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Abstract—In this paper, we propose a novel low-complexity
hybrid linear/Tomlinson-Harashima precoder (H-L-THP) fo r
downlink large-scale multiuser multiple-input multiple- output
(MU-MIMO) systems. The proposed precoder comprises an inner
linear precoder which utilizes only the second order statistics
of the channel state information (CSI) and outer THPs which
use the instantaneous overall CSI of the cascade of the actual
channel and the inner precoder. The user terminals are divided
into groups, where for each group a THP successively mitigates
the intra-group interference, whereas the inter-group interference
is canceled by the inner linear precoder. Our simulation results
show that the bit error rate (BER) of the proposed H-L-THP
precoder is close to that of the conventional THP precoder,
and is substantially lower than the BER of the commonly
used regularized zero-forcing (RZF) precoder. Moreover, we
derive exact expressions for the computational complexityof the
proposed H-L-THP precoder in terms of the required numbers of
floating-point operations. These results reveal that the proposed
H-L-THP precoder has a much lower computational complexity
than the conventional THP and RZF precoders, and is thus an
excellent candidate for practical implementations.

I. I NTRODUCTION

I N recent years, multiuser multiple-input multiple-output
(MU-MIMO) techniques have become a mature technology

[1], [2]. Today, MU-MIMO is a key element of many modern
wireless communication standards such as Long Term Evolu-
tion Advanced (LTE Advanced). Using MU-MIMO both high
power efficiency and high spectral efficiency can be achieved.

In this paper, we consider the downlink of a single-cell
MU-MIMO system which embodies a vector Gaussian broad-
cast channel (GBC). It is well known that the capacity of the
vector GBC can be achieved by nonlinear dirty paper coding
(DPC) [3], [4]. However, DPC has a very high computational
complexity and is hence infeasible for practical applications.

Tomlinson-Harashima precoding is a nonlinear precod-
ing scheme which achieves near-capacity performance. A
Tomlinson-Harashima precoder (THP) was first proposed for
temporal equalization, i.e., mitigation of intersymbol interfer-
ence (ISI) in time-dispersive channels [5], [6]. The concept
of Tomlinson-Harashima precoding for spatial equalization in
MIMO systems was introduced in [7], [8], and extended to
frequency-selective MU-MIMO channels in [9]. Although THP
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achieves near-capacity performance in MU-MIMO systems,
its computational complexity is too high for many realistic
practical scenarios, especially for base stations (BSs) with
medium- or large-scale (massive) antenna arrays.

On the other hand, linear precoders such as regularized
zero-forcing (RZF) precoders have lower complexity, and
provide good performance when the number of user terminals
(UTs) is much smaller than the number of BS antennas [10].
In particular, for a fixed number of UTs, if the number
of BS antennas goes to infinity, RZF precoding becomes
capacity achieving [11]. However, in scenarios, where the
number of UTs is close to the number of BS antennas, linear
precoders show poor performance, and are outperformed by
their nonlinear counterparts. Nevertheless, their high compu-
tational complexity in medium- to large-scale MIMO systems
prevents nonlinear precoders from being used in practice. This
motivates us to propose a novel precoder which can serve
a larger number of UTs than RZF precoders for a given
number of BS antennas, and combines the benefits of the low-
complexity of linear precoders and the high performance of
nonlinear precoders.

A complexity-reducedlinear precoding scheme for large-
scale MIMO systems was recently presented in [12]. Here,
the authors propose a per-group processing RZF (PGP-RZF)
precoder which has a lower computational complexity than the
conventional RZF precoder and provides a good compromise
between performance and complexity when the number of
UTs is much smaller than the number of BS antennas. In this
scheme, UTs are assigned to groups such that the UTs in the
same group have identical statistical channel state information
(CSI). The PGP-RZF precoder comprises two components.
With the first component, i.e., the inner linear precoder, which
is solely based on statistical CSI, the UT groups are separated
in the spatial domain. The second component, which depends
on the instantaneous CSI, is composed of linear RZF precoders
and mitigates the multiuser interference (MUI) in each group.
Because of its linear structure, a major drawback of the PGP-
RZF precoder is its low performance in scenarios, where the
number of UTs is not much smaller than the number of BS
antennas.

In this paper, we propose a hybrid linear/THP (H-L-THP)
which performs precoding in two stages. In the first stage, a
similar technique as in the first stage of the PGP-RZF scheme
is used, where an inner linear precoder, which is solely based
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on statistical CSI, tries to block-diagonalize the channelmatrix,
i.e., minimize the inter-group interference. In the secondstage,
for each group, a THP successively eliminates the intra-
group interference, i.e., the MUI between the UTs in the
corresponding group. Since statistical CSI is almost static and
changes very slowly over time, the inner precoder needs to be
updated very infrequently, and only the outer per-group THPs
have to be updated in every channel coherence interval.

In contrast to [12], where linear RZF precoders are used to
mitigate the MUI within the groups, in the proposed precoder,
more advanced THPs are employed for intra-group MUI
cancellation leading to a substantially higher performance,
especially when the number of UTs is comparable to the
number of BS antennas. In fact, our simulation results show
that the performance achieved by the proposed H-L-THP is
quite close to that of the conventional THP. Furthermore, we
provide a computational complexity analysis for the proposed
H-L-THP in terms of the required number of floating-point
operations (FLOPs). Although in H-L-THP, in contrast to the
PGP-RZF precoder, nonlinear per-group precoders are used,
the computational complexity of the H-L-THP is only slightly
higher than that of the PGP-RZF precoder. This is due to the
fact that both the PGP-RZF precoder and the H-L-THP block-
diagnoalize the channel matrix in their first stage, and this
block-diagonalization is the computationally most expensive
signal processing operation for both precoders. Moreover,in
the proposed H-L-THP, the per-group THPs operate on square
effective channel matrices having a much smaller size than
the actual channel matrix, which leads to a radically reduced
complexity of the H-L-THP compared to the conventional
THP.

Notation: Boldface lower and upper case letters represent
column vectors and matrices, respectively.IK denotes the
K × K identity matrix and[A]k,:, [A]:,l, and [A]k,l stand
for the kth row, the lth column, and the element in thekth
row and thelth column of matrixA, respectively.(·)∗ denotes
the complex conjugate, andtr(·), (·)T, and (·)H represent
the trace, transpose, and Hermitian transpose of a matrix,
respectively.E{·} stands for the expectation operator and
CN (u,Φ) denotes a circular symmetric complex Gaussian
distribution with mean vectoru and covariance matrixΦ.
Moreover,diag (a1, . . . , aK) and diag (A1, . . . ,AK) denote
a diagonal and a block-diagonal matrix witha1, . . . , aK and
A1, . . . ,AK on its main diagonal, respectively.

II. SYSTEM MODEL AND BENCHMARK SCHEMES

In this section, the considered system model is introduced
and benchmark precoding schemes are presented.

A. System Model

We consider the downlink of a single-cell MU-MIMO
system, where a BS withN antennas simultaneously transmits
data toK single-antenna UTs. The load factor, i.e., the ratio of
the number of UTs to the number of BS antennas is denoted by
β = K/N . The data symbols intended for transmission to the
UTs are stacked into vectord = [d1, . . . , dK ]T, wheredk ∈
A =

{

aI + jaQ | aI, aQ ∈
{

±1,±3, . . . ,±
(√

M − 1
)}}

is

theM -QAM modulated data symbol of thekth UT, andM is
the modulation order and a square number. The vector of the
stacked received signals of the UTs is given by

rx = HHsx + z, (1)

wherex ∈ {RZF,PGP-RZF,THP,H-L-THP} denotes the type
of the precoding scheme employed andH = [h1, . . . ,hK ] ∈
CN×K is the channel matrix withhk being the channel vector
of the kth UT, k ∈ {1, . . . ,K}. In this work, we assume
a block flat fading channel and perfect CSI knowledge at
the BS. We further assume a correlated channel model, i.e.,
hk = R̃kνk, whereνk ∼ CN (0, IN ), andRk = E{hkh

H

k} =

R̃kR̃
H

k represents the channel correlation matrix of thekth UT.
Here, we adopt a uniform linear array (ULA) with a one-ring
scattering model for the channel correlation, which was also
employed in [13]. Accordingly, we have

[

R̃k

]

m,n
=

1

θk,max − θk,min

∫ θk,max

θk,min

ej2πω(m−n)dθ, (2)

where we assume uniformly distributed angles of arrival
(AoA). Here, θk,min and θk,max denote the minimum and
the maximum angles of the physical paths corresponding
to the kth UT, respectively. Moreover,ω is the normalized
antenna spacing in wavelengths. In (1),z = [z1, . . . , zK ]T ∼
CN

(

0, σ2
zIK

)

is the stacked vector of the additive white
Gaussian noise (AWGN) samples of theK UTs with σ2

z

being the variance of the AWGN at the UTs. Here, we
investigate the performance of the considered schemes with
respect to the energy per information bitEb divided by the
one-sided noise power spectral densityN0, which is given by
Eb/N0 , PTX/

(

Kσ2
z log2 (M)

)

, wherePTX = E
{

sHx sx
}

is
the average total transmit power.

B. Benchmark Precoding Schemes

The RZF precoder is among the most commonly used
linear precoders for downlink MU-MIMO systems. Thus,
in this paper, we adopt the RZF precoder as a benchmark
scheme for the proposed H-L-THP. The transmit data vector
generated by linear precoders is given bysx = Vxd, where
x ∈ {RZF,PGP-RZF}, and Vx ∈ C

N×K is the precoding
matrix which for the RZF precoder is given by [13]

VRZF = ζRZFH

(

HHH+
Kσ2

z

PTX
IK

)−1

, (3)

whereζRZF is a normalization factor which ensures that the
constrainttr

(

VRZFV
H

RZF

)

= K is met. Applying this con-
straint leads to an average total transmit power ofPTX = KPs,
wherePs is the variance of one QAM symbol.

The second benchmark scheme which we consider is
the PGP-RZF precoder proposed in [12]. Here, the authors
considerG groups of UTs, where in each group, there are
K̄ = K/G UTs having identical channel correlation matrices
Rg, where g is the group index. The assumption that all
UTs in one group have identical CSI statistics was made for
the sake of simplicity in [12], and PGP-RZF was extended
to the more realistic case, where the UTs in each group



have similar but not necessarily identical statistical CSIin
[14]. Accordingly, we haveH =

[

H̃1, . . . , H̃G

]

, where

H̃g =
[

h(g−1)K̄+1, . . . ,h(g−1)K̄+K̄

]

∈ CN×K̄ denotes the
channel matrix of the UTs in groupg ∈ {1, . . . , G}. The
PGP-RZF precoding matrix is given byVPGP−RZF = WP,
where W = [W1, . . . ,WG] and P = diag (P1, . . . ,PG)
with Wg ∈ CN×K̄ andPg ∈ CK̄×K̄ representing the inner
and outer precoders for thegth group, respectively. The inner
precoderW is a function of the CSI statistics only and it is
designed for the minimization of the inter-group interference
which is equivalent to the minimization of the off-diagonal
elements of the cascade [12]

HHW =













H̃
H

1W1 H̃
H

1W2 · · · H̃H

1WG

H̃
H

2W1 H̃
H

2W2 · · · H̃H

2WG

...
...

...

H̃
H

GW1 H̃
H

GW2 · · · H̃H

GWG













. (4)

Hence, the data symbols of the UTs in thegth group are
ideally transmitted in the null space of the channel matrix
of the UTs of all other groups, i.e., the groups with indices
{1, . . . , g − 1, g + 1, . . . , G}. Accordingly, the following ma-
trix is defined [12], [15]

Ψg =
[

Ǔ1, . . . , Ǔg−1, Ǔg+1, . . . , ǓG

]

, (5)

whereǓg ∈ CN×Lg contains the left eigenvectors correspond-
ing to the Lg dominant eigenvalues ofRg = UgΣgU

H

g ,
where Ug and Σg are the matrix of the eigenvectors and
the diagonal matrix of the eigenvalues ofRg, respectively,
obtained from singular value decomposition (SVD). Here,Lg

is a design parameter which should be optimized. We note
that Ψg has rank

∑G

g=1 Lg. Hence, a unitary basis of the
orthogonal complement of the space spanned byΨg, i.e.,
Span (Ψg), is given byE(0)

g which is a matrix containing the

N−∑G

g′=1, g′ 6=g Lg′ rightmost columns ofΦg =
[

E(1)
g ,E(0)

g

]

,
whereΦg is the matrix of the left eigenvectors ofΨg. Finally,
Wg, i.e., the inner precoder of thegth group is calculated
as the product ofE(0)

g and theK̄ dominant eigenvectors of
a matrix containing the projection of the channel vectors in
group g onto E(0)

g . Accordingly, we haveWg = E(0)
g A(1)

g ,
whereA(1)

g is obtained from [12]

E(0)
g Rg

(

E(0)
g

)H

=E(0)
g UgΣgU

H

g

(

E(0)
g

)H

=A(1)
g Υg

(

A(1)
g

)H

,

(6)

where A(1)
g and Υg are the matrix containing the left

eigenvectors and the diagonal matrix of the eigenvalues of

E(0)
g Rg

(

E(0)
g

)H

, respectively. The RZF precoding matrix for
groupg is then given by [12]

Pg = ζgȞg

(

Ȟ
H

g Ȟg +
K̄σ2

z

PTX
IK̄

)−1

, (7)

where Ȟg = WH

g H̃g is the effective channel matrix of the
gth group, andζg is a normalization factor which ensures that

the transmit power constrainttr
(

WgPgP
H

gW
H

g

)

= K̄ is met

-
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Fig. 1. System model for the conventional THP.

[12]. For the considered benchmark linear precoders, thekth
element of the received vectorrx is directly fed to the QAM
demodulator of thekth UT.

The final benchmark scheme considered here is the conven-
tional THP [7], [8]. The corresponding system model is shown
in Fig. 1. The THP transmit signal is given bysTHP = Fx,
where the unitary feedforward filterF is obtained from the
QR-decomposition of the channel matrixH = FB̌, and the
elements of vectorx are given by

[x]k=ModM

(

[d]k−
k−1
∑

l=1

[B−IK ]k,l[x]l

)

, ∀k ∈ {1, . . . ,K} ,

(8)

where the Modulo functionModM (x) is defined as

ModM (x) =x− 2
√
M

⌊

1

2
+ ℜ

{

x

2
√
M

}⌋

− 2j
√
M

⌊

1

2
+ ℑ

{

x

2
√
M

}⌋

(9)

with ℜ{·} andℑ{·} denoting the real and imaginary parts of
a complex-valued variable. In (8), the feedback matrixB is
given byB = ΞB̌

H

, whereΞ = diag (ξ1, . . . , ξK) with ξk =
1/[B̌]k,k, ∀k ∈ {1, . . . ,K}. At thekth UT, the received signal
is first multiplied by ξk and then passed through aModM -
module before it is applied to the QAM demodulator.

III. H YBRID L INEAR/THP

In this section, the proposed H-L-THP is presented. The
system model for H-L-THP is depicted in Fig. 2. Here, for
the sake of simplicity, and in order to focus on the achievable
performance gains and the main features of the proposed H-
L-THP, we follow [12] and assume that there are UTs that
have identical channel correlation matrices. Furthermore, as in
[12], we assume that the UTs with identical channel correlation
matrices are assigned to the same group.1 As can be seen
from Fig. 2, H-L-THP is performed in two steps. In the first
step, the linear precoder matrixW tries to minimize the inter-
group interference, i.e., it transforms the matrixHH into the
semi-block-diagonal matrixHHW given in (4). In the second
step, in each groupg with effective group channel matrix
WH

g H̃g ∈ CK̄×K̄ , a THP module successively cancels the
MUI interference.

1The more general case, where the UTs in a group have similar, but
not necessarily identical CSI statistics, is left for future work. Considering
the results for the PGP-RZF precoder in [14], we do not expectthat this
generalization has a major impact on performance.
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For the block-diagonalization matrixW, we employ the
method of [12] based on CSI statistics introduced in Section
II-B. Thereby, one key design parameter is the choice of
suitable values forLg. In particular,Lg should be chosen
in such a manner that theG groups can be approximately
separated in the signal space provided by the antenna array.
Choosing values ofLg that are too small results in a poor
performance whereas choosing values forLg that are too large
may lead to a situation, where only a small number of groups
can be constructed, which will in turn result in larger group
sizes and therefore a higher computational complexity. The
optimization ofLg is beyond the scope of this paper, and will
be addressed in future work. The system model for the per-
group THPs is shown in Fig. 3. The input data vector of the
THP module of thegth group is denoted bỹdg ∈ CK̄×1,

whered =
[

d̃
T

1 , . . . , d̃
T

G

]T

. Similar to the conventional THP,
the per-group THP module consists of a feedforward and a
feedback part. The feedforward matrixFg is obtained from
the QR-decomposition of the effective group channel matrix
WH

g H̃g as follows

FgB̃g = WH

g H̃g. (10)

The feedback matrixBg is then given byBg = ΞgB̃
H

g , where
Ξg = diag

(

ξ(g−1)K̄+1, . . . , ξ(g−1)K̄+K̄

)

with ξ(g−1)K̄+k′ =

1/
[

B̃g

]

k′,k′

, k′ ∈
{

1, . . . , K̄
}

. The output data vector of the

feedback part of thegth group, which is denoted bỹxg, is
calculated according to

[x̃g]k′=ModM





[

d̃g

]

k′

−
k′−1
∑

l=1

[Bg−IK̄ ]
k′,l

[x̃g]l



 (11)

for k′ ∈
{

1, . . . , K̄
}

. The output data vector of the THP
module of thegth group is given byỹg = Fgx̃g. Finally,
the transmit signalsH−L−THP is obtained assH−L−THP =
∑G

g=1 Wgỹg. At the k′th UT in the gth group, the received
signal is first multiplied byξ(g−1)K̄+k′ and then, after per-
forming the same modulo operation as for the per-group THP
modules, is fed to the QAM demodulator.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity
of the proposed H-L-THP, and compare it to the computational
complexity of the RZF precoder, the PGP-RZF precoder, and
the conventional THP. Here, the computational complexity is
expressed in terms of the required number of FLOPs corre-
sponding to the number of complex-valued multiplications and

-
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additions. We assume that one complex-valued multiplication
and one complex-valued addition require 6 and 2 FLOPs,
respectively [16]. Moreover, we are interested in the computa-
tional complexity required to generateT precoded data vectors
sx, whereT is the length of the channel coherence interval,
i.e., the number of the data symbols in a time interval, during
which the channel does not change. Furthermore, we neglect
the computational complexity of the SVDs required for the
PGP-RZF precoder and the H-L-THP, since they have to be
determined very infrequently as they are calculated based on
statistical CSI.

First, we determine the computational complexity of the
RZF precoder. Generating the Gram matrixHHH requires
K(K + 1)(4N − 1) FLOPS, where the Hermitian property
of the Gram matrix is exploited [16], [17]. Adding the scaled
identity matrix toHHH requires additionalK FLOPs, and tak-
ing the inverse of the resulting matrix requires4K3+8K2+6K
FLOPs [16], [17]. For the multiplication of the inverse matrix
with H, 2NK(4K−1) FLOPs are required, and2NT (4K−1)
FLOPs are required to generateT precoded data vectors. This
results in a total complexity of

CRZF =4K3 + 2KN(4K − 1) +K(4N − 1)(K + 1)

+ 8K2 + 7K + 2NT (4K − 1). (12)

Next, we derive the computational complexity of the PGP-
RZF precoder. Calculation ofG effective per-group channel
matricesȞg = WH

g H̃g requires2GK̄2 (4N − 1) FLOPs [16],
[17]. The derivation of the computational complexity of the
remaining operations of the PGP-RZF precoder closely follows
that of the RZF precoder, and we only present the total number
of FLOPs, which is equal to

CPGP−RZF =GK̄(16K̄N + 16K̄2 + 7K̄ + 6− 2N)

+ 2NT (4K − 1), (13)

whereK̄ = K/G is the number of UTs per group.

Now, we derive the computational complexity of the con-
ventional THP. The required number of FLOPs to perform QR-
decomposition of channel matrixH is 8NK2 − 8K3/3 [16],
[17]. Calculating matrixB−I and generatingT data vectors at
the output of the feedback part requires8K3−2K2+2K and
4T (K2+K−2) FLOPs, respectively [18]. Finally, filtering the
resulting vectorsT times with the feedforward part to generate
T precoded data vectors requires2TN(4K − 1) FLOPs. This
results in a total number of FLOPs of

CTHP =
16K3

3
+ 8K2N − 2K2 + 4K

+ 2T
(

2K + 2K2 +N (4K − 1)− 4
)

(14)



TABLE I. COMPUTATIONAL COMPLEXITY OF THE CONSIDERED PRECODING SCHEMES.

Precoding scheme FLOPs

RZF 4K3+2KN(4K−1)+K(4N−1)(K+1)+2NT (4K−
1) + 8K2 + 7K

PGP-RZF 2NT (4K−1)+6K−2KN+(16N+16K/G+7)K2/G
THP 16K3/3 + 2K(4KN − K + 2) + 2T

(

2K + 2K2 +
N (4K − 1)− 4

)

H-L-THP 2K(3G2 − 3G2N + 20K2 − 6GK + 24GKN)/3G2 +
2T (2K2 − 4G2 + 2GK −GN + 4GKN)/G

FLOPs for the conventional THP.

Finally, we calculate the computational complexity of the
H-L-THP. In the first step,G matrix-matrix multiplications are
performed to obtain the per-group effective channel matrices
Ȟg = WH

g H̃g ∈ CK̄×K̄ , which require2GK̄2 (4N − 1)
FLOPs [16], [17]. The required number of FLOPs for perform-
ingG QR-decompositions of the effective channel matricesȞg

is 16 GK̄3/3. Calculating matricesBg − IK̄ , g ∈ {1, . . . , G},
and TG computations of (11) require2GK̄

(

4K̄2 − K̄ + 1
)

and4TG(K̄2+K̄−2) FLOPs, respectively [18]. The required
number of FLOPs for calculating̃WgFg, g ∈ {1, . . . , G} is
2NGK̄(4K̄−1). Finally,2TN(4K−1) FLOPs are needed for
generatingT precoded data vectors. This leads to the following
total number of FLOPs for H-L-THP

CH−L−THP =
40GK̄3

3
− 4GK̄2 + 2GK̄ − 2GK̄N + 16GK̄2N

+ T (4GK̄2 + 4GK̄ + 8KN − 8G− 2N).
(15)

The computational complexity of the considered precoders
after substitutionK̄ = K/G in terms of the required number
of FLOPs is summarized in Table I.

V. NUMERICAL RESULTS

In order to evaluate the performance of the proposed H-L-
THP, Monte-Carlo simulations have been performed. Here, we
assume a single-cell system with a BS equipped withN = 32
antennas transmitting data toK single-antenna UTs. Moreover,
for the antenna correlation, we adopt the same AoA model as
in [12]. Accordingly, we haveθg,min = −π + 2π(g − 1)/G
and θg,max = −π + 2π(g − 1)/G + 2∆ for the gth group,
where∆ is the angular spread of the UTs which is set to10◦.
Furthermore, the normalized antenna spacing with respect to
the wavelength is set toω = 0.5. We adoptM = 16 for the
modulation order in all simulations. In this paper, we consider
the average uncoded bit error rate (BER) as a performance
metric, where the averaging is performed over a sufficient
number of channel realizations. We assume that the channel
does not change within one data block, but changes from one
block to the next independently.

In Fig. 4, the average uncoded BER of the proposed H-
L-THP is compared to that of the conventional THP, the RZF
precoder, and the PGP-RZF precoder. The number of UTs and
the number of groups is set toK = 16 andG = 4, respectively.
As can be seen, for medium to highEb/N0 values, THP
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Fig. 4. Uncoded bit error rate vs.Eb/N0 for N = 32, K = 16,
andG = 4.

achieves the lowest BER followed by the H-L-THP, the RZF
precoder, and the PGP-RZF precoder. Moreover, from Fig. 4,
it can be observed that the H-L-THP substantially outperforms
the RZF and PGP-RZF precoders in the highEb/N0 regime
while having only a slightly higher computational complexity
than the PGP-RZF precoder. This large performance gain of
the H-L-THP compared to linear precoders comes from the
more advance signal processing it performs at the BS whereas
the poor performance of the linear precoders is due to the
correlation of the channel vectors. The BER performance of
the PGP-RZF precoder is worse than that of the RZF precoder
which is the price paid for reducing the size of the effective
channel matrix by exploiting statistical CSI in order to have a
lower computational complexity. We note that this behavioris
also reported in [12].

To further investigate the impact of the system load on
performance, we present results forK = N = 32 which
corresponds to a load factorβ equal to one. For this simulation,
the number of groups is also set toG = 4. As can be seen
from Fig. 5, in this case, the RZF and PGP-RZF precoders
have a very poor BER performance, which is due to the fact
that for K = N there are not enough degrees of freedom
to separate the UTs well in the spatial domain with linear
precoding techniques. Both the THP and the H-L-THP achieve
a considerably better performance than the linear precoders,
since they employ a more sophisticated successive interference
cancellation technique at the BS. From Fig. 5, it can also be
seen that again the H-L-THP achieves a BER which is only
slightly worse than that of the conventional THP while having
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a substantially lower computational complexity.

In Fig. 6, we compare the computational complexities of
the considered precoders in terms of the required numbers of
Mega FLOPs (MFLOPs). As expected, THP has the highest
computational complexity followed by the RZF precoder, the
H-L-THP, and the PGP-RZF precoder. One important fact
which can be observed in Fig. 6 is that the H-L-THP has
only a slightly higher computational complexity than the PGP-
RZF precoder. This is due to the fact that for both precoders
the computation of the effective per-group channel matrices
Ȟg = WH

g H̃g, g ∈ {1, . . . , G}, is required and has a much
higher computational complexity than all other operations
needed for calculation of the PGP-RZF precoder and the H-
L-THP.

VI. CONCLUSION

We have presented a low-complexity H-L-THP scheme
for MU-MIMO systems. The proposed H-L-THP achieves a
similar BER performance as the conventional THP, and sub-
stantially outperforms the linear RZF and PGP-RZF precoders.
We have also provided exact mathematical expressions for the
computational complexity of the considered precoders in terms
of the number of required FLOPs. Our complexity analysis

has shown that, despite its excellent BER performance, the
proposed H-L-THP has a considerably lower computational
complexity than both the THP and the RZF precoder.
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