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Abstract

Channel state information (CSI) acquisition is a significant bottleneck in the design of Massive MIMO wireless
systems, due to the length of the training sequences required to distinguish the antennas (in the downlink) and the
users (for the uplink where a given spectral resource can be shared by a large number of users). In this article, we
focus on the downlink CSI estimation case. Considering the presence of spatial correlation at the base transceiver
station (BTS) side, and assuming that the per-user channel statistics are known, we seek to exploit this correlation
to minimize the length of the pilot sequences. We introduce a scheme relying on non-orthogonal pilot sequences
and feedback from the user terminal (UT), which enables the BTS to estimate all downlink channels. Thanks to
the relaxed orthogonality assumption on the pilots, the length of the obtained pilot sequences can be strictly lower
than the number of antennas at the BTS, while the CSI estimation error is kept arbitrarily small. We introduce two
algorithms to dynamically design the required pilot sequences, analyze and validate the performance of the proposed
CSI estimation method through numerical simulations using a realistic scenario based on the one-ring channel model.

I. INTRODUCTION

Channel state information (CSI) acquisition represents an important problem in the multi-user Massive MIMO
(Multiple-Input Multiple-Output) scenario [1]. Accurate downlink CSI is required in order to obtain the large
multiplexing gain expected from massive MIMO systems and achieve the rates shown e.g. in [2]. It is well known
that, in the presence of i.i.d. channels, it is necessary to make the length of the pilot sequences at least as large
as the total number of transmit antennas, in order to avoid the effect known as pilot contamination [3]. Depending
on the coherence time of the channel, the transmission of long training sequences instead of data-bearing symbols
can represent a significant loss in spectral efficiency. This issue is exacerbated in frequency-division duplex (FDD)
systems, where downlink CSI can not be simply obtained by reciprocity [4] at the BTS; in that scenario, the large
number of BTS antennas makes the use of orthogonal pilot sequences especially unwelcome.

In the context of Massive MIMO however, the channels exhibit a large degree of correlation [5]. In fact, a denser
antenna array improves the spatial resolution, and makes the received signal more spatially correlated, to the point of
resulting in a rank deficient spatial correlation matrix [6]. This correlation can potentially help reduce the required
training overhead. The problem of pilot design for MIMO correlated channels has been studied previously, for
example in [7], [8], [9] and [10]. However, in these works the pilot optimization is done for a point-to-point MIMO
system. The single-user assumption was lifted in [11], where it is proposed to schedule uplink CSI acquisition
across the users such that the terminals can be separated in space; pilot sequences orthogonality between users is
therefore not required, yielding shorter training sequences. However, it is not clear how close to perfect separation
in space a practical system can operate, considering realistic propagation conditions, and a finite number of users
to choose from at the scheduling stage. An alternative approach was introduced in [12], where channel sparsity
in the time, frequency and angular domains is assumed, and short pilots are obtained through compressed sensing
techniques.

Another aspect of the problem, related to mitigating pilot contamination in the context of multi-cell Massive
MIMO, has been considered in [6]; in this work, the same (orthogonal) pilot sequences are reused across the cells,
and the problem of assigning each user to one of the pilot sequences is considered.

In [13], the design of non-orthogonal pilots based on per-user spatial covariance information has been addressed
for uplink multi-user Massive MIMO CSI estimation; the object of the present article is to introduce a downlink
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Fig. 1. Functional representation of the proposed CSI acquisition approach. Only one among the K UTs is shown.

counterpart to this approach. In the sequel, we seek to optimize the design of the training sequences transmitted
by the BTS during downlink CSI estimation. The salient features of the proposed approach are:
• The BTS designs a set of non-orthogonal pilots based on statistical CSI, and transmits them.
• Each UT feeds back (typically after quantization) the corresponding received sequence to the BTS.
• The BTS reconstructs the CSI based on UT feedback and prior covariance information.

As will be seen, this enables to dynamically control the accuracy of CSI estimation, as well as to use short,
non-orthogonal pilot sequences (SNOPS), suitably adapted to the channel statistics.

This article is organized as follows: we first introduce the system model and the pilot-based downlink CSI
estimation model in Section II. In Section III, we introduce two algorithms to design pilot sequences with the
objective of minimizing their length or their total energy, while simultaneously ensuring that the channel estimation
error variance is upper-bounded by a per-user constant. Finally, in Section IV, we show through simulations using
a realistic scenario based on the one-ring channel model that the proposed technique can yield pilot sequences of
length significantly smaller than the number of antennas at the BTS.

II. SYSTEM MODEL

A. Channel model

We consider a communication system with M antenna elements at the BTS and K single-antenna UTs, with
M > K. In order to incorporate spatial correlation in the model, it is assumed that the column vector of the
flat-fading downlink channel coefficients between the M antennas at the BTS and the k-th single-antenna UT,
hk ∈ CM can be expressed as the product between a spatial correlation matrix R

1
2

k ∈ CM×rk and a vector
ηk ∈ Crk of complex zero-mean Gaussian i.i.d. random variables with covariance Irk that represents the fast fading
process, i.e.,

hk = R
1
2

k ηk. (1)

In this model, rk is the rank of the spatial covariance matrix, Rk, and is lower or equal to the number of antenna
elements in the BTS, M . We will decompose each per-user covariance matrix as R

1
2

k = UkΛ
1
2

k , where Λk and Uk

are respectively the diagonal matrix containing the rk non-zero eigenvalues of Rk, also incorporating a path loss
coefficient, and the matrix of the associated eigenvectors. In this study, Rk is assumed to be constant (stationary
channel process) and known at the BTS, i.e., statistical CSI is available1.

B. Pilot-Based CSI Estimation Approach

Since we are only concerned with downlink CSI estimation, we focus on the transmission of pilot sequences by
the BTS. Let us assume that pilot sequences of overall length T are simultaneously broadcasted by all M antennas;

1The issue of estimating the per-user BTS-side spatial covariance is outside of the scope of this paper. One approach is to apply classical
covariance estimation and tracking methods, based on the estimated instantaneous CSI. Another method, based on a learned dictionary of
uplink/downlink covariance matrix pairs, suitable for FDD systems, was introduced in [14].
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we let matrix P ∈ CT×M denote the complete set of pilot sequences used in the system. The signal received at
UT k over the corresponding T time instants, denoted by vector yk ∈ CT , can be expressed as:

yk = Phk + wk (2)

where wk represents the per-user additive white Gaussian noise at UT k, with covariance σ2
n,kIT . Each UT will

then quantize the received signal and transmit it, e.g., in the form of a binary representation Bk, back to the BTS.
We assume that the feedback link is perfect, and therefore the BTS can perfectly recover the quantized version of
yk, for all k = 1, . . . ,K, denoted as

ȳk = yk + zk = Phk + wk + zk (3)

where zk represents the per-user quantization error, which is assumed Gaussian with covariance σ2
Q,kIT and

independent from the other variables in the problem. The BTS can then compute the channel estimate ĥk based on
the combined knowledge of ȳk, Rk and P, using a simple linear MMSE approach (more details are provided in
Section II-C below).

A pictorial representation of the above steps is shown in Fig. 1. Some remarks about this approach are in order:
• The situation of interest in this paper is T < M ; in this case, P does not admit a left inverse, and it is not

possible to recover exactly hk from yk only, even in the noise-free case. Therefore, according to the proposed
model, the UT does not directly try to estimate the channel.

• On the other hand, the BTS is in a position to estimate hk thanks to the statistical CSI assumed available
there. In fact, in a Massive MIMO scenario the downlink CSI is used for multi-user precoding, thus making
its availability more important at the BTS.

• Due to the above, the channel statistics (in the form of spatial covariance matrices) are required at the BTS
only.

• Having short pilot sequences is doubly advantageous, since it improves the spectral efficiency of the downlink
pilot transmission, and reduces the dimension of the uplink feedback variable ȳk.

• Although mathematically similar (but not identical), the uplink [13] and downlink (presented here) CSI
estimation methods differ significantly in terms of system design: the former requires the feed-forward coded
transmission of the pilot sequences pk from the BTS to each UT; while the latter involves the coded feed-back
of the sequence yk as received by UT k to the BTS.

C. LMMSE Estimation Error Analysis

We now introduce the considered Linear Minimum Mean Square Error (LMMSE) channel estimator and derive
the estimation error covariance matrix of each user, as a function of the choice of the common pilot sequences. For
a given choice of the pilot matrix P, the LMMSE estimator of the fast fading coefficients between user k and the
BTS array, η̂k, can be written as

η̂k = Cηkȳk
C−1

ȳk
ȳk (4)

where Cηkȳk
= R

H
2

k PH , and Cȳk
= PRkP

H + σ2
kIT , where σ2

k = σ2
n,k + σ2

Q,k represents the variance of the
combination of the thermal and quantization noise terms. Considering (1), the CSI estimate is obtained for each
user as

ĥk = R
1
2

k η̂k. (5)

The covariance matrix of the estimation error for ηk is given by [15]

Ce,ηk
(P) = E[(η̂k − ηk)(η̂k − ηk)H ] (6)

= Irk −R
H
2

k PH(PRkP
H + σ2

kIT )−1PR
1
2

k (7)

=
(
Irk +

R
H
2

k PHPR
1
2

k

σ2
k

)−1

(8)

where from eq. (7) to eq. (8) we used the Woodbury identity [16]. The covariance matrix of the estimation error
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on hk is therefore

Ce,k(P) = E[(ĥk − hk)(ĥk − hk)H ] (9)

= UkΛ
1
2

kCe,ηk
(P)Λ

1
2

kUH
k (10)

= Uk

(
Λ−1
k +

UH
k PHPUk

σ2
k

)−1

UH
k . (11)

III. MINIMUM LENGTH PILOT SEQUENCES UNDER ESTIMATION ERROR CONSTRAINTS

In order to control the accuracy of the channel estimation process for user k, we assume that we wish to uniformly
bound the estimation error on all dimensions of hk by a given constant εk > 0. This can be done by requiring that
all the eigenvalues of Ce,k are lower than or equal to a per-user constant εk, which we denote2 as Ce,k � εkIM .
In this section, we address the design of short pilot sequences under such estimation error constraints.

A. Minimum pilot length without energy constraint

We consider the problem of minimizing the length T of the pilots subject to the per-user maximum estimation
error constraints outlined above, first assuming unbounded transmission energy:

min
P∈CT×M

T (12)

s.t. Ce,k(P) � εkIM ∀k = 1, . . . ,K.

We prove the following result in Appendix A:

Proposition 1. If for each user k the rk nonzero eigenvalues of Rk are greater than εk, i.e., Λk � εkI , then the
minimum T from (12) is max

k=1,...,K
rk.

In other terms, in the regime of low εk (high accuracy), the minimum pilot length needed for downlink CSI
acquisition is limited by the user whose covariance has the highest rank.

B. Energy-Constrained Pilot Length Minimization

We now revisit the optimization problem (12) by introducing a maximum pilot energy constraint, i.e. we seek
the minimum T for which there exists a T ×M matrix P that satisfies Ce,k � εkI and that satisfies a per-antenna
maximum pilot energy constraint Emax:

min
P∈CT×M

T (13)

s.t. Ce,k � εkIM ∀k = 1, . . . ,K

Xmm ≤ Emax ∀m = 1, . . . ,M

where X = PHP ∈ CM×M and Xmm denotes the m-th diagonal element of X. Note that minimizing T is
equivalent to minimizing rank(X), therefore (13) becomes:

min
X�0

rank(X) (14)

s.t. Ce,k � εkIM ∀k = 1, . . . ,K

Xmm ≤ Emax ∀m = 1, . . . ,M.

As a consequence of Proposition 1, we get the following Corollary.

2For two positive semidefinite matrices A and B, A � B is a shorthand notation for the condition that B−A is positive semidefinite.
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Corollary 1. Let λ1,k, . . . , λrk,k denote the rk nonzero eigenvalues of Rk. The optimum T from (13) is lower
bounded by

max
k=1,...,K

rk∑
i=1

1{λi,k ≥ εk}.

Proof: The constraints of (13) are more restrictive than the constraints of (12), therefore the minimum T from
(13) is greater than the optimum T from (12). Using a similar argument, the minimum T from (12) is greater
than the optimum T from (12) where we projected each error covariance matrix on the eigenspace composed by
eigenvectors whose eigenvalues are greater than εk. The lower bound is then a consequence of Proposition 1.

The problem (13) can efficiently be solved approximately through heuristics, e.g., following the method outlined
in [17] as follows. Considering a regularized smooth surrogate of the rank function, namely log det(X + δI) for
some small δ, (14) becomes:

min
X�0

log det(X + δI) (15)

s.t. Ce,k � εkIM ∀k = 1, . . . ,K

Xmm ≤ Emax ∀m = 1, . . . ,M.

The objective function in (15) is concave, however it is smooth on the positive definite cone; a possible way to
approximately solve this problem is to iteratively minimize a locally linearized version of the objective function,
i.e. solve

Xt+1 = arg min
X�0

Tr
(
(Xt + δI)−1X

)
(16)

s.t. Ce,k � εkIM ∀k = 1, . . . ,K

Xmm ≤ Emax ∀m = 1, . . . ,M

until convergence to some X∗. We suggest to initialize the algorithm by choosing X0 as the rank-1, all-ones matrix
1M×M .

Let us now focus on the constraints on Ce,k, k = 1, . . . ,K. Using (11) and the fact that Ce,k is positive
semidefinite, we obtain

Ce,k � εkIM ⇔ UH
k XUk �

(
ε−1
k Irk −Λ−1

k

)
σ2
k (17)

∀k = 1, . . . ,K.

Note that since these constraints are convex, (16) is a convex optimization problem that can be solved numerically.
Due to the various approximations involved in transforming (14) into (16), X∗ might not be strictly rank-deficient,

but it can have some very small eigenvalues instead. It is therefore necessary to apply some thresholding on these
eigenvalues to recover a strictly rank-deficient solution. Let us denote by em the eigenvector associated to the m-th
eigenvalue vm of X∗, m = 1 . . .M , with v1 ≥ . . . ≥ vM ≥ 0. We then let

T = max
i=1...M

i (18)

s.t. vi ≥ εs

for a suitably chosen (small) εs, and obtain the matrix of optimized training sequences as P = V
1
2 [e1, . . . , eT ]T ,

where V is the diagonal matrix having v1 . . . vT as diagonal coefficients.

The proposed algorithm is shown in Algorithm 1.

C. Pilot Energy Minimization

We now propose an algorithm where we search the pilots minimizing the total energy dedicated by the BTS
to pilot sequences, i.e. Tr(X), under the same CSI accuracy constraints as before. Note that the trace criterion
is also a proxy criterion for the rank (see [17]), incorporating both the energy minimization and the pilot length
minimization objectives. This leads to solve the convex optimization problem presented in Algorithm 2.
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Algorithm 1 Minimum length downlink pilot sequence computation with estimation error and per-antenna energy
constraints.

Initialize X0 ← 1M×M .
repeat

Xt+1 ← arg min
X�0

Tr
(
(Xt + δI)−1X

)
s.t. UH

k XUk �
(
ε−1
k Irk −Λ−1

k

)
σ2
k ∀k

Xmm ≤ Emax ∀m = 1, . . . ,M
until convergence to X∗.
Compute T according to (18).
Output: P = V

1
2 [e1, . . . , eT ]T .

Algorithm 2 Pilot energy minimization with estimation error and per-antenna energy constraints.
Compute

X∗ ← arg min
X�0

Tr(X) (19)

s.t. Ce,k � εkIM ∀k = 1, . . . ,K

Xmm ≤ Emax ∀m = 1, . . . ,M

Compute T according to (18).
Output: P = V

1
2 [e1, . . . , eT ]T .

IV. NUMERICAL RESULTS

The algorithms presented in this paper have been evaluated through numerical simulations, according to the
scenario outlined below: the BTS is equipped with a uniform circular array (UCA) of diameter 2 m, consisting of
M = 32 antennas, and serves K = 8 UTs randomly distributed around the BTS at a distance between 250 and
750 m. For each UT, it is assumed that 200 scatterers are distributed randomly on a disc of radius 50 m centered
on each terminal are causing fast fading (one-ring channel model [18]). The covariance matrices are generated by
a ray-tracing procedure, with a central frequency of 3.5 GHz; according to this model, the support of the angle of
arrivals associated to a given UT is limited, which yields covariance matrices with few large eigenvalues. We have
applied a threshold to these eigenvalues to obtain the ranks rk that ensure that at least 99% of the energy of the full-
rank matrix is captured by the rank-deficient model. Distance-dependent path-loss is also incorporated, following the
3D-UMi LoS (dense urban micro-cell, line-of-sight) scenario from [19]. The noise variance (incorporating thermal
noise and quantization noise, as detailed in (3)) is chosen identically across all users as σ2

k = −110 dBm.
Algorithms 1 and 2 have been evaluated numerically. For each realization of the covariance matrices, we applied

the proposed algorithm to compute P. Since the effect of the estimation error ĥk−hk must be interpreted relatively
to the channel variance, we introduce a global accuracy parameter ε∗, and set the per-user constraints as a function
of the path-loss, according to

εk = ε∗Tr{Rk}, (20)

where Tr denotes the trace operator; note that Tr{Rk} = E
[
||hk||2

]
. The solutions to (16) and (19) were obtained

via the numerical solver CVX [20], and parameter δ was set to 10−2. Moreover, for thresholding we consider
εs = 10−5 max (v1, . . . , vM ).

Fig. 2 depicts the total transmit energy contained in the pilot sequences transmitted by the BTS versus the
corresponding length T , as obtained by Algorithm 1 in light gray and Algorithm 2 in dark gray. The maximum
energy constraint per antenna, Emax, is set to 41 dB. The vertical lines represent the average lower bound on the
minimum rank of the pilot sequence matrix derived in Corollary 1. All metrics are averaged over 100 realizations
of the random user locations. It can be seen that Algorithm 1 performs closer to the optimal (the loss of optimality
being attributable to a combination of the per-antenna energy constraint and the influence of the user eigenvalues
below the precision threshold εk that are not taken into account in the lower bound), while Algorithm 2 has better
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Fig. 2. Average total transmit energy and average pilot length obtained by Algorithms 1 and 2 in a system with M = 32 antennas at the BTS.

(lower) energy figures, at the cost of slightly longer sequences. It is noticeable that the obtained pilot sequences
are significantly shorter (average length lower than 10 for ε∗ = 10−2) than what would be necessary in the absence
of statistical CSI, i.e. T = M = 32.

Because of the thresholding operation detailed in (18), for both Algorithm 1 and Algorithm 2, X = PHP is only
approximately equal to X∗. Therefore, the obtained pilot sequences can slightly violate the maximum error variance
constraints Ce,k � εkIM . In order to verify that this has no detrimental effect on the global performance, let us
consider the quantity maxk λmax(Ce,k)/εk, which should always be below 1 in the absence of the thresholding
operation. Figs. 3 and 4 show the empirical distributions of these quantities for parameter ε∗ = 10−1 and ε∗ = 10−2,
respectively. These results show that the departure from the ideal value of 1 is extremely small, and therefore the
effect of the thresholding operation on the final CSI estimation error is negligible.

V. CONCLUSIONS

In this paper we addressed the problem of downlink CSI acquisition in a MIMO FDD single-cell cellular network.
We proposed two algorithms for pilot sequence design that exploit the higher spatial correlation of the channel
coefficients between the BTS antennas and the UTs. Pilot sequences shorter than the current state of the art
solutions can be employed to estimate the channel coefficients with a desired accuracy. We evaluated analytical
bounds for the rank of pilot matrices and we evaluated numerically the proposed algorithms.

APPENDIX A
PROOF OF PROPOSITION 1

Considering eq. (11), let us denote Zk = PUk. Proposition 1 follows as consequence of the following propositions
proved in this Appendix.

Proposition 2. Assume that Λk � εkI for all users k = 1, . . . ,K, then solving the minimization problem (12) is
equivalent to solving

min
P∈CT×M

T (21)

s.t. rank(Zk) = rk ∀k = 1, . . . ,K.
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Proof: Let us first recall that Ce,k � εkI is equivalent to Λ−1
k −

I
εk

+
ZH

k Zk

σ2
k
� 0. The matrix Dk = I

εk
−Λ−1

k

is diagonal of size rk × rk with positive coefficients.
Let us first suppose that there exists P such that Ce,k � εkI. Then for any x ∈ Crk , ‖Zkx‖2 − σ2

k‖Dkx‖2 ≥ 0.
Then, for any x 6= 0, it holds ‖Zkx‖ ≥ σ2

k‖Dkx‖2 > 0, i.e. Zk is full rank, equal to rk.
Conversely, let us suppose that there exists P such that Zk is full rank. Then, let us consider P2 = αP with
some power level α > 0. We indicate as Z2,k = P2Uk. It holds that for any x ∈ Crk , ‖Z2,kx‖2 − σ2

k‖Dkx‖2 ≥
α2λmin(ZHk Zk) − σ2

kλmax(D2
k). Since Zk is full rank, it holds λmin(ZHk Zk) > 0 for all 1 ≤ k ≤ K. Then by

choosing α such that α2 ≥ max1≤k≤K
σ2
kλmax(D2

k)

λmin(ZH
k Zk)

, it holds that
ZH

2,kZ2,k

σ2
k
−Dk � 0 ∀k.

Proposition 3. The minimum T attained in (21) is equal to max1≤k≤K rk.

Proof: It is straightforward to prove that if rank(Zk) = rk then rk = rank(Zk) = rank(PUk) ≤ min(T, rk).
Therefore, T ≥ rk, for all k = 1, . . . ,K, thus, T ≥ max(r1, . . . , rK).

In order to show the proposition, we will now show the existence of a pilot sequence of length max(r1, ...rK)
such that rank(Zk) = rk for all 1 ≤ k ≤ K.
If we denote span(Uk)⊥ the subspace of CM orthogonal to the subspace spanned by Uk, it holds

rk ≥ rank(Zk) = rank(PUk) ≥ rank(PrkUk)

≥ rk − dim(span(PT
rk

) ∩ span(Uk)⊥)

where P` denotes the concatenation of the ` first rows of P. It is then sufficient to prove the existence of P such that
for each k, rank(PrkUk) = rk, i.e. span (PT

rk
) ∩ span(Uk)⊥ = ∅. With such a P, it will hold that rank(Zk) = rk

for all k.
We then recursively build the pilot sequence (i.e. the rows of matrix P). For any step ` ≥ 1, let span(P`−1)⊥ denote
the subspace of CM orthogonal to p1, ...,p`−1. We take the convention span(P0)⊥ = CM , so that the construction
is valid for ` = 1. Let us suppose that we built `− 1 pilots. Then, we choose p` ∈ span(P`−1)⊥ such that for all
users k satisfying rk ≥ `, span(Prk)∩ span(Uk)⊥ = ∅. After ` = max(r1, . . . , rK) steps, it holds that, for each k,
span(PT

rk
) ∩ span(Uk)⊥ = ∅ by construction.

It now remains to show the existence of such p`. For each k satisfying rk ≥ `, it holds dim(span(Uk)⊥) =
M − rk < M − `+ 1 = dim(span(P`−1)⊥).
We deduce that for each k such that rk ≥ `, the subspace span(Uk)⊥ has an empty interior in span(P`−1)⊥ (see e.g.
[21]), then the union on k (denoted by V`) also has an empty interior. Therefore, the interior of span(P`−1)⊥ \V`

is not empty. This means there exists some p` ∈ span(P`−1)⊥ that is not in this union which ends the proof.
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