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Abstract—Vehicle-to-vehicle (V2V) communication can im-
prove road safety and traffic efficiency, particularly around criti-
cal areas such as intersections. We analytically derive V2V success
probability near an urban intersection, based on empirically sup-
ported line-of-sight (LOS), weak-line-of-sight (WLOS), and non-
line-of-sight (NLOS) channel models. The analysis can serve as a
preliminary design tool for performance assessment over different
system parameters and target performance requirements.

I. INTRODUCTION

According to the UN’s World Health Organization, around
1.25 million road-traffic deaths occur every year [1]. Moreover,
it is worth remarking that a significant fraction of these fatali-
ties occur at intersections [2], due to careless driving, speeding,
driving under the influence, etc. On the technological side,
next-generation wireless systems have given a lot of attention
to the paradigm of vehicle-to-vehicle (V2V) communications,
particularly for the purpose of road safety and traffic efficiency.
Indeed, support for V2V services is already part of LTE
Release 14, and this momentum will further continue on as
we gradually migrate to future networks such as 5G.

For road-safety purposes, packet reliability is a key perfor-
mance metric in the 5G ecosystem [3]. As a means to evaluate
this performance metric at the physical (PHY) layer, it is
important to develop analytical expressions in order to identify
the contribution of the relevant parameters during the design
of V2V communication systems and to gain fundamental
insights. Stochastic geometry is well-suited to develop such
expressions for vehicular communication [4]–[8]. Intersections
were explicitly considered in [8], though only for suburban and
rural scenarios. For the analytical expressions to have practical
relevance, they must build on validated empirically supported
propagation measurements [9], [10]. Since urban intersections
have particular propagation characteristics [11], [12], it is
meaningful to perform a dedicated analysis, complementing
[8].

In this paper, we focus on the reliability of V2V communi-
cations around urban intersections under line-of-sight (LOS),
weak-line-of-sight (WLOS), and non-line-of-sight (NLOS)
scenarios, based on empirically supported channel models.
Our analysis is generic, considering a large number of design
parameters and system variables, and allows for closed-form
expressions for finite interference regions. We also provide
design guidelines in order to meet a target performance
requirement.

RX

TX

Fig. 1. Characterization of the V2V intersection problem, whereby the
transmitter (TX) sends a data packet to a receiver (RX), in the presence of
interfering transmitters, over LOS, WLOS, and NLOS propagation environ-
ments.

II. SYSTEM MODEL

A. Network Model

We consider an intersection scenario, as depicted in Fig. 1,
comprising a transmitter (TX), which can be located anywhere
on the horizontal or vertical road, and a receiver (RX), which,
without loss of generality, is confined to the horizontal road.
Hence, xtx = [𝑥tx, 𝑦tx]

T and xrx = [𝑥rx, 0]
T, 𝑥tx, 𝑥rx, 𝑦tx ∈

ℝ, such that 𝑥tx𝑦tx = 0. Other vehicles are randomly po-
sitioned on both horizontal and vertical roads and follow a
homogeneous Poisson point process (H-PPP) over bounded
sets 𝐵x =

{
𝑥 ∈ ℝ

∣∣∣𝑥∣ ≤ 𝑅x

}
and 𝐵y =

{
𝑦 ∈ ℝ

∣∣∣𝑦∣ ≤ 𝑅y

}
,

with vehicular traffic intensities given respectively by 𝜆x and
𝜆y. Interfering vehicles follow an Aloha MAC protocol and
can transmit independently with a probability 𝑝I ∈ [0, 1].
Hence, the interfering vehicles form thinned H-PPPs, denoted
by Φx ∼ PPP (𝑝I𝜆x, 𝐵x) and Φy ∼ PPP (𝑝I𝜆y, 𝐵y). All
vehicles, including TX, broadcast with the same power level
𝑃∘. The receiver signal-to-interference-plus-noise-ratio (SINR)
threshold for reliable packet detection is set to 𝛽, in the
presence of additive white Gaussian noise (AWGN) with
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power 𝑁∘. The SINR depends on the propagation channel,
described next.

B. Channel Model for Urban Intersection

The received power observed at the RX from an ac-
tive transmitter at location x is modeled by 𝑃rx(x,xrx) =
𝑃∘𝐿ch(x,xrx), which depends on transmit power 𝑃∘ and
channel losses 𝐿ch(x,xrx). The channel losses consist of three
components: deterministic path loss ℓ(x,xrx) that captures
the propagation losses, random shadow fading 𝐿s(x,xrx)
that captures effects of obstacles, and random small-scale
fading 𝐿f(x) that captures non-coherent addition of signal
components. For the purpose of tractability, we implicitly
consider shadow fading to be inherent within the H-PPP,
and thus consider 𝐿ch(x,xrx) ≃ ℓ(x,xrx)𝐿f(x) [13]. We
model 𝐿f(x) ∼ Exp (1), independent with respect to x. In
terms of the path loss, we rely on measurements of V2V
communication at 5.9 GHz for urban intersections, which led
to the so-called VirtualSource11p model [11], [12], which
serves as inspiration for our simplified model. For x on the
same road as the RX (i.e., x = [𝑥, 0]T), our simplified model
is

ℓ (x,xrx) = 𝐴∘ ∥xrx − x∥−𝛼
= 𝐴∘∣𝑥rx − 𝑥∣−𝛼, (1)

which is a standard LOS Euclidean path loss. For x on the
orthogonal road (i.e., x = [0, 𝑦]T), the model is

ℓ (x,xrx) =

{
𝐴′

∘ (∥x∥ ∥xrx∥)−𝛼
min(∣𝑦∣, ∣𝑥rx∣) > △

𝐴∘ (∥x∥+ ∥xrx∥)−𝛼
min(∣𝑦∣, ∣𝑥rx∣) ≤ △,

(2)
where the first case is relevant for NLOS communica-
tion, while the second case should be used when either
TX/interferer or RX are close to the intersection, i.e., WLOS.
In these expressions, ∥ ⋅ ∥ is the 𝑙2-norm, 𝛼 > 1 is the path
loss exponent; 𝐴∘ and 𝐴′

∘ are suitable1 path loss coefficients,
and △ is the break-point distance, typically on the order of
the lane size (roughly 10 – 15 m). We will only consider the
case where the region of H-PPP interferers is greater than the
path loss break-point distance, i.e., min (𝑅y, 𝑅x) ≥ △.

Remark: The model in (1)–(2) exhibits discontinuities. A
mixture (a linear weighting) of these models can be used to
avoid these discontinuities, though this is not considered in
this paper.

C. Problem Statement

Our goal will be to determine the success probability
𝒫c (𝛽,xtx,xrx) = Pr (SINR ≥ 𝛽), i.e., the probability that
the SINR is above the threshold 𝛽, where

SINR =
𝐿f(xtx) ℓ (xtx,xrx)∑

x∈Φx∪Φy

𝐿f (x) ℓ (x,xrx) + 𝛾∘
, (3)

1𝐴∘ can be estimated via the free-space path loss model operating at
frequency 𝑓∘, reference distance 𝑑∘, and generic path loss exponent 𝛼.
Generally, 𝐴′∘<𝐴∘ (△/2)𝛼 so that NLOS is more severe than WLOS and
LOS propagation.

in which 𝛾∘=𝑁∘/𝑃∘. We will abbreviate 𝐿f (xtx) by 𝐿f and
we introduce 𝐼 =

∑
x∈Φx∪Φy

𝐿f (x) ℓ (x,xrx). We should
remark that the performance results are solely based at the
PHY layer with basic point-to-point communications. There
are more advanced techniques that could further improve
the performance rate, such as: (i) spatial diversity, (ii) smart
resource allocation, (iii) low latency HARQ retransmission,
(iv) high performance MAC protocols.

III. GENERALIZED SUCCESS PROBABILITY

The success probability comprises several sources of ran-
domness: interference 𝐼 and the fading of the useful link 𝐿f .
Hence,

𝒫c (𝛽,xtx,xrx)

= 𝔼𝐼 {Pr (𝐿f ≥ 𝛽 (𝐼 + 𝛾∘) /ℓ (xtx,xrx))}
= 𝔼𝐼 {exp (−𝛽 (𝐼 + 𝛾∘) /ℓ (xtx,xrx))} , (4)

where we have used the exponential distribution of the small-
scale fading. With 𝛽′ = 𝛽/ℓ (xtx,xrx), we obtain

𝒫c (𝛽,xtx,xrx)

= exp
(−𝛽′𝛾∘

)
𝔼𝐼

{
exp
(−𝛽′𝐼

)}
. (5)

We introduce 𝒫noint=exp
(−𝛽′𝛾∘

)
, which is the success prob-

ability in the absence of interference and 𝔼𝐼

{
exp
(−𝛽′𝐼

)}
is

the reduction of the success probability due to interference.
Since the interferers and their fading realization on the hori-
zontal and vertical roads are independent, we find that

𝔼𝐼

{
exp
(−𝛽′𝐼

)}
(6)

= 𝔼Φx,𝐿f

{
exp
(−𝛽′ ∑

x∈Φx

𝐿f (x) ℓ (x,xrx)
)}

× 𝔼Φy,𝐿f

⎧⎨
⎩exp

(−𝛽′ ∑
x∈Φy

𝐿f (x) ℓ (x,xrx)
)⎫⎬⎭ .

The two factors in (6), say 𝒫x and 𝒫y, can be evaluated as

𝒫x = 𝔼Φx

{
𝔼𝐿f ∣Φx

{ ∏
x∈Φx

exp
(−𝛽′𝐿f (x) ℓ (x,xrx)

)}}

(7)

(𝑎)
= 𝔼Φx

{ ∏
x∈Φx

𝔼𝐿f

{
exp
(−𝛽′𝐿f (x) ℓ (x,xrx)

)}}
(8)

(𝑏)
= 𝔼Φx

{ ∏
x∈Φx

ℒ
(
𝛽′ℓ (x,xrx)

}
, (9)

where transition (a) is due to the i.i.d. nature of the small-
scale fading and the independence of the fading on the H-PPP.
Transition (b) includes the Laplace transform of the fading.
For Rayleigh fading, ℒ (𝑠) = 1/ (1 + 𝑠). After considering
the probability generating functional for an H-PPP [14, p.86],
we obtain

𝑃x = exp
(
−

+𝑅x∫
−𝑅x

𝑝I𝜆x

1 + 1/(𝛽′ℓ([𝑥, 0]T,xrx))
d𝑥
)
. (10)



Similarly, 𝑃y is obtained as

𝑃y = exp
(
−

+𝑅y∫
−𝑅y

𝑝I𝜆y

1 + 1/(𝛽′ℓ([0, 𝑦]T,xrx))
d𝑦
)
. (11)

A. Contribution for Horizontal Road – 𝒫x

To derive 𝒫x, we substitute the channel model of (1) into
(10), and since xrx = [𝑥rx, 0]

T and x = [𝑥, 0]
T, the integration

reduces to:

𝒫x = exp

(
−

+𝑅x∫
−𝑅x

𝑝I𝜆x

1 +
(∣𝑥rx − 𝑥∣ /𝜁)𝛼 d𝑥

)
(12)

such that 𝜁 = (𝐴∘𝛽′)1/𝛼 =
(
𝐴∘𝛽/ℓ (xtx,xrx)

)1/𝛼
. We show

in Appendix A that 𝒫x = exp
(−𝑝I𝜆x𝜁𝒳 (𝑅x)

)
, where

𝒳 (𝑅x) = 𝑔∘
(
𝛼,

(
𝑅x + ∥xrx∥

)
𝜁

)

+ 𝑔∘
(
𝛼,

(
𝑅x − ∥xrx∥

)
𝜁

)
1∥xrx∥≤𝑅x

− 𝑔∘
(
𝛼,

−(𝑅x − ∥xrx∥
)

𝜁

)
1∥xrx∥>𝑅x

, (13)

in which 1Q = 1 when the statement Q is true and 0 otherwise.
The function 𝑔∘ (𝛼, 𝜗) : ℝ+ × ℝ

+
0 �→ ℝ

+
0 is defined as:

𝑔∘ (𝛼, 𝜗) ≜
𝜗∫

0

d𝑢

(1 + 𝑢𝛼)
= 𝜗2𝐹1

(
1,

1

𝛼
;
(
1 +

1

𝛼

)
;−𝜗𝛼

)
,

(14)
in which 2𝐹1 is Gauss’s hypergeometric function. We note
that for certain values of 𝛼 > 1, (14) reverts to a simple form
(e.g., 𝑔∘ (2, 𝜗) = arctan (𝜗)).

B. Contribution for Vertical Road – 𝒫y

To derive 𝒫y, we notice that the RX and interferers are
accordingly located at xrx = [𝑥rx, 0]

T and x = [0, 𝑦]
T. From

(2) and (11), we obtain:

𝒫y = exp

(
−

+𝑅y∫
−𝑅y

𝑝I𝜆y

1 + 1/(𝛽′ℓ([0, 𝑦]T,xrx))
d𝑦

)
. (15)

We show in Appendix B that 𝒫y = exp
(−2𝑝I𝜆y𝜁𝒴(𝑅y)

)
,

where

𝒴(𝑅y) = −𝑔∘
(
𝛼,

∥xrx∥
𝜁

)

+ 𝑔∘
(
𝛼,

(
𝑅y + ∥xrx∥

)
𝜁

)
1∥xrx∥≤△

+ 𝑔∘
(
𝛼,

(△+ ∥xrx∥
)

𝜁

)
1∥xrx∥>△

+
1

𝜅

(
𝑔∘
(
𝛼,

𝜅𝑅y

𝜁

)
− 𝑔∘

(
𝛼,

𝜅△
𝜁

))
1∥xrx∥>△ (16)

and 𝜅 = (𝐴∘/𝐴′
∘)

1/𝛼 ∥xrx∥.

TABLE I
PARAMETERS FOR NUMERICAL EVALUATION

System Parameters
Target Reliability 𝒫target = 0.9
Transmit Power (dBmW) 𝑃∘ = 20
AWGN Floor (dBmW) 𝑁∘ = −99
RX Sensitivity (dB) 𝛽 = 8

Propagation Parameters
Operating Frequency (GHz) 𝑓∘ = 5.9
Reference Distance (m) 𝑑∘ = 10
Break-Point Distance (m) △ = 15
Path Loss (PL) Exponent 𝛼 = 1.68
PL Coefficient for LOS/WLOS (dBm) 𝐴∘=−37.86 + 10𝛼
PL Coefficient for NLOS (dBm), 𝑟∈(0, 1) 𝐴′∘=−37.86 + 7𝛼+ 10 log10(𝑟 ⋅△𝛼)

TX/RX Geometry
RX Distance from Intersection (m) ∥xrx∥ = 50
Max. TX/RX Manhattan Separation (m) 𝐷max = 120
Traffic Parameters of Interferers
Vehicular Traffic Intensity (# / m) 𝜆 = 0.01
Max. Interference Radius (m) 𝑅max = 1, 000

Fig. 2. TX/RX setup for numerical evaluation with a fixed RX position and
multiple possible TX positions. Interferers are not shown.

IV. ANALYSIS AND RESULTS

A. Simulation Setup

We evaluated the success probability for various scenarios
of TX/RX positions with the parameters shown in Table I. We
set 𝜆x = 𝜆y = 𝜆 = 0.01 and 𝑅x = 𝑅y = 𝑅 ∈ [△, 𝑅max]. Due
to the nature of its channel model in (2), we will determine
success probability as a function of the Manhattan distance
(denoted as ∥⋅∥1 for the 𝑙1-norm). In particular, we consider a
fixed RX on the horizontal road at xrx = [−50‚0]T and a TX
that can be in different positions up to a Manhattan distance
of 𝐷max = 120m on the vertical road (see Fig. 2).

In terms of design, we will aim to achieve a target success
probability 𝒫target ∈ (0, 1), generally close to 1, over a certain
area. In other words, we want

𝒫noint𝒫x𝒫y ≥ 𝒫target, (17)
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Fig. 3. Optimal Aloha transmit probability as a function of interference radius
over different values of TX/RX separation.

for all xrx and xtx under consideration. As design parameters,
we will consider the Aloha transmit probability 𝑝I and the
interference range 𝑅.

B. Design: Aloha Transmit Probability vs Interference Range

We will first determine an optimal Aloha transmit probabil-
ity as a function of the interference range 𝑅, for a given target
performance requirement, 𝒫target. Solving (17) for 𝑝I yields

𝑝∗I (𝑅)=
−𝛽𝑁∘/(𝑃∘ℓ(xtx,xrx))− ln(𝒫target)

𝜁𝜆(𝒳 (𝑅) + 2𝒴 (𝑅))
. (18)

This relationship is shown in Fig. 3 for different values of
xtx (and thus of ∥xrx − xtx∥1). We observe that 𝑝∗I (𝑅)
is monotonically decreasing in 𝑅, since a larger region of
possible transmitters requires a reduction in 𝑝I in order to
meet the target performance. This relationship also shows
that as the RX remains fixed and the TX moves across: (i)
LOS: ∥xrx − xtx∥1 ∈ (0, ∥xrx∥], (ii) WLOS: ∥xrx − xtx∥1 ∈
(∥xrx∥, ∥xrx∥+Δ]; and (iii) NLOS: ∥xrx−xtx∥1 ∈ (∥xrx∥+
Δ, 𝐷max], a better channel environment (such as LOS and
WLOS) can tolerate more active interfering nodes (i.e., a larger
𝑝∗I ) than in severe NLOS situations.

Remark: The expression (18) is only valid when 𝑝∗I (𝑅) ≥
0. It is readily verified that, since the denominator of (18) is
positive, this is equivalent to the natural condition 𝒫noint ≥
𝒫target, i.e., the target reliability in the presence of interference
can not exceed the success probability of the wanted TX/RX
communication link under no interference. For the value 𝐷max

of 120 m in our scenario (see Fig. 2), 𝒫noint turns out to be
0.966, hence 𝒫target = 0.9 is a feasible value for all cases
under consideration.

C. Analysis: Sensitivity to TX/RX Separation

The design from (18) considers a given 𝑅 and a certain
xtx and xrx. In this section, we will evaluate the sensitivity
of the success probability when the TX and RX are in
different locations. In particular, we determine 𝑝∗I (𝑅) for

𝑅 ∈ {100, 500, 1000}, xrx = [−50, 0]T, and ∥xrx − x̃tx∥1 ∈
{20, 40, 60, 80, 100, 120}, corresponding to x̃tx ∈
{[−30, 0]T, [−10, 0]T, [0, 10]T, [0, 30]T, [0, 50]T, [0, 70]T}.
For these designs, we can then compute 𝒫c (𝛽,xtx,xrx) for
any xtx under consideration. For visualization purposes, we
plot the outage probability, defined as 1−𝒫c (𝛽,xtx,xrx), as
a function of TX/RX Manhattan separation in Fig. 4.

To understand the figure, take for example Fig. 4a, where
𝑝∗I (𝑅) was determined for 𝑅 ∈ {100, 500, 1000}, x̃tx =

[−30, 0]T and xrx = [−50, 0]
T. For this 𝑝∗I (𝑅), we show

the outage probability as a function of ∥xrx − xtx∥1, for our
scenario, depicted in Fig. 2.

We first note that ∥xrx − xtx∥1 = ∥xrx−x̃tx∥1, the packet
reliability of 0.9 (shown with a green circle mark, for a cor-
responding outage of 0.1) is achieved. When ∥xrx − xtx∥1 <
∥xrx− x̃tx∥1, the outage reduces, while for ∥xrx − xtx∥1 >
∥xrx−x̃tx∥1, the outage increases. For each of the subfigures,
the three curves (corresponding to different values of 𝑅), we
observe a distinctive format, consistent with the uniqueness
of the urban intersection path loss models. Due to the non-
continuous nature of model (2), the outage curves show a
discontinuity when xtx transitions from WLOS to NLOS (this
happens when ∥xrx − xtx∥1 = ∥xrx∥+△, which in our case
corresponds to a separation of 65 m).

Secondly, we note that the smallest interference region (i.e.,
𝑅 = 100m) corresponds to the largest transmit probability.
This smallest interference region leads to the largest outages
for ∥xrx−xtx∥1 < ∥xrx − x̃tx∥1, though never surpassing
0.1. This is due to the larger possibility of active transmit-
ters in close proximity to the RX. On the other hand, the
smallest interference region leads to the smallest outages for
∥xrx−xtx∥1 > ∥xrx − x̃tx∥1. This is because the outage
is dominated by the aggregate interference, rather than the
interferers close to the RX. Hence, the larger interference
region, which has more interferers, has the largest outages.
In other words, a small interference region allows for a high
density of active transmitters 𝜆𝑝I, while leading to relatively
graceful degradation outside the interference region.

Finally, we see that as x̃tx is varied in the different plots
in Fig. 4, the optimal 𝑝∗I (𝑅) varies significantly. In particular,
comparing the values of 𝑝∗I (𝑅) for x̃tx = [−30, 0]T (Fig. 4a)
with x̃tx = [0, 70]T (Fig. 4f), the Aloha transmit probabilities
are reduced by a factor of 4 for 𝑅 = 100 and a factor of 15 for
𝑅 = 1000. Hence, larger transmission ranges come at a severe
cost of reduced density of active transmitters. In summary, our
analysis indicates that when a system is designed for a certain
maximum communication range (e.g., a Manhattan distance
of 100 m, see Fig. 4e), it is recommended to set 𝑅 as low as
possible (in this case 𝑅 = 50 m is recommended), as this leads
to the highest density of active transmitters and and a graceful
performance degradation outside the interference region.

V. CONCLUSION

V2V communication is critical for future intelligent trans-
portation systems. A key performance metric is the probability
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Fig. 4. Sensitivity of the outage probability to the TX/RX separation for different design choices.

of successful packet delivery in the presence of interfer-
ence. In this paper, we analytically characterized the success
probability for urban intersections based on specialized path
loss models. It turns out that these path loss models are
amenable for mathematical analysis and lead to exact closed-
form expressions for different path loss exponents and finite
interference regions. As shown in the paper, the derived
expressions can aid in the communication system design task,
complementing time-consuming simulations and experiments.
In particular, we found that from a system perspective, it is
beneficial to limit interference to a small spatial region, while
allowing more simultaneous transmitters.

APPENDIX A
EXPRESSION FOR 𝒫x

Case I – RX is Inside 𝐵x (i.e., ∥xrx∥ ≤ 𝑅x): Due to
∣𝑥rx − 𝑥∣, the integral (10) must be split in two parts, namely
from 𝑥 ∈ [−𝑅x, 𝑥rx] (for which ∣𝑥rx − 𝑥∣ = 𝑥rx − 𝑥) and
from 𝑥 ∈ [𝑥rx,+𝑅x] (for which ∣𝑥rx − 𝑥∣ = 𝑥 − 𝑥rx). If we
let 𝑢 = (𝑥rx−𝑥)/𝜁 for the first part, and 𝑣 = (𝑥−𝑥rx)/𝜁 for
the second, (10) becomes:

𝒫x = (19)

exp

(
−𝑝I𝜆x𝜁

{
𝑔∘
(
𝛼,

(𝑅x + 𝑥rx)

𝜁

)
+ 𝑔∘

(
𝛼,

(𝑅x − 𝑥rx)

𝜁

)})
.

Meanwhile, we should underscore that due to the symmetry
in (19), it is possible to replace 𝑥rx by ∥xrx∥, while still
remaining compatible when 𝑥rx < 0.

Case II – RX is Outside 𝐵x (i.e., ∥xrx∥ > 𝑅x): The RX
must be outside the region of H-PPP interferers on road-𝑥;
therefore, we may consider 𝑥rx < −𝑅x or 𝑥rx > 𝑅x. Due to
symmetry, the final result will be identical. Considering the
RX positioned on the negative axis, we replace ∣𝑥rx − 𝑥∣ by
(𝑥− 𝑥rx) in (12), while taking the integration over ∣𝑥∣ ≤ 𝑅x;
also, realizing that −𝑥rx = ∥xrx∥, we get:

𝒫x = exp

(
−

𝑅x∫
−𝑅x

𝑝I𝜆x

1 +
((
𝑥+ ∥xrx∣

)
/𝜁
)𝛼 d𝑥

)
. (20)

If we let 𝑢 = (𝑥+ ∥xrx∥) /𝜁, the expression in (20) will then
equal to:

𝒫x = exp

(
−𝑝I𝜆x𝜁

(∥xrx∥+𝑅x)/𝜁∫
(∥xrx∥−𝑅x)/𝜁

d𝑢(
1 + 𝑢𝛼

)) = (21)

exp

(
−𝑝I𝜆x𝜁

{
𝑔∘
(
𝛼,

(∥xrx∥+𝑅x)

𝜁

)
−𝑔∘

(
𝛼,

(∥xrx∥−𝑅x)

𝜁

)})
.

APPENDIX B
EXPRESSION FOR 𝒫y

Case I – RX is Near the Intersection (i.e., ∥xrx∥ ≤ △):
When the RX is close to the intersection, the WLOS Manhat-
tan model within (2) is relevant:

𝒫y = exp

(
−
∫
𝐵y

𝑝I𝜆y d𝑦(
1 +

((∣𝑦∣+∥xrx∥
)
/𝜁
)𝛼)

)
(22)



where 𝜁 = (𝐴∘𝛽′)1/𝛼. If we perform a change of variable to
(22) with 𝑢 =

(∣𝑦∣+ ∥xrx∥
)
/𝜁, we obtain:

𝒫y = (23)

exp

(
−2𝑝I𝜆y𝜁

{
𝑔∘
(
𝛼,

(
𝑅y + ∥xrx∥

)
𝜁

)
− 𝑔∘

(
𝛼,

∥xrx∥
𝜁

)})
.

Case II – RX is Away from the Intersection (i.e., ∥xrx∥ >
△): In this case, the WLOS Manhattan model within (2) is
relevant only when ∥x∥ ≤ △, while the NLOS should be used
when △<∥x∥≤𝑅y. Applying these models into (15), we get

𝒫y=exp

(
−2𝑝I𝜆y

{ △∫
0

d𝑦

(1 + ((𝑦 + ∥xrx∥) /𝜁)𝛼)

+

𝑅𝑦∫
△

d𝑦

(1 + (𝑦 ⋅ ∥xrx∥ /𝜁 ′)𝛼)

})
(24)

where 𝜁 =(𝐴∘𝛽′)1/𝛼 and 𝜁 ′ =(𝐴′
∘𝛽

′)1/𝛼 = 𝜁 (𝐴′
∘/𝐴∘)

1/𝛼. If
we let 𝑢 = (𝑦 + ∥xrx∥) /𝜁 for the first integration in (24), and
𝑣 = 𝑦 ∥xrx∥ /𝜁 ′ for the second, we get:

𝒫y = exp

(
−2𝑝I𝜆y𝜁

{
𝑔∘
(
𝛼,

(△+ ∥xrx∥
)

𝜁

)
−

𝑔∘
(
𝛼,

∥xrx∥
𝜁

)
+
1

𝜅

(
𝑔∘
(
𝛼,

𝜅𝑅𝑦

𝜁

)
− 𝑔∘

(
𝛼,

𝜅△
𝜁

))})
(25)

where 𝜅=(𝐴∘/𝐴′
∘)

1/𝛼 ∥xrx∥ and 𝑔∘ (𝛼, 𝜗) is defined in (14).
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