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Abstract—In this paper, a novel framework for power-efficient,
cluster-based machine-to-machine (M2M) communications is
proposed. In the studied model, a number of unmanned aerial ve-
hicles (UAVs) are used as aerial base stations to collect data from
the cluster heads (CHs) of a set of M2M clusters. To minimize
the CHs’ transmit power while satisfying the rate requirements
of M2M devices, an optimal scheduling and resource allocation
mechanism for CH-UAV communications is proposed. First, using
the queue rate stability concept, the minimum number of UAVs as
well as the dwelling time that each UAV must spend for servicing
the CHs are computed. Next, the optimal resource allocation for
the CH-UAV communication links is determined such that M2M
devices rate requirements are satisfied with a minimum transmit
power. Simulation results show that, as the packet transmission
probability of machines increases, the minimum number of UAVs
required to guarantee the queue rate stability of CHs will also
significantly increase. Our results also show that, compared to
a case with pre-deployed terrestrial base stations, the average
transmit power of CHs will decrease by 68% when UAVs are
used.

I. INTRODUCTION

Machine-to-machine (M2M) communications allow the in-
terconnection of a massive number of machine type devices
(MTDs) [1]. In particular, M2M communications can be
used in many Internet of Things (IoT) applications such as
intelligent transportation, health care monitoring, smart grid,
and public safety [1]. To effectively support communications
between the massive number of MTDs, a reliable wireless
infrastructure is needed. In such M2M scenarios, machine type
devices must transmit their data to some existing base stations
in the wireless network. However, in areas which experience
an intermittent or poor coverage by terrestrial wireless net-
works, battery-limited MTDs are not able to transmit their
data to far away base stations due to their power constraints.
Furthermore, due to the various applications of MTDs, they
might be deployed in environments with no terrestrial wireless
infrastructures such as mountains and desert areas.

In such challenging scenarios, unmanned aerial vehicles
(UAVs) can be used as flying base stations to provide reliable
and energy-efficient uplink M2M communications [2]–[4]. In
particular, UAVs can play a key role in enabling M2M com-
munications when the access to terrestrial wireless networks
is limited or unavailable. Due to the aerial nature of the UAVs
and their high altitude, they can be effectively deployed to

reduce the shadowing and blockage effects [4]–[6]. Therefore,
the UAVs can intelligently move for collecting MTD data.
However, to leverage the use of UAVs to collect MTD data,
efficient techniques must be developed for resource allocation,
network deployment, and multiple access [7]–[9].

Due to the massive number of MTDs, optimizing the
resources needed for uplink multiple access becomes highly
challenging. In this regard, clustering the M2M devices and
employing cluster heads (CHs) for collecting the M2M data
and sending it to the aerial base stations, is an effective way
to address the massive access problem [10]–[13]. In clustered
M2M networks, some MTDs can act as cluster heads in order
to relay the received packets from the cluster members (CMs)
to the base stations. In this case, different criteria such as
quality-of-service (QoS), and power consumption of the MTDs
can be considered for clustering of the devices [10] and [11].
Hence, in a clustered M2M network that is covered by UAVs,
the cluster heads are able to send their data to the nearest
UAVs with a low transmit power.

The work in [2] investigated the optimal deployment and
trajectory of a single UAV for maximizing downlink coverage.
However, the model presented in [2] does not consider multi-
ple UAVs case. In [3], UAVs are used to efficiently collect data
from rechargeable CHs. Nevertheless, the work in [3] does
not address the problem of optimal scheduling and resource
allocation in UAV-based M2M communications. While some
studies such as [11] and [14] addressed the problem of M2M
scheduling and resource allocation in cellular networks, they
do not consider the use of UAVs as aerial base stations in their
model. Also, recent works on clustering, such as [15], do not
incorporate UAVs in their model.

The main contribution of this paper is to develop a schedul-
ing and resource allocation framework for energy-efficient CH-
UAV communications. In particular, we consider a network in
which a number of UAVs must provide uplink transmission
links to collect the data from the CHs of a number of MTD
clusters. Using the queue rate stability concept, we derive the
minimum number of required UAVs to serve cluster heads as
well as their dwelling time over each CH. Next, considering
a minimum rate requirement for CHs, we propose an optimal
resource allocation mechanism for CH-UAV communications
such that the total transmit power of CHs is minimized. Our
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results show that, the use of UAVs can yield up to a 68%
reduction in the CHs’ transmit power as compared to a case
with pre-deployed terrestrial base stations. Furthermore, based
on the packet transmission probability of the MTDs, our results
determine the minimum number of UAVs needed for the rate
stability of the CHs’ queues.

The rest of this paper is organized as follows. Section II
presents the system model. In Section III, we present the op-
timal UAV scheduling model. In Section IV, we introduce the
proposed resource allocation mechanism. Simulation results
are presented in Section V while conclusions are drawn in
Section VI.

II. SYSTEM MODEL

Consider a number of MTDs distributed over a given
geographical area. These MTDs form a set of clusters G =
{G1, G2, ..., G|G|}. In each cluster, an MTD is selected as a
CH that is responsible to send the data packets of all of its
cluster members using uplink transmission links. Let I be
the set of the indices of CHs. The size of each data packet
pertaining to CH g ∈ I is Dg . In this area, multiple UAVs (at
low altitudes) are used as flying base stations to collect data
packets from the CHs. We also let U be the set of U available
UAVs. The UAVs must dynamically move and stop over the
CHs to collect the uplink data. Clearly, the dwelling time of
each UAV over each CH depends on the number of packets
that the CH wants to transmit. For multiple access, we consider
an orthogonal frequency division multiple access (OFDMA)
scheme with Z resource blocks (RBs) each having a bandwidth
Bz . Let zu be the number of RBs assigned to a given UAV u.
For each UAV u, we define a vector du = [dgu]|G|×1 with each
element being the dwelling time of UAV u needed to cover
CH g during T . We also define Pg,z as the transmit power
that a CH g needs for reliable data transmissions over RB z.

In Figure 1, we show an illustrative example with three
clusters which are being served by two UAVs. In each cluster,
there is one CH that must relay the packets of cluster members
to its serving UAV during the dwelling time. In this scenario,
since the size of cluster G2 is larger than other clusters, UAV2

needs to stay longer over cluster 2. However, the sizes of
clusters G1 and G3 are small enough thus allowing UAV1 to
change its position and provide service to G1 and G3. Next,
we present the queue model for each cluster member.

A. Queue of requests

In each cluster, the queue of data packets at the CH contains
all of the data packets received from the CMs. At each time
slot, a CM transmits its data packet with a probability p to the
CH. Let ag,t be the arrival process of a given data packet to
the CH g of cluster Gg during time slot t. We assume that the
data packets from each CM will immediately trigger an arrival
process of data packet to the CH. During each time slot, ag,t
can change from 0 which indicates that none of CMs in Gg
transmit data, to |Gg|, indicating that all of the MTDs in Gg
transmit a data packet to the UAV. The probability with which

Fig. 1: System model.

ag,t = n, is given by:

Pr(ag,t = n) =
|Gg|!

n!(|Gg| − n)!
pn(1− p)|Gg|−n. (1)

The expected value of ag,t, āg,t, is given by a Binomial
distribution as follows:

āg,t =

Gg∑
n=0

n
|Gg|!

n!(|Gg| − n)!
pn(1− p)|Gg|−n = p|Gg|. (2)

Let dg,t be the departure process from queue Qg,t at time
slot t. Note that, multiple UAVs can sequentially cover a CH
during each time slot. If the CH g can send at least one packet
during the coverage time of UAV u, the average departure rate
from each queue g is given by:

d̄g,t =

∑U
u=1 d

u
g (t)

T
. (3)

Then, the change in the queue length of cluster Gg will
be [16]:

Qg,t+1 = max{Qg,t − dg,t, 0}+ ag,t. (4)

To guarantee that the queue length of CHs does not become
infinite, the number of UAVs and their dwelling time for
serving the CHs must be sufficient. Therefore, we first find the
minimum number of UAVs and their dwelling time over the
CHs which ensure the queue rate stability. Next, to establish
the successful uplink transmission of CHs, we determine the
optimal number of resource blocks and minimum transmit
power for each CHs. In this case, we need to address the
problem of optimal resource allocation for energy-efficient
CH-UAV communications.

III. SCHEDULING AND RESOURCE ALLOCATION

Here, we first determine the minimum number of UAVs
and their dwelling time to ensure that the queue length of
CHs remains bounded over time. Then, we propose an optimal
resource allocation (RA) mechanism for the UAVs.



a1

a2

d1
1

d2
1

d1
1 +d2

1 = 1

¤ = d1

d1 =

·
d1

1

0

¸

(a): (b):

1

1 1

1

¤ = [d1;d2]

d2 =

·
0
d2

2

¸: Feasible set
One UAV

: Feasible set
Two UAVs

b1

b2

b1

b2

y

x

y

x

Fig. 2: Feasible sets and dwelling time of UAVs for two clusters.

A. UAV Scheduling

The time duration needed to collect the packets from each
CH should be long enough to guarantee the queue rate
stability. The rate stability theorem in [16] introduces the
following rule for stabilizing a multi-queue network: make
scheduling decisions such that the average service time and the
arrival rates are well defined and satisfy āg,t ≤ d̄g,t for each
queue g. Define matrix D = [du]U×|G|, with each column
being vector du. Using this rate stability theorem, the set
of scheduling decisions on the service time of UAVs can be
written as follows:

Λ = {D = [du]U×|G| | du, āg,t ≤ d̄g,t , ∀g ∈ I,

dgu ≥ 0, ∀g ∈ I,∀u ∈ U ,
∑
u

dgu = 1 , ∀g ∈ I}. (5)

Based on the definition of Λ, the minimum number of UAVs
is the number for which Λ is not empty for the given arrival
rates. For example, in Figure 2, two cases are shown for a
scenario in which there are two clusters of MTDs. In the first
case shown in Figure 2 (a), the average arrival rates of queues
in CHs (a1, a2) are low enough such that Λ is not empty for

a serving UAV, which means Λ = {d1 | d1 =

[
d11
d21

]
, d11 +

d21 = 1, ā1,t ≤ d11, ā2,t ≤ d21}. Thus, one UAV can collect the
packets from both CHs and guarantee the rate stability for both
queues. In Figure 2 (a), the x-axis and y-axis, respectively,
show the dwelling of UAV 1 on CH 1 and CH 2 for T = 1.
When the average arrival rate of the queues increases from
(a1, a2) to (b1, b2), then, as shown in Figure 2 (a), Λ becomes
empty for the single UAV case. Therefore, only a single UAV
cannot guarantee the rate stability. Based on Figure 2 (b), to
obtain a nonempty Λ, at least two UAVs are needed to collect
the packets of each queue. In Figure 2 (b) the x-axis and y-
axis, respectively, show the dwelling time of UAV 1 on CH 1
and UAV 2 on CH 2 for T = 1. Then we have Λ = {D =

[d1;d2] | d1 =
[
1, 0
]T
,d2 =

[
0, 1
]T }.

Thus far, we have determined the minimum number of
UAVs as well as their dwelling time to guarantee the queues’
stability of CHs. Next, for each CH, we find the optimal num-
ber of resource blocks and minimum transmit power required
for the successful and energy-efficient uplink transmissions.

B. Resource Allocation for CHs and UAVs

In our model, the system resources include the resource
blocks assigned to UAVs and the transmit power of each
CHs. Each CH must transmit its packets with a minimum
power using the assigned resource blocks. The joint resource
block allocation and power control optimization problem that
minimizes the total energy consumption of CHs is given by:

min
P ,z

∑
g

∑
u

dug
∑
zu

Pug,z, (6)

Dg ≤
∑
zu

Bz log

(
1 +

Pug,zβH
z
gu

BzN0

)
dug , ∀g ∈ I, (7)

0 <
∑
u

zu ≤ Z, (8)

0 <
∑
z

Pug,z ≤ Pmax
g , ∀g ∈ I, (9)

where Pug,z is the transmit power of each CH g over sub-
channel z, when CH g is serviced by UAV u. P =
[Pug,z]|G|×U×Z is a matrix with each element being the power
Pug,z . |G| is the number of CHs, U is the number of UAVs,
and Z is the number of RBs. The vector z = [zu]U×1
indicates the number of resource blocks assigned to UAV u.
Pug =

∑
zu
Pug,z is the sum of the transmit power of CH g

over all of the RBs assigned to UAV u. Hz
gu is the channel

gain between UAV u and CH g on each sub-channel z, and
β = −1.5

ln(5Pe)
is the SNR gap for M-QAM modulation with Pe

being the maximum acceptable error probability [17]. Here,
we have Hz

gu = (
4πhgu

λ )−ν where ν is the path loss exponent,
hgu is the distance of UAV u from cluster head g, and λ is
the wavelength. Pmax

g and Z are, respectively, the maximum
transmit power of CH g and the maximum number of available
RBs.

In the defined optimization problem (6), constraint (7)
guarantees that each CH can send one packet during the time
that the UAV covers it. Also, (8) indicates the maximum
number of resource blocks available for UAVs. (9) shows
the maximum transmission power of CHs. In general, solving
(6) is challenging due to the presence of both integer, and
continuous, variables as well as a nonlinear constraint (7).
Thus, we relax this problem by assuming that each CH will
use the same transmit power on all sub-carriers. Subsequently,
considering Pug,z =

Pu
g

zu
, the optimization problem in (6) can

be reformulated as:

min
P ,z

∑
g

Pug
∑
u

dug , (10)

BzN0(2
Dg

zuBzdug − 1)
zu

βHgu
≤ Pug , ∀g ∈ I, (11)∑

u

zu ≤ Z, (12)

0 < zu ≤ Z , ∀u ∈ U , (13)
0 < Pug ≤ Pmax

g , ∀g ∈ I, (14)



where each element of the matrix P = [Pug ]|G|×U indicates
the transmit power of each CH g, when it is serviced by UAV
u. Clearly, the optimization problem in (10) is a mixed integer
programming problem. We relax this optimization problem by
considering continuous values for variable zu. Obviously, the
objective function in (10) is linear, and, hence, it is convex.
Furthermore, considering the fact that the function (2

1
x−1)x−

y is a convex function on (x, y) ∈ R2, constraint (11) is also
convex as it is a sub-level set of a convex function on zu and
Pug . Constraints (12) and (13) are also the sub-level sets of
convex functions. Consequently, the optimization problem in
(10) is a convex optimization problem.

Since the optimization problem in (10) is convex, the strong
duality will hold. Therefore, any pair of primal and dual
optimal points must satisfy the Karush-Kuhn-Tucker (KKT)
conditions [18]. Following the KKT conditions, the Lagrange
multipliers and optimal points are given by:

BzN0(2
Dg

z∗uBzdug − 1)
z∗u

βHgu
≤ Pu,∗g , ∀g ∈ I,∀u ∈ U ,

0 < z∗u ≤ Z , ∀u ∈ U ,
0 < Pu,∗g ≤ Pmax

g , ∀g ∈ I,∑
u

z∗u ≤ Z,

λu,∗1 , λu,∗2 , λg,∗1 , λu,∗2 , λg,u,∗6 ≥ 0 , ∀g ∈ I,∀u ∈ U ,
λ∗5 ≥ 0,∑
u

dug + λg,∗1 + λg,∗2 − λ
g,u,∗
6 = 0 , ∀g ∈ I,∀u ∈ U ,

− λu,∗1 − λu,∗2 + λ∗5+

λg,u,∗6 × BzN0

βHgu

2
Dg

z∗uBzdug − 2
Dg

z∗uBzdug log(2)

z∗u
− 1

 = 0 ,

λu,∗1 × (−z∗u) = 0 , ∀u ∈ U ,
λu,∗2 × (z∗u − Z) = 0 , ∀u ∈ U ,
λg,∗1 × (−p∗g) = 0 , ∀g ∈ I,
λg,∗2 × (p∗g − pmax

g ) = 0 , ∀g ∈ I,

λ∗5 × (
∑
u

z∗u − Z) = 0 ,

λg,u,∗6 ×
(
BzN0(2

Dg
z∗uBzdug − 1)

z∗u
βHgu

− Pu,∗g
)

= 0 , ∀g ∈ I,

where [λu1
∗]U×1, λ

u
2
∗]U×1, [λ

g
1
∗
]|G|×1, [λ

g
2
∗
]|G|×1, λ5

∗ and
[λg,u6

∗
]|G|×U are the Lagrange multipliers. Since z∗u > 0 and

Pu,∗g > 0 following λg,∗1 × (p∗g) = 0 and λu,∗1 × (−z∗u) = 0,
both λg,∗1 and λu,∗1 must be zero. Thus, we consider λg,∗1 = 0
and λu,∗1 = 0 in the KKT conditions. The feasibility
conditions for the optimization variables in problem (10) will
be:

BzN0(2
Dg

z∗uBzdug − 1)
z∗u

βHgu
≤ Pu,∗g , ∀g ∈ I, (15)

0 < z∗u ≤ Z , ∀u ∈ U , (16)
0 < Pu,∗g ≤ Pmax

g , ∀g ∈ I, (17)

∑
u

z∗u ≤ Z, (18)

λu,∗2 , λu,∗2 , λg,u,∗6 ≥ 0 , ∀g ∈ I,∀u ∈ U , (19)
λ∗5 ≥ 0. (20)

Therefore, considering (15)-(20), the optimal Lagrange mul-
tipliers, [λu2

∗]U×1, [λ
g
2
∗
]|G|×1, λ5

∗ and [λg,u6
∗
]|G|×U , optimal

power of cluster head g to transmit packet to UAV u,
[Pug
∗]|G|×U , and optimal number resource block for each UAV

u [z∗u]U×1 are given by the following joint nonlinear equations:

λu2
∗ × (Z − z∗u) = 0 , ∀u ∈ U , (21)

λg2
∗ × (p∗g − pmax

g ) = 0 , ∀g ∈ I, (22)

λ5
∗ × (

∑
u

z∗u − Z) = 0 , ∀u ∈ U , (23)∑
u

dug + λg2
∗ − λg,u6

∗
= 0, (24)

− λu2
∗ + λ5

∗+ (25)

λg,u6
∗ × BzN0

βHgu

2
Dg

z∗uBzdug − 2
Dg

z∗uBzdug log(2)

z∗u
− 1

 = 0 ,

(26)

λg,u6
∗ ×

(
BzN0(2

Dg
z∗uBzdug − 1)

z∗u
βHgu

− Pug
∗
)

= 0 ,

∀g ∈ I, ∀u ∈ U . (27)

To solve the joint nonlinear equations (21)-(27), we use the
Levenberg Marquardt algorithm (LMA) [19]. This algorithm
requires an initial point (as an input) for the variables in the
feasible set of constraints (15)-(20). Typically, LMA is able
to find the optimal solution even with initial points that are
far from the optimal one. As a result of solving (21)-(27),
the optimal number of resource blocks as well as the transmit
power of each cluster head are computed.

IV. SIMULATION RESULTS

For our simulations, we consider a set of |G| clusters uni-
formly distributed in a square geographical area 500 m×500 m.
The number of cluster members randomly changes between 1
to 10. The bandwidth of each resource block is 15 KHz. We
consider a 2 GHz carrier frequency and a maximum power
of 1 W for each CH. This power is equally divided among
all resource blocks. The noise power spectral density N0 is
−170 dBm per Hz. Furthermore, due to flight regulations
and environmental obstacles around the locations of CHs, we
assume that the altitudes of the UAVs randomly change from
400 m to 600 m. We consider a path loss exponent of 2.5
for the CHs-UAVs communications. Moreover, the length of
each packet is set to 100 bits, and the target bit error rate is
10−7. All statistical results are averaged over a large number
of independent runs.

In Figure 3, we show the average transmit power of CHs
versus the number of clusters for two scenarios. In the first
scenario, we use multiple UAVs as aerial base stations, and in
the second scenario, multiple terrestrial base stations (equal to
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Fig. 3: Average optimal transmit power per CHs vs. number of
clusters for 0.1 packet transmission probability.
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the number of UAVs), are uniformly deployed for serving the
CHs. As we can see from Figure 3, using aerial base stations
leads to about 68% power reduction for CHs compared to
terrestrial base stations. For instance, for 20 clusters and 6
RBs, the transmit power of CHs decreases from 0.26 mW to
0.09 mW by using UAVs instead of terrestrial base stations.
In fact, the UAVs can effectively move towards the CHs
and significantly reduce the blockage and shadowing effects.
Hence, the CHs can use lower transmit power for sending
their data to the UAVs than the ground base stations. From
Figure 3, we can see that the average transmit power per CH
increases as the number of clusters increases. This is due to the
fact that, when the number of CHs increases, the average time
that each UAV can spend to collect data from each CH will
decrease. Thus, the CH must send its packet with a minimum
time duration. Consequently, the CH increases its transmission
power to meet the target packet rate during the given short
time duration. Clearly, while satisfying the rate requirements,
the transmit power of CHs can be reduced by increasing the
number of resource blocks. Therefore, in Figure 3, the average
transmit power of CHs for 24 RBs is lower than the one for
6 RBs.

In Figure 4, we show the impact of the number of clusters on
the average number of resource blocks that must be assigned
to each UAV. From Figure 4, we can see that the average
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Fig. 5: Minimum required number of UAVs vs. the probability of
packet transmission for a scenario with 12 RBs.

number of resource blocks per UAV is lower for a higher
number of clusters. This is due to the fact that, as the number
of clusters increases, the minimum number of needed UAVs
will increase. Hence, the number of RBs per UAV decreases
accordingly. For instance, as shown in Figure 4, as the number
of clusters increases from 10 to 20, the average number of RBs
per UAV decreases from 7 to 3, for a total of 24 RBs.

Figure 5 shows the impact of packet transmission prob-
ability on the minimum required number of UAVs. From
Figure 5, we can see that the minimum required number of
UAVs significantly increases when the probability of packet
transmission increases. This is due to the fact that, for a
higher packet transmission probability, the average arrival rate
of packets to the cluster heads will increase. Therefore, the
minimum required number of UAV to guarantee the rate
stability must be increased. Moreover, as seen from Figure
5, the minimum required number of UAVs is also affected by
the cluster size. Clearly, more UAVs are needed to serve larger
clusters. For instance, for a packet transmission probability
of 0.5, 4 additional UAVs are needed when the cluster size
increases from 10 to 20.

In Figure 6, we show how the number of UAVs required
for serving the CHs changes as a function of the number of
clusters. From this figure, we can see that, as the number of
clusters increases, more UAVs must be deployed in order to
successfully serve the cluster heads. For example, according
to Figure 6, when the number of clusters grows from 5 to 20,
the number of UAVs must increase from 6 to 23 for p = 0.6.
Furthermore, comparing the slope of the curves for p = 0.2
and p = 0.6, indicates that the rate of increase in the number
of UAVs versus the number of clusters is higher for a larger
transmission probability.

Figure 7 shows the total energy consumption of CHs as
a function of the target packet rate and the number of CHs.
From Figure 7, we can see that the total energy consumption
of CHs increases as the target packet rate or the number of
CHs increases. For higher target packet rate values, the cluster
heads must transmit more bits within the given time duration.
Therefore, the CHs must increase their transmit power to send
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more packets during the presence of the UAVs. Moreover, as
the number of clusters increases, the UAVs must decrease their
dwelling time over each cluster head in order to be able to
serve all the cluster heads. Consequently, given the shorter
dwelling time, each CH will increase its transmit power to
send the data to the serving UAV.

V. CONCLUSIONS

In this paper, we have proposed a novel framework for
power-efficient cluster-based M2M communications. In the
studied model, given clusters of M2M devices, UAVs are
used as aerial base stations to collect data from the cluster
heads (CHs). In this scenario, we have proposed an optimal
scheduling and resource allocation mechanism for CHs-UAVs
communications to minimize the transmit power of CHs while
satisfying M2M devices rate requirements. To this end, first,
using the queue rate stability concept, we have computed the
minimum number of UAVs, and the dwelling time of each
UAV to cover CHs. Next, we have determined the optimal
resource allocation for CHs-UAVs communications such that
M2M devices rate requirements are met with a minimum
transmit power. Simulation results have shown the various

benefits and tradeoffs of using UAVs to service M2M clusters.
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