to

diagnose issues that may be hard to reproduce otherwise. As

virtualization is the base layer for building up cloud services,

it is important to tackle issues in VMs. We observed that

most of such analyses would require gathering data from

the VM, the hypervisor and the host kernel which needs

agents running inside client VMs. To overcome this limitation,

we propose a new hardware trace analysis based HAVAna

algorithm that allows detailed diagnosis of CPU resource

consumption by processes on VMs, their states and flow of

execution, in a completely non-intrusive manner, without the

involvement of any OS or VM interface. We demonstrate

that our technique allows detection of resource contention in

the VMs without querying the guest at all, thereby allowing

infrastructure providers to meet their SLAs effectively without

any support from the clients’ VMs. This can also be beneficial

to further analyze malicious executions in the target VMs or

move them to different resource groups based on observed

workloads.

Even though our approach and algorithm are independent

from any VM interaction, the amount of information, such as

identifying the faulty process by name or PID, or gathering

instruction profile data for individual processes is reduced.

Such problems can be tackled eventually by fetching minimal

statistics from VMs, such as process maps from the guest

kernel. Another obvious addition can be to identify executions

in VMs intended to have small lifespans (such as those which

mimic containers in their behavior) and compare their succes-

sive startup and teardown profiles by comparing instruction

executions. This would help in clustering them and moving

them to different resource groups as required.

REFERENCES

[1] Giuseppe Aceto et al. “Cloud monitoring: A survey”.

In: Computer Networks 57.9 (2013), pp. 2093 –2115.

[2] A. Anand et al. “Resource usage monitoring for KVM

based virtual machines”. In: Advanced Computing and

Communications (ADCOM), 2012 18th Annual Interna-

tional Conference on. 2012, pp. 66–70.

[3] Thomas Ball and James R. Larus. “Optimally Profiling

and Tracing Programs”. In: ACM Trans. Program. Lang.

Syst. 16.4 (July 1994), pp. 1319–1360.

[4] D. Dean et al. “PerfCompass: Online Performance

Anomaly Fault Localization and Inference in

Infrastructure-as-a-Service Clouds”. In: IEEE

Transactions on Parallel and Distributed Systems

PP.99 (2015), pp. 1–1. ISSN: 1045-9219.



[5] Mathieu Desnoyers and Michel R. Dagenais. “The

LTTng tracer: A Low Impact Performance and Behav-

ior Monitor for GNU/Linux”. In: OLS (Ottawa Linux

Symposium) 2006. 2006, pp. 209–224.

[6] Mohamad Gebai, Francis Giraldeau, and Michel R Da-

genais. “Fine-grained preemption analysis for latency

investigation across virtual machines”. In: Journal of

Cloud Computing. December 2014, pp. 1–15.

[7] Intel. Intel Processor Trace. Accessed: 2016-04-3. Intel

Press, 2015, pp. 3578–3644.

[8] K. Kouame, N. Ezzati-Jivan, and M. R. Dagenais. “A

Flexible Data-Driven Approach for Execution Trace

Filtering”. In: 2015 IEEE International Congress on Big

Data. 2015, pp. 698–703.

[9] Matthew C. Merten et al. “A Hardware Mechanism

for Dynamic Extraction and Relayout of Program Hot

Spots”. In: SIGARCH Comput. Archit. News 28.2 (May

2000), pp. 59–70. ISSN: 0163-5964.

[10] Hani Nemati and Michel Dagenais. “Virtual CPU State

Detection and Execution Flow Analysis by Host Trac-

ing”. In: The 6th IEEE International Conference on Big

Data and Cloud Computing (BDCloud 2016) (2016).

[11] Vinodha Ramasamy et al. “Feedback-Directed Opti-

mizations in GCC with Estimated Edge Profiles from

Hardware Event Sampling”. In: Proceedings of GCC

Summit 2008. 2008, pp. 87–102.

[12] Suchakrapani Sharma and Michel Dagenais.

“Hardware-Assisted Instruction Profiling and Latency

Detection”. In: The Journal of Engineering (2016).

DOI: 10.1049/joe.2016.0127. URL: http://digital-library.

theiet.org/content/journals/10.1049/joe.2016.0127.

[13] Joerg Thalheim, Pramod Bhatotia, and Christof Fetzer.

“Inspector: Data Provenance using Intel Processor Trace

(PT)”. In: proceedings of IEEE International Confer-

ence on Distributed Computing Systems (ICDCS). 2016.

[14] Trace Compass. https://projects.eclipse.org/projects/

tools.tracecompass. Accessed: 2016-04-3.

[15] A. Vasudevan, N. Qu, and A. Perrig. “XTRec: Secure

Real-Time Execution Trace Recording on Commodity

Platforms”. In: System Sciences (HICSS) 44th Hawaii

International Conference on. 2011, pp. 1–10.

[16] Kapil Vaswani, Matthew J. Thazhuthaveetil, and Y. N.

Srikant. “A Programmable Hardware Path Profiler”. In:

Proceedings of the International Symposium on Code

Generation and Optimization. CGO ’05. Washington,

DC, USA: IEEE Computer Society, 2005, pp. 217–228.

ISBN: 0-7695-2298-X.

[17] S. Wang et al. “VMon: Monitoring and Quantifying

Virtual Machine Interference via Hardware Performance

Counter”. In: Computer Software and Applications Con-

ference (COMPSAC), 2015 IEEE 39th Annual. Vol. 2.

2015, pp. 399–408.


	Low Overhead Hardware-Assisted Virtual Machine Analysis and Profiling

