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Abstract—In this paper, we answer a fundamental question:
when the total number of antennas per square kilometer is fixed,
what is the optimal network deployment? A denser network with
a less number of antennas per base station (BS) or the opposite
case. To evaluate network performance, we consider a practical
network scenario with a fixed antennas density and multi-
user multiple-input-multiple-output (MU-MIMO) operations for
single-antenna users. The number of antennas in each BS is
calculated by dividing the antenna density by the BS density.
With the consideration of several practical network models, i.e.,
pilot contamination, a limited user equipment (UE) density and
probabilistic line-of-sight (LoS)/non-line-of-sight (NLoS) path loss
model, we evaluate the area spectral efficiency (ASE) perfor-
mance. From our simulation results, we conclude that there exists
an optimal BS density for a certain UE density to maximize
the ASE performance when the antenna density is fixed. The
intuition is that (i) by densifying the network with more BSs,
we can achieve a receive power gain due to the smaller distance
between the typical UE and its serving BS; (ii) by installing
more antennas in each BS, we can achieve a beamforming gain
for UEs using MU-MIMO, although such beamforming gain is
degraded by pilot contamination; (iii) thus, a trade-off exists
between the receive power gain and the beamforming gain, if we
fix the antenna density in the network.

I. INTRODUCTION

Mobile data traffic is predicted to grow 1000x from now un-
til 2030 [1], and dense small cell networks (SCNs) and massive
multiple input multiple output (mMIMO) are considered the
major pilar technologies to meet this ever-increasing capacity
demand in the years to come [2], [3].

From 1950 to 2000, network capacity was dramatically in-
creased through network densification by a factor of 2700x [1].
During the first decade of 2000, the 3rd Generation Part-
nership Project (3GPP) standardised the 4th-Generation (4G)
Long Term Evolution (LTE) systems, which kept paying
special attention to network densification and small cells,
as an effective approach to increase capacity [2]. The first
standardisation efforts on New Radio (NR) also indicate that
network densification will remain as one of the workhorses
in 5G systems. Small cells are a powerful approach to fuel
fast-growing network demand due to its fundamental benefits.
However, how to deploy them in a cost-effective manner
has been a big concern for both vendors and operators, and
thus of the research community. A good understanding of the
performance of dense SCNs is necessary.

Up to now, many studies on dense SCNs have focused
on deriving the area spectral efficiency (ASE) performance.
However, most of them only consider a limited number of
factors. In [4], the authors considered a single-slope path
loss model without differentiating line-of-sight (LoS) and non-
LoS (NLoS) transmissions. In [5], the authors embraced LoS
and NLoS transmissions, but only considered an infinity UE
density and a single-input single-output (SISO) system. In [6],
the authors further included in the analysis a finite UE density
and an idle mode capability (IMC), which is key to achieve
a good performance of dense SCNs. In [7], multiple antennas
were considered while analysing coverage probability.

In addition to dense SCNs, mMIMO, considered as a scaled-
up version of multi-user MIMO (MU-MIMO), also has the
potential to further increase network capacity by exploiting the
degrees of freedom in the spatial domain. Indeed, mMIMO
has already been adopted as a main technology to improve
ASE in 5G systems [3]. It is important to note that the larger
the number of antennas, the larger the number of degrees
of freedom, and thus the more multiplexing opportunities.
However, when time division duplex (TDD) systems are con-
sidered, due to a finite channel coherent time, the performance
of mMIMO systems may be limited by inaccurate channel
state information (CSI). Pilot contamination is considered as
a major bottleneck, which occurs when the same set of uplink
training sequences is reused across neighbouring cells [8].
Other channel estimation impairments also play role.

Looking at mMIMO deployment aspects, in [8], the authors
showed that a better performance can be achieved by increas-
ing the number of antennas at the BS and using a simple
signal processing. In [9], the authors analysed the uplink signal
to interference plus noise ratio (SINR) and rate performance
in a mMIMO system, considering a single-slope path loss
model, without differentiating LoS and NLoS transmissions.
In [10], the authors derived the downlink achievable rate in
mMIMO heterogeneous cellular networks, while accounting
for LoS and NLoS transmissions and an infinity UE density.
It is important to note that pilot contamination was considered
in the above three studies. However, little work has been done
on understanding the impact of the BS and UE densities in
the network capacity performance.

Generally speaking and for a certain UE density, the more
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BSs and/or the more antennas per BS, if operated appropri-
ately, the higher the network capacity [11]. However, up to
now, it is unclear what is the optimal network deployment,
i.e., the optimal combination of the number of BSs and
antennas per BS in a given area, when the antenna density
(antennas/km2) is fixed. In particular, two extreme cases are
of great interest: i) a dense SCN network where all BSs
have a single antenna, and ii) a sparse mMIMO network
where many antennas are concentrated in a few BSs. Which
network deployment is better in terms of the network capacity
performance?

In this paper, we give a first answer to this fundamental
question by means of computer simulations. From our sim-
ulation results, we conclude that, for a certain UE density,
there exists an optimal BS density to maximise the ASE
performance when the antenna density is fixed. The intuition
is that (i) by densifying the network with more BSs, we
can achieve a receive power gain due to the smaller distance
between the typical UE and its serving BS; (ii) by installing
more antennas in each BS, we can achieve a beamforming
gain for UEs using MU-MIMO, although such gain will
be degraded by pilot contamination. Thus, a trade-off exists
between the receive power gain and the beamforming gain, if
we fix the antenna density in the network.

The rest of this paper is structured as follows. Section II
describes the network scenario and the wireless system model
considered in this paper. Section III presents our numerical
results, with remarks shedding new light on the trade-off
between the receive power gain and the beamforming gain,
if we fix the antenna density in the network. Section IV draws
the conclusions.

Notations: We use A, a, and a to denote a matrix, a vector
and a scalar, respectively. AT and AH represent the transpose
and conjugate transpose of A, respectively. Cm×n denotes
a set of complex numbers with a dimension of m × n. A
denotes a set, while NB(m,n) represents a negative binomial
distribution with parameters m and n.

II. SYSTEM MODEL

In this section, we present the network scenario, wireless
system model and pilot-aided MIMO channel estimation con-
sidered in this paper.

A. Network Scenario

We consider a downlink (DL) cellular network with BSs
deployed on a plane according to a homogeneous Poisson
point process (HPPP) Φ with a density of λ BSs/km2.

Active DL UEs are also Poisson distributed in the consid-
ered network with a density of ρ UEs/km2. Here, we only
consider active UEs in the network because non-active UEs
do not trigger any data transmission. The typical UE U1 is
deployed at the origin and its serving BS is denoted as B1.

Each BS is equipped with M antennas, and has a total
transmit power of P tx

b , where M is calculated as the antenna
density divided by the BS density λ. Each UE is equipped
with a single antenna.

In practice, a BS will enter into idle mode, if there is no
UE connected to it, which reduces the interference to UEs in
neighbouring BSs as well as the energy consumption of the
network. Since UEs are randomly and uniformly distributed
in the network, the active BSs also follow another HPPP
distribution Φ̃ [12], the density of which is λ̃ BSs/km2. Note
that λ̃ ≤ λ and λ̃ ≤ ρ, since one UE is served by at most one
BS. Also note that a larger ρ results in a larger λ̃.

From [12], λ̃ can be calculated as

λ̃ = λ

1− 1(
1 + ρ

qλ

)q
 , (1)

where an empirical value of 3.5 was suggested for q [12].
In this paper, we consider a pilot-aided channel estimation

scheme, and assume imperfect channel state information (CSI)
caused by pilot contamination. In an uplink training stage, a
scheduled UE transmits a randomly assigned pilot sequence
tk from the set of available training sequences T . UEs in
each BS reuse the same set of pilot sequence, i.e. the pilot
reuse factor can be as high as one. However, it should be
noted that the pilot reuse factor at a particular time instant
strongly depends on the number of pilot sequences and the
number of UEs per BS. For example, a higher number of
UEs per BS implies a larger reuse factor of pilot sequences.
After observing the received pilot signal, which is transmitted
from the scheduled UE and is interfered by the other UEs in
neighbouring cells using the same pilot sequence, a BS can
detect the corresponding pilot and then estimate the channel
by, e.g., a minimum mean square error (MMSE) estimator.

B. Wireless System Model

The 3D distance between an arbitrary UE and an arbitrary
BS is denoted as

w =
√
r2 + h2, (2)

where r is the 2D distance between an arbitrary UE and an
arbitrary BS, and h is the absolute antenna height difference
between these two. Note that the value of h is in the order
of several meters. In our simulation, the height difference is
decided according to the path loss model [13], [14].

With regard to such path loss modelling, we adopt a general
and practical piecewise path loss model with respect to the 3D
distance w proposed in [?], where each segment of the path
loss function is modelled as either a LoS transmission or a
NLoS one. Such path loss function is given by

ζjlk(w) =


ζ1(jlk)(w), when h ≤ w ≤ d1
ζ2(jlk)(w), when d1 ≤ w ≤ d2
...

...
ζn(jlk)(w), when w ≥ dN

, (3)

where ζn(jlk)(w) is the n-th segment of the path loss function
between the j-th BS and the k-th UE scheduled by the l-th BS.



Each segment of path loss function is modelled by:

ζn(w) =

{
ζL
n = AL

nw
−αL

n , for LoS
ζNL
n = ANL

n w−α
NL
n , for NLoS

, (4)

where
• ζLn (w) and ζNL

n (w) , n ∈ {1, 2, . . . , N} are the n-th
segment of the path loss functions for the LoS and the
NLoS cases, respectively,

• AL
n and ANL

n are the path loss values at a reference
3D distance w = 1 for the LoS and the NLoS cases,
respectively, and

• αL
n and αNL

n are the path loss exponents for the LoS and
the NLoS cases, respectively.

In addition, the piecewise probability function of that a
transmitter and a receiver communicate via a LoS path while
separated by a distance w is written as

PrL =


PrL

1(w) when h ≤ w ≤ d1
PrL

2(w) when d1 ≤ w ≤ d2
...

...
PrL

n(w) when w ≥ dN

, (5)

where PrL
n(w) is the n-th segment of the LoS probability

function that the path between an arbitrary UE and an arbitrary
BS is a LoS one.

Based on these path loss and probabilistic LoS/NLoS mod-
els, a practical UE association strategy (UAS) is considered
in this paper. A UE is associated with the BS that provides
the maximum average received signal strength (i.e. the largest
ζ(w)). Moreover, we assume that one M -antenna BS can at
most simultaneously schedule KU UEs in a time-frequency
resource block according to [15], where KU is given by

KU = min {KT,M/4} , (6)

where KT is the number of pilot sequences and M is the
number of antennas per BS. Note that M/4 is an empirical
value to achieve a good performance for a MU-MIMO system
in case of pilot contamination [15].

For convenience, we denote a UE in each BS by the index
of its used uplink training sequence, i.e., the k-th UE is the
UE that uses the k-th uplink training sequence tk, where k is
randomly chosen from 1 to the maximum training sequence
number KT . Note that the k-th UE could be an empty UE
since not all of the uplink training sequences are used up
in each BS. If there are more than KU UEs connected to
a BS, only up to KU of them are randomly chosen to be
scheduled, which means that this BS is fully loaded and KU
training sequences are used. Without loss of generality and
as mentioned earlier, we consider the first UE in B1 as the
typical UE, denoted by U1.

From [16], the number of UEs per active BS can
be modelled as a Negative Binomial distribution, i.e.,
K ∼NB(q, ρ

ρ+qλ ). However, note that only active BSs are
considered to participate in DL transmissions and that at
most KU UEs can be served simultaneously by an active BS.

Thus, the actual number of scheduled UE per active BS K̂
can be modelled as a truncated modified Negative Binomial
distribution, i.e., K̂ ∼TruncNB∗(q, ρ

ρ+qλ ), and the PMF of
K̂ can be expressed as

fK̂(k) =

{ fK(k)
1−fK(0) 1 ≤ k ≤ KU − 1∑∞

k=KU
fK(k)

1−fK(0) k
.
= KU

, (7)

where fK(k) is the PMF of UE number distribution (i.e.,
K ∼NB(q, ρ

ρ+qλ )) derived in [16], which is given by

fK (k) = Pr [K = k]

=
Γ(k + q)

Γ(k + 1)Γ(q)

(
ρ

ρ+ qλ

)k (
qλ

ρ+ qλ

)q
. (8)

where Γ(·) is the Gamma function. Note that fK (k) satisfies
the normalization condition:

∑+∞
k=0 fK (k) = 1.

C. Pilot-Aided mMIMO Channel Estimation

The channel is assumed to be invariant in a time-frequency
resource block, and change independently from block to block.
The channel vector can be expressed as

h(PL)
jlk = (ζ

(PL)
jlk )

1
2φ

1
2

jlkwjlk, (9)

where ’PL’ takes the value ’L’ and ’NL’ for LoS transmissions
and NLoS transmissions, respectively, h(PL)

jlk is the channel
vector between the j-th BS and the k-th UE scheduled by
the l-th BS, wjlk is the multi-path fading vector modelled
according to Rayleigh fading, and φjlk is the covariance matrix
of the channel. Since we consider that the channel h(PL)

jlk is
identically and independently distributed (i.i.d.), φjlk should
be an identity matrix in this case.

In the uplink training stage, pilot contamination is con-
sidered in our simulation. Based on the distance-dependent
fractional power compensation scheme, the channel vector
y(PL)11 observed at BS B1 for the typical UE U1 is given by

y(PL)11 =
√
P tx
11h(PL)

111 +
∑
l 6=1

√
P tx
l1h(PL)

1l1 + n11, (10)

where l represents the l-th BS, which serves an interfering UE
using the first pilot sequence. Besides, n11 denotes a zero-
mean additive white Gaussian noise (AWGN) vector at the
typical UE U1, where the variance of each element is σ2.

Using the fractional power compensation [14], P tx
lk is the

transmit power from the k-th UE in the l-th BS, which can be
expressed as

P tx
lk = P tx

u (ζ
(PL)
llk (w))−ε, (11)

where P tx
u is the baseline transmit power of each UE, and ε

is the fraction of the path loss compensation.
From the observation of the pilot signals transmitted from

UEs, BSs can estimate their channels by correlating the
corresponding pilot sequences with the observation by using
an MMSE estimator. Since the channel h(PL)

111 is modelled



as i.i.d Rayleigh fading, the estimated channel h̄(PL)
111 can be

calculated as

h̄(PL)
111 =

√
P tx
11ζ

(PL)
111∑

l 6=1 P
tx
l1ζ

(PL)
1l1 + σ2

y(PL)11 . (12)

Note that the estimation error of h̄(PL)
111 can be formulated by

ĥ
(PL)

111 = h(PL)
111 − h̄(PL)

111 . (13)

D. Performance Metrics

In the downlink data transmission stage, we assume that BSs
apply the zero-forcing (ZF) precoder based on the estimated
channel obtained in the uplink training stage. We assume that
the total power of a BS is fixed, and it is equally divided
among the served UEs.

With these assumptions, the received symbol s1 at typical
UE U1 can be written as [17]

s1 =
√
P1h̄(PL)H

111 f11s11 +
√
P1ĥ

(PL)H

111 f11s11
+
√
Pl

∑
(l,k)6=(1,1)

h(PL)H
1lk flkslk + n1,

(14)

where flk is the ZF precoding vector for the k-th UE scheduled
by the l-th BS, Pl is the transmit power allocated by the l-th
BS to each of its scheduled UE, slk is the signal intended for
k-th UE in the l-th BS, and n1 is the AWGN vector at the
typical UE U1. Here, flk is computed by:

flk =

(
h̄
(PL)H
llk h̄

(PL)
llk

)−1
h̄
(PL)H
llk

E

{∣∣∣∣(h̄(PL)H
llk h̄

(PL)
llk

)−1
h̄
(PL)H
llk

∣∣∣∣2
} . (15)

In (14), the first term is the received signal and the others
are unknown at the UE. Hence, the downlink SINR at the
typical UE U1 can be calculated by

SINR =

P1

∣∣∣h̄(PL)H
111 f11

∣∣∣2
P1

∣∣∣ĥ(PL)H

111 f11
∣∣∣2 +

∑
(l,k) 6=(1,1) P1

∣∣∣h(PL)H
1lk flk

∣∣∣2 + σ2

.
(16)

We also investigate the area spectral efficiency (ASE) per-
formance in bps/Hz/km2, which is defined as

AASE (γ0) = λ̃

∫ +∞

γ0

log2 (1 + γ) fΓ (γ) dγ, (17)

where γ0 is the minimum working SINR in a practical SCN,
and fΓ (λ, γ) is the PDF of the SINR observed at the typical
UE for a particular value of λ.

III. RESULTS AND DISCUSSION

In this section, we investigate the ASE performance with
various network deployment strategies via simulations. We
consider a practical two-piece path loss function and a prac-
tical two-piece exponential LoS probability function, defined

Fig. 1. The ASE performance of different antenna deployment when γ0 =
0 dB vs. UE density ρ with 500 antennas/km2

by [14]. In more detail, all simulation parameters are taken
from Tables A.1-3, A.1-4, A.1-5 and A.1-7 of [14]: αL = 2.09,
αNL = 3.75, AL = 10−10.38, ANL = 10−14.54, P tx = 24
dBm, PN = −95 dBm (including a noise figure of 9 dB
at each UE), e = 1. In our simulations, the total number
of antennas per square kilometre is set to 500 antennas/km2

and 1000 antennas/km2 respectively, which are practical as-
sumptions for 5G [2]. In addition, we set the total number
of uplink training sequences to KT = 20, which are reused
across all cells. Note that the pilot reuse factor varies with the
BS density and UE density in different network deployment.
More specifically, the pilot reuse factor is higher in a network
with a larger UE density or a smaller BS density since the UE
number scheduled by each BS becomes larger. As a result, the
UE density generating the pilot contamination is the product
of the pilot reuse factor and the BS density.

A. The ASE Performance

Figs. 1 and 2 show the ASE performance versus the UE
density ρ for various BS densities, when the antenna densities
are 500 antennas/km2 and 1000 antennas/km2, respectively.
Note that only UEs whose SINR is larger than γ0 = 0 dB are
considered in the computation of the ASE according to (17).

From Figs. 1 and 2, we can draw the following conclusions:
• Network deployments with BS density λ at 50 and 100

BSs/km2 always perform better than those at 5 and 10
BS/km2 in term of ASE. For this BS density range, this
means that a dense network with many BSs and a few
antennas per BS is a better solution than a sparse network
with a few BSs and many antennas per BS. The intuition
behind this phenomenon is that by having more BSs, the
power gain due to the short signal-link distance surpasses
the loss of beamforming gain caused by the less antennas
per BS.

• Note that the single antenna cases, i.e., 500 BSs/km2 in
Fig. 1 and 1000 BSs/km2 in Fig. 2, achieves their highest
ASE performance when ρ is around 100 UEs/km2 and



Fig. 2. The ASE performance of different antenna deployment when γ0 =
0 dB vs. UE density ρ with 1000 antennas/km2

200 UEs/km2, respectively. This is because more BSs are
activated in a scenario with more UEs, which in turn
causes a large number of interference paths to transition
from NLoS to LoS, which damages the overall network
performance [6]. Moreover, as shown in Figs. 1 and 2,
the single antenna case show a better performance than
the other investigated cases at around ρ ∈ [1, 20] UEs/km2

and [1, 10] UEs/km2, respectively. The reason is that when
ρ is relatively small, the active BS density λ̃ in each
simulated case is almost the same, i.e., ρ, and thus
bringing the limited number of active BSs closer to the
UEs is a better strategy than the mMIMO one.

• For the multiple-antenna deployment strategies with the
BS density much less than 500 BSs/km2 in Fig. 1 and
1000 BSs/km2 in Fig. 2, the ASE firstly grows dramat-
ically as the UE density ρ increases, and then suffers
from a slow growth when the UE density ρ is larger
than a threshold. The reason is that BSs are low loaded
or even deactivated when the UE density ρ is small.
Thus, every newly added UE can be scheduled with a
decent link quality, making a significant contribution to
the ASE. In contrast, nearly all BSs are active and serving
the maximum number of UEs when ρ is large enough.
Hence, it is not very likely that a newly added UE can
get scheduled with an additional degree of freedom. The
worst case scenario is when BSs are fully loaded, i.e., the
UE density ρ is large enough compared to the BS density
λ, which results in a saturated ASE as shown in Figs. 1
and 2.

• From the ASE results shown in Fig.1 and Fig. 2, there
exists an optimal network deployment strategy for a
specific antenna density and UE density ρ. In more detail,
when the antenna density is 500 antennas/km2 and ρ is
600 UEs/km2, the descending order of the ASE perfor-
mance is 50, 100, 500, 10 and 5 BSs/km2. This means
that the optimal BS density lies between 10 BSs/km2

and 100 BSs/km2 for the case of 500 antennas/km2 and
ρ = 600 UEs/km2. Moreover, when the antenna density is

Fig. 3. The ASE performance of different UE density when γ0 = 0 dB vs.
BS density λ with 1000 antennas/km2

1000 antennas/km2 and ρ is 600 UEs/km2, the descending
order of the ASE performance is 100, 50, 10, 500
and 5 BSs/km2. This means that the optimal BS density
lies between 50 BSs/km2 and 500 BSs/km2 for the 1000
antennas/km2 case when ρ = 600 UEs/km2.

B. The Trade-off between the BS Density and the Antenna
number per BS

Fig. 3 shows the ASE performance versus the BS den-
sity λ for various UE densities. In particular, we consider
four UE densities: ρ = 50 UEs/km2, ρ = 100 UEs/km2,
ρ = 300 UEs/km2 and ρ = 600 UEs/km2 and a total antenna
density of 1000 antennas/km2. To evaluate the impact of
different UE densities on the ASE performance, we keep the
other assumptions and models same as before.

From Fig. 3, we can observe that:
• For a fixed antenna density (1000 antennas/km2) and all

the investigated UE densities, there exists an optimal
network deployment strategy to maximize the ASE. The
optimal deployment is around the BS density λ =
100 BSs/km2 with approximately 10 antennas per BS for
these UE density. The intuition is that (i) by densifying
the network with more BSs, we can achieve a receive
power gain due to the smaller distance between the typi-
cal UE and its serving BS; (ii) by installing more antennas
on each BS, we can achieve a beamforming gain for
UEs using mMIMO, although such beamforming gain is
degraded by pilot contamination. Thus, a trade-off exists
between the receive power gain and the beamforming
gain, if we fix the antenna density in the network.

• It is important to note that the larger the UE density,
the better the ASE. This is because a larger UE density
results in more UEs scheduled per square kilometer. Also
note that the ASE performance difference between the
ρ = 600 UEs/km2 case and the ρ = 300 UEs/km2 case is
smaller than that between the ρ = 300 UEs/km2 case and
the ρ = 100 UEs/km2 case. This is in line with the ASE
trend shown in Fig. 1, which increases rapidly and then



Fig. 4. The ASE performance without pilot contamination of different UE
density when γ0 = 0 dB vs. BS density λ with 1000 antennas/km2

suffers from a slow growth with the UE density due to
the performance saturation.

• For the investigated antenna density (1000 antennas/km2),
the optimal BS densities for various UE densities are the
same, i.e., around λ = 100 BSs/km2, which indicates that
the optimal network deployment might be independent
of the UE density. This conjecture needs to be further
studied with theoretical analysis.

• Note that the ASE experiences a slow decrease when BS
density is larger than around 250 BSs/km2. The reason
is that the maximum scheduled UE number per BS has
already decreased to one according to (6), which means
the ASE performance can not be further influenced by
decreasing the scheduled UE number per BS.

C. Performance Impact of Pilot Contamination

An interesting question follows from Fig. 3 is whether the
trade-off still exists between the receive power gain and the
beamforming gain, if the pilot contamination is removed from
the investigated MU-MIMO network (i.e., perfect channel state
information). To answer this question, in Fig. 4 we plot the
ASE performance without pilot contamination, while keeping
the other assumptions same as those for Fig. 3.

From Fig. 4, we can conclude that:
• Without pilot contamination, the ASE performance im-

proves for all cases, thanks to the accurate CSI.
• Meanwhile, the descending order of the ASE performance

does not change if we remove the pilot contamination,
which means that the trade-off still exists between the
receive power gain and the beamforming gain, regardless
of the pilot contamination phenomenon. Also note that
without pilot contamination, the optimal network deploy-
ment shifts to the BS density around 63 BSs/km2 with
16 antennas per BS.

• The ASE performance improvement without pilot con-
tamination is small when the BS density is relatively
large, because the pilot reuse factor is small in dense
networks due to the limited number of UEs per BS.

IV. CONCLUSION

In this paper, we have conducted a performance evaluation
with a fixed number of antennas per square kilometer. Our re-
sults indicate that there exists an optimal network deployment
strategy to maximise the ASE performance for a certain UE
density. Intuitively speaking, a balance between (i) bringing
UEs closer to BSs by densifying the network, and (ii) allowing
for more antennas per BS to achieve a higher precoding gain
with the consideration of pilot contamination, needs to be
found to optimise the system performance.
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