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Abstract—In this paper, we compare the individual rate of
MIMO-NOMA and MIMO-OMA when users are paired into
clusters. A power allocation (PA) strategy is proposed, which
ensures that MIMO-NOMA achieves a higher individual rate
for each user than MIMO-OMA with arbitrary PA and optimal
degrees of freedom split. In addition, a special case with equal
degrees of freedom and arbitrary PA for OMA is considered,
for which the individual rate superiority of NOMA still holds.
Moreover, it is shown that NOMA can attain better fairness
through appropriate PA. Finally, simulations are carried out,
which validate the developed analytical results.

I. INTRODUCTION

The non-orthogonal multiple access (NOMA) has drawn

great attention as a promising technology for improving the

spectral efficiency for the next generation mobile communica-

tion networks [1]–[6]. There exist two main NOMA schemes,

i.e., power-domain and code-domain NOMA. In this paper, we

focus on the former, in which users are multiplexed on power

domain. For notational simplicity, we refer to power-domain

NOMA as NOMA.

A few works have verified via simulation the superiority

of NOMA over OMA for multi-user scenarios in term of

achievable sum rate [7]–[10]. For single-input single-output

(SISO) systems, [7] shows that NOMA can achieve a larger

sum rate, while [8] illustrates that a larger ergodic sum rate

is obtained by NOMA for a cellular downlink system with

randomly deployed users. As for multiple-input multiple-

output (MIMO) systems, [9], [10] provide some insight: [9]

verifies that a larger ergodic sum rate for two users can be

obtained by NOMA, whereas [10] shows that NOMA can

achieve a larger sum rate for a multi-user scenario, with two

users paired into a cluster, and sharing a common transmit

beamforming vector.

Some recent works aim to analytically prove that NOMA

achieves higher sum rate over OMA. For SISO systems,

power allocation (PA) in [11] is conducted to guarantee that

NOMA achieves a larger sum rate than OMA with equal

power coefficients and degrees of freedom (DoF). For MIMO

systems, [12] derives the sum rate gain of NOMA over OMA

under two extreme cases of user pairing: 1) the best user with

the worst user; 2) the best user with the second best user.

Moreover, a cognitive radio inspired PA is proposed, which

ensures that the data rate of the weak user is larger than that

in OMA. However, the sum rate for OMA is not optimized in

the above works as equal power and DoF are allocated to users.

In [13], [14], the authors overcome this issue, and demonstrate

that NOMA achieves a larger sum rate than OMA for scenarios

with two users and multiple users per cluster, respectively.

The major drawback of the sum rate comparison is that it

neglects fairness. To the best of our knowledge, none of the

previous works considers fairness during sum rate comparison.

Note that although simulation results in [14] show that NOMA

achieves higher fairness, no theoretical analysis is provided.

Hence, in order to account for fairness, we need to compare

the individual rates of the users. In particular, the individual

rate for any user in NOMA should be higher or equal than

its counterpart in OMA. In [15], the PA scheme for a SISO

system is designed such that the individual rate of each user in

NOMA is guaranteed to be larger than its counterpart in OMA.

However, [15] still adopts equal PA and DoF for OMA, which

is suboptimal. By filling in this gap, the main contribution of

this paper lies in:

• A general and fair individual rate comparison is con-

sidered, in which the PA for OMA is arbitrary and the

DoF is split such that the maximum sum rate in OMA is

achieved. On this basis, a PA strategy is proposed, which

ensures that NOMA achieves higher individual rates than

OMA.

• For the particular case with equal DoF and arbitrary

PA, analytical results are provided to demonstrate the

superiority of NOMA over OMA in terms of individual

rates.

• In addition to the individual rate superiority, it is also

shown that better fairness is achieved by NOMA through

appropriate PA.

The rest of the paper is organized as follows. The system

model is introduced in Section II. The individual rate compari-

son between MIMO-NOMA and MIMO-OMA is conducted in

Section III, where a PA strategy is additionally proposed. The

particular case of equal DoF is also discussed in Section III,

while simulation results are shown in Section IV. Conclusions

are finally drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A multi-user MIMO-NOMA downlink transmission sce-

nario is investigated, in which a micro base station (BS)

deployed with M antennas sends information to 2M users,
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each with N antennas. Two users are paired into a cluster

for complexity reduction [12], and NOMA is only applied

between them. Accordingly, there are M clusters in the

system. We adopt the block fading channel model, where both

path loss component and small scale fading are considered,

e.g., the channel matrix from the BS to user k, k ∈ {1, 2}
in cluster m,m ∈ {1, . . . ,M}, is Hm,k = Gm,k/Lm,k,

with Gm,k ∈ CN×M denoting the Rayleigh fading channel

matrix and Lm,k representing the path loss component. The

transmit and receive beamforming vectors fulfill the following

conditions [10]: 1) zero-forcing (ZF) precoding is conducted

at the BS to remove the inter-cluster interference; 2) signal

alignment is conducted at the receiver between users in the

same cluster, i.e., vH
m,2Gm,2 = vH

m,1Gm,1, where vH
m,k

denotes the receive beamforming vector.

As users in the same cluster share a common transmit

beamforming vector, the signal transmitted from the BS can

be expressed as

x = Ps, (1)

where P = [p1 · · · pM ] ∈ CM×M , with pm ∈ CM×1

representing the normalized transmit beamforming vector for

cluster m. Additionally, the information bearing vector s ∈
C

M×1 is given by

s =






α1,1s1,1 + α1,2s1,2
...

αM,1sM,1 + αM,2sM,2




 , (2)

where sm,k and αm,k represent the signal and corresponding

PA coefficient for user (m, k), respectively, satisfying α2
m,1 +

α2
m,2 = 1, ∀m.

At the receiver of user (m, k), the normalized receive

beamforming vector vm,k is applied, and thus, the received

signal ym,k is given by

vH
m,kym,k =αm,1v

H
m,1Hm,1pmsm,1 + αm,2v

H
m,2Hm,2pmsm,2

+

M∑

i6=m

2∑

l=1

αi,lv
H
m,lHm,lpisi,l

︸ ︷︷ ︸

interference from other clusters

+vH
m,knm,k, (3)

where (·)H represents the Hermitian transpose operation and

nm,k ∈ CN×1 ∼ CN (0, σ2
nI) is the additive white Gaussian

noise (AWGN) vector at user (m, k).
As ZF precoding is adopted at the BS, inter-cluster interfer-

ence can be eliminated, and thus, the cluster index m can be

dropped for notational simplicity. Consequently, the received

signal can be rewritten as

vH
k yk = α1v

H
1 H1ps1 + α2v

H
2 H2ps2 + vH

k nk. (4)

Without loss of generality, the effective channel gains of the

users are ordered as follows:

|vH
1 H1p|

2≥ |vH
2 H2p|

2. (5)

Accordingly, successive interference cancellation (SIC) is

conducted at user 1 to remove the interference from user 2,

and because of this, the achieved data rate at user 1 can be

expressed as [13]

RNOMA
1 = log2(1 + ρα2

1|v
H
1 H1p|

2), (6)

where ρ = 1
E[|vH

k
nk|2]

is the same for the two users, as

the receive beamforming vector is normalized and the noise

variance remains unchanged after rotation. E[·] denotes the

expectation operator.

In contrast, user 2 considers user 1’s signal as interference,

and thus, its achievable rate is given by

RNOMA
2 = log2

(

1 +
ρα2

2|v
H
2 H2p|

2

1 + ρα2
1|v

H
2 H2p|2

)

. (7)

As for OMA, under any given power coefficients α1′ and

α2′ , satisfying α2
1′ +α2

2′ = 1, the split of the DoF between the

two users is optimized to achieve the maximum sum rate for

fair comparison. We use λ1 and λ2 to denote the fractions of

the DoF for users 1 and 2, respectively, which should satisfy

λ1 + λ2 = 1. As such, the achievable rate at user k can be

expressed as [13]

ROMA
k = λk log2

(

1 +
ρα2

k′ |v
H

k
Hkpk|

2

λk

)

. (8)

Now, the sum rate for the two users in the same cluster in

MIMO-OMA is given by [13, Lemma 1]

ROMA
sum ≤ log2

(

1 +
2∑

k=1

ρα2
k′ |vH

k Hkpk|
2

)

, (9)

where the equality holds for

λk =
α2
k′ |vH

k Hkpk|2
∑2

l=1 α
2
l′ |v

H
l Hlpl|2

. (10)

Note that when (10) is satisfied, the maximum sum rate for

OMA is achieved, and the corresponding individual rates for

users 1 and 2 are used for OMA to ensure a fair comparison.

B. Problem Formulation

In [13], the authors prove that NOMA can achieve a larger

sum rate than OMA by simply assigning the same power

coefficients to both schemes. However, having a higher sum

rate does not guarantee that each user in NOMA has a higher

data rate than its counterpart in OMA. Indeed, it is easy to

come up with an instance in which the data rate of the weak

user (user 2) in NOMA is below its counterpart in OMA if

simply assigning the same power coefficients. For example,

if ρα2
1|v

H
1 H1p|2= ρα2

2|v
H
2 H2p|2= 0.25 and α2

1 = 0.5α2
2,

then log2

(

1 +
ρα2

2|v
H

2 H2p|
2

1+ρα2
1
|vH

2
H2p|2

)

= log2(1.22) < log2(1.23)

=
α2

2|v
H

2 H2p|
2

α2
1
|vH

1
H1p|2+α2

2
|vH

2
H2p|2

log2

(

1 + ρα2
1|v

H
1 H1p|2+

ρα2
2|v

H
2 H2p|2

)

. This means that NOMA may lead to unfair

data rate between its two users when compared with OMA.

Consequently, to further verify the superiority of NOMA

over OMA, PA should be conducted such that the data rate

of each user in NOMA exceeds its counterpart in OMA. A



PA scheme satisfying this requirement is proposed in [15].

However, [15] adopts time-division multiple access with

equal power and DoF for its users as the representative of

OMA, which does not achieve maximum sum rate for OMA.

On the other hand, for a general case, like any PA for OMA,

does this conclusion still hold? To the best of our knowledge,

this problem has never been considered in the literature.

To validate that NOMA achieves a higher individual rate

than OMA for an arbitrary PA in OMA, we need to find the

feasible power coefficients for NOMA, which achieve this goal

under any given power coefficients and optimal DoF for OMA.

The considered problem can be formulated as follows:

find α1, α2 (11a)

s.t. (10), (11b)

log2(1 + ρα2
1|v

H
1 H1p|

2)

≥ λ1 log2

(

1 +
ρα2

1′ |v
H
1 H1p|2

λ1

)

, (11c)

log2

(

1 +
ρα2

2|v
H
2 H2p|2

1 + ρα2
1|v

H
2 H2p|2

)

≥ λ2 log2

(

1 +
ρα2

2′ |v
H
2 H2p|2

λ2

)

, (11d)

α2
1 + α2

2 = 1, α2
1, α

2
2 ∈ [0, 1], (11e)

where (11b) ensures that OMA achieves the maximum sum

rate, while (11c) and (11d) guarantee that NOMA outperforms

OMA for both users.

III. PROPOSED PA SCHEME

A. Optimal DoF and Varying Power

In this section, we propose a PA strategy, which satisfies the

constraints (11b)-(11e). First, with some algebraic manipula-

tions on (11c) and (11d), the PA strategy for NOMA is given

by

α2
1 ≥

(1 +
ρα2

1′
|vH

1 H1p|
2

λ1
)λ1 − 1

ρ|vH
1 H1p|2

, (12a)

α2
1 ≤

1 + ρ|vH
2 H2p|2−(1 +

ρα2

2′
|vH

2 H2p|
2

λ2
)λ2

ρ|vH
2 H2p|2(1 +

ρα2

2′
|vH

2
H2p|2

λ2
)λ2

. (12b)

Now, to ensure a feasible solution for α2
1, the following

condition must be satisfied:

(1 +
ρα2

1′
|vH

1 H1p|
2

λ1
)λ1 − 1

ρ|vH
1 H1p|2

≤
1 + ρ|vH

2 H2p|2−(1 +
ρα2

2′
|vH

2 H2p|
2

λ2
)λ2

ρ|vH
2 H2p|2(1 +

ρα2

2′
|vH

2
H2p|2

λ2
)λ2

.

(13)

With the help of (11b), and after some algebraic manipula-

tions, (13) can be further expressed as

(|vH
1 H1p|

2−|vH
2 H2p|

2)×

(

1 + ρα2
2′ |v

H
2 H2p|

2

︸ ︷︷ ︸

the first part

−

(1 + ρα2
1′ |v

H
1 H1p|

2+ρα2
2′ |v

H
2 H2p|

2)

α
2
2′

|vH
2

H2p|2

α2

1′
|vH

1
H1p|2+α2

2′
|vH

2
H2p|2

︸ ︷︷ ︸

the second part

)

≥ 0. (14)

In the following lemma, we ensure that (14) always holds

for any PA and optimal DoF for OMA.

Lemma 1: Equation (14) always holds.

Proof: Since |vH
1 H1p|2≥ |vH

2 H2p|2, we only need to

show that the second term of (14) is non-negative. We observe

the following:

• the first part is a linear function over α2
2′ ;

• the second part is a convex function over α2
2′ when α2

2′ ∈
[0, 1];

• the first and second parts intersect when α2
2′ = 0 or

α2
2′ = 1.

According to the characteristics of convex function, the line

segment between any two points on the graph lies above the

graph. Thus, the second term of (14) is always non-negative

when α2
2′ ∈ [0, 1].

As a result, we can claim that for any value of α2
1 satisfying

(12), MIMO-NOMA provides higher individual rates when

compared with MIMO-OMA.

B. Equal DoF and Varying Power

In (11), the DoF are split according to (10). As the PA

is arbitrary, the resulting fractions of DoF can also take any

value, which may be infeasible to realize in practice [16].

Motivated by this observation, in this section, we consider

a simple and practical case when the DoF for two users in the

same cluster in MIMO-OMA are equal, while the PA is still

arbitrary. Compared with [15], the considered case is more

general as the PA can be arbitrary. In contrast to [12], which

only ensures the QoS of the weak user, the considered case

takes into account both strong and weak users.

The corresponding problem can be formulated as:

find α1, α2 (15a)

s.t. log2(1 + ρα2
1|v

H
1 H1p|

2)

≥
1

2
log2(1 + 2ρα2

1′ |v
H
1 H1p|

2), (15b)

log2

(

1 +
ρα2

2|v
H
2 H2p|2

1 + ρα2
1|v

H
2 H2p|2

)

≥
1

2
log2(1 + 2ρα2

2′ |v
H
2 H2p|

2), (15c)

α2
1 + α2

2 = 1, α2
1, α

2
2 ∈ [0, 1]. (15d)

Note that the main difference between (15) and (11) lies

in the fact that (11b) is no longer a constraint in the former.

Instead, both λ1 and λ2 take a fixed value of 1
2 .



To find the solution of (15), we start with the case when

equality is attained in (15c). Accordingly, we have

(1 + ρ|vH
2 H2p|2)2

(1 + ρα2
1|v

H
2 H2p|2)2

= 1 + 2ρ(1− α2
1′)|v

H
2 H2p|

2 (16a)

⇐⇒ α2
1 =

1 + ρ|vH
2 H2p|2−

√

1 + 2ρα2
2′ |v

H
2 H2p|2

ρ|vH
2 H2p|2

√

1 + 2ρα2
2′ |v

H
2 H2p|2

. (16b)

On this basis, we ensure that (15b) always holds. To achieve

that, we rewrite (15b) as

(1 + ρα2
1|v

H
1 H1p|

2)2 ≥ 1 + 2ρα2
1′ |v

H
1 H1p|

2, (17)

and (16a) as

1 + 2ρα2
1′ |v

H
2 H2p|

2

= 2(1 + ρ|vH
2 H2p|

2)−
(1 + ρ|vH

2 H2p|2)2

(1 + ρα2
1|v

H
2 H2p|2)2

= 2(1 + ρ|vH
2 H2p|

2) + (1 + ρα2
1|v

H
2 H2p|

2)2

−

[

(1 + ρα2
1|v

H
2 H2p|

2)2 +
(1 + ρ|vH

2 H2p|
2)2

(1 + ρα2
1|v

H
2 H2p|2)2

]

≤ 2(1 + ρ|vH
2 H2p|

2) + (1 + ρα2
1|v

H
2 H2p|

2)2

−2(1 + ρ|vH
2 H2p|

2)

= (1 + ρα2
1|v

H
2 H2p|

2)2, (18)

where the inequality comes from the Jensen’s inequality.

Now, with the help of (5) and (18), we obtain

(1 + ρα2
1|v

H
1 H1p|

2)2 − 1− 2ρα2
1′ |v

H
1 H1p|

2

≥ (1 + ρα2
1|v

H
2 H2p|

2)2 − 1− 2ρα2
1′ |v

H
2 H2p|

2

≥ 0,

(19)

which is exactly (17). Hence, (15b) always holds.

Similarly, we can prove that when equality is achieved for

(15b), (15c) holds. In this case, we have the PA strategy for

NOMA as

α2
1 =

√

1 + 2ρα2
1′ |v

H
1 H1p|2 − 1

ρ|vH
1 H1p|2

. (20)

Clearly, when α2
1 lies in the boundary between the values

in (16) and (20), MIMO-NOMA always achieves higher

individual rates than MIMO-OMA.

IV. SIMULATION RESULTS

In this section, simulations are conducted to compare the

individual rates of MIMO-NOMA and MIMO-OMA, and

hence, verify the accuracy of the developed analytical results.

In simulations, M = 4 and the path-loss exponent is 3.8.

Fig. 1 compares the individual rate between MIMO-NOMA

and MIMO-OMA with equal DoF, when the power coeffi-

cient for the weak user varies. In simulations, ρ = 30 dB,

|vH
1 H1p|2= 0.052 and |vH

2 H2p|2= 0.0052. Note that

NOMA1 and NOMA2 denote the cases when the power coef-

ficient of the strong user in MIMO-NOMA satisfies (20) and

(16b), respectively. As expected, R1 in NOMA1 equals that

in OMA, while R2 in NOMA2 is the same as that in OMA.
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Fig. 1: Individual rate comparison between NOMA and OMA

with equal DoF, as the power coefficient of user 2 for OMA

varies.

10 15 20 25 30 35 40 45 50

ρ [dB]

0

1

2

3

4

5

6

7

R
1
 [b

ps
/H

z]
NOMA

3

NOMA
4

OMA
OMA [15]

Fig. 2: The rate of user 1, i.e., R1 versus ρ for both NOMA

and OMA.

Moreover, both R2 in NOMA1 and R1 in NOMA2 exceed

their counterparts in OMA, which verifies the superiority of

NOMA over OMA in terms of individual rate. Particularly,

when α2
2′ ∈ [0, 0.8], it can be seen that RNOMA1

1 = ROMA
1 >

RNOMA1

2 > ROMA
2 . Therefore, NOMA1 also provides better

fairness than OMA.

Figs. 2-4 present results obtained when the optimal DoF is

used for OMA. The legends NOMA3 and NOMA4 denote the

scenarios when α2
1 follows (12b) and (12a), respectively. In

addition, the legends OMA [15] and OMA denote the OMA

scheme in [15] (with equal power and DoF) and the one

considered in this paper (with arbitrary power and optimal

DoF), respectively.

In Fig. 2, we show how R1 varies with ρ for the previously

mentioned four schemes. It can be seen that NOMA3 achieves

the highest rate for R1, while OMA in [15] obtains the lowest

rate. In addition, NOMA4 attains the same rate as OMA
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Fig. 3: The rate of user 2, i.e., R2 versus ρ for both NOMA

and OMA.

considered in this paper. Likewise, in Fig. 3, we illustrate how

R2 varies with ρ for the above four schemes. Clearly, NOMA4

achieves the highest rate for R2, being followed by OMA [15].

NOMA3 obtains the same rate as OMA. Combining these

two figures, we can easily conclude that NOMA can always

achieve higher individual rates than OMA considered in this

paper, once (12) is satisfied. Particularly, under NOMA4, better

fairness is achieved by NOMA when compared with OMA.

Morover, NOMA also outperforms OMA [15], as both R1 and

R2 for NOMA4 are higher than that for OMA [15].

Lastly, from Fig. 4, we can observe that OMA considered in

this paper has a larger sum rate than OMA [15] owing to the

use of optimal DoF. This justifies the necessity of optimizing

the DoF for the comparison between NOMA and OMA. The

order of the sum rate is NOMA3 > NOMA4 > OMA >
OMA [15]. NOMA3 > NOMA4 can be explained by the fact

that allocating more power to the stronger user results in a

higher sum rate.

V. CONCLUSION

A fair individual rate comparison between MIMO-NOMA

and MIMO-OMA has been investigated. We have proposed a

PA strategy, which guarantees that MIMO-NOMA achieves a

higher individual rate than MIMO-OMA with arbitrary power

coefficients and optimized DoF. Additionally, we have shown

that this also holds for the case of equal DoF and arbitrary

power coefficients. Numerical results verify the accuracy of

the developed analytical results.

REFERENCES

[1] S. M. R. Islam, M. Zeng, and O. A. Dobre, “NOMA in 5G sys-
tems: Exciting possibilities for enhancing spectral efficiency,” IEEE

5G Tech. Focus, vol. 1, no. 2, May 2017. [Online]. Available: 307
http://5g.ieee.org/tech-focus.

[2] S. M. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-
domain non-orthogonal multiple access (NOMA) in 5G systems: Po-
tentials and challenges,” IEEE Commun. Surv. Tuts., vol. 19, no. 2, pp.
721–742, 2nd Quart., 2017.

10 15 20 25 30 35 40 45 50

ρ [dB]

0

2

4

6

8

10

S
um

 R
at

e 
[b

ps
/H

z]

NOMA
3

NOMA
4

OMA
OMA [15]

Fig. 4: The sum rate versus ρ for both NOMA and OMA.

[3] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-
orthogonal multiple access for 5G: Solutions, challenges, opportunities,
and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp.
74–81, Sep. 2015.

[4] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, and H. V. Poor, “Ap-
plication of non-orthogonal multiple access in LTE and 5G networks,”
IEEE Commun. Mag., vol. 55, no. 2, pp. 185–191, Feb. 2017.

[5] M. Zeng, G. I. Tsiropoulos, O. A. Dobre, and M. H. Ahmed, “Power
allocation for cognitive radio networks employing non-orthogonal multi-
ple access,” in Proc. IEEE Global Telecommun. Conf., Washington DC,
USA, Dec. 2016, pp. 1–5.

[6] M. Zeng, G. I. Tsiropoulos, A. Yadav, O. A. Dobre, and M. H. Ahmed,
“A two-phase power allocation scheme for CRNs employing NOMA,”
in Proc. IEEE Global Telecommun. Conf., to appear.

[7] Y. Saito, et al., “Non-orthogonal multiple access (NOMA) for cellular
future radio access,” in Proc. IEEE Veh. Technol. Conf., Dresden,
Germany, Jun. 2013, pp. 1–5.

[8] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of
non-orthogonal multiple access in 5G systems with randomly deployed
users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec.
2014.

[9] Q. Sun, S. Han, I. Chin-Lin, and Z. Pan, “On the ergodic capacity of
MIMO NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4,
pp. 405–408, Dec. 2015.

[10] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for
NOMA downlink and uplink transmission based on signal alignment,”
IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4438–4454, Jun.
2016.

[11] M. M. El-Sayed, A. S. Ibrahim, and M. M. Khairy, “Power allocation
strategies for non-orthogonal multiple access,” in Proc. MoWNeT, Cairo,
Egypt, Apr. 2016, pp. 1–6.

[12] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-
orthogonal multiple access,” IEEE Trans. Wireless Commun., vol. 15,
no. 1, pp. 537–552, Jan. 2016.

[13] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor,
“On the sum rate of MIMO-NOMA and MIMO-OMA systems,” IEEE

Wireless Commun. Lett., vol. PP, no. 99, pp. 1–1, Jun. 2017.

[14] ——, “Capacity comparison between MIMO-NOMA and MIMO-OMA
with multiple users in a cluster,” IEEE J. Select. Areas Commun., DOI:
10.1109/JSAC.2017.2725879, Jul. 2017.

[15] Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, “A general power allocation
scheme to guarantee quality of service in downlink and uplink NOMA
systems,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7244–
7257, Nov. 2016.

[16] S. Shi, L. Yang, and H. Zhu, “Outage balancing in downlink nonorthog-
onal multiple access with statistical channel state information,” IEEE

Trans. Wireless Commun., vol. 15, no. 7, pp. 4718–4731, Jul. 2016.


	I Introduction
	II System Model and Problem Formulation
	II-A System Model
	II-B Problem Formulation

	III Proposed PA scheme
	III-A Optimal DoF and Varying Power
	III-B Equal DoF and Varying Power

	IV Simulation Results
	V Conclusion
	References

