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Abstract—The available geometry-based stochastic
channel models (GSCMs) at millimetre-wave (mmWave)
frequencies do not necessarily retain spatial consistency
for simulated channels, which is essential for small
cells with ultra-dense users. In this paper, we work on
cluster parameterization for the COST 2100 channel
model using mobile channel simulations at 61 GHz in
Helsinki Airport. The paper considers a ray-tracer which
has been optimized to match measurements, to obtain
double-directional channels at mmWave frequencies. A
joint clustering-tracking framework is used to determine
cluster parameters for the COST 2100 channel model.
The KPowerMeans algorithm and the Kalman filter are
exploited to identify the cluster positions and to predict
and track cluster positions respectively. The results
confirm that the joint clustering-and-tracking is a suit-
able tool for cluster identification and tracking for our
ray-tracer results. The movement of cluster centroids,
cluster lifetime and number of clusters per snapshot are
investigated for this set of ray-tracer results. Simulation
results show that the multipath components (MPCs) are
grouped into clusters at mmWave frequencies.
cc Index terms— Cluster identification, Kalman filter,
KPowerMeans, millimetre wave, multi path components.

I. INTRODUCTION

Over the past few years, an abundance of tech-

niques have been proposed as a means to efficiently

scale the wireless capacity. It remains unclear which

technology or set of technologies can meet the de-

mand. One promising set of technologies for the 5th

Generation (5G) cellular network is reviewed in [1]:

the combination of large antenna arrays and short

wavelength carrier waves. This combination allows

for a greater bandwidth availability and extremely

high spectral efficiency by utilizing a large number

of antennas, whilst occupying a relatively small area.

This technology is known as Massive multiple-input

multiple-output (MIMO) in the millimeter-wavelength

(mmWave) spectrum [2].

Most standardized MIMO channel models such as

IEEE 802.11 [3] and the most recent 3GPP channel

model [4] rely on clustering [3]. The same applies

to the recent COST channel models, e.g., the COST
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2100 model [5]–[8]. These models are geometry-

based stochastic channel models (GSCMs) that are

mathematically tractable, though to a limited extent, to

investigate the performance of MIMO systems [9]. The

concept of clustering is an essential basis of GSCMs

to characterize scatterers in the cell environments.

In [10]–[14], the authors use clusters to characterize

measured multipath channels for a GSCM in mmWave

bands. The available GSCMs at mm-waves do not

necessarily retain the spatial consistency of simulated

channels due to lack of cluster dynamics, which is

essential for small cells with ultra-dense users. In

this paper, we work on cluster parameterization to

investigate the spatial consistency, using a ray-tracer

which is adjusted to produce results consistent with

measurements.

Unlike previously available clustering algorithms,

in this paper the coordinates are exploited for which

the multipath components (MPCs) interact with sur-

rounding objects for a fixed position of mobile sta-

tion (MS) and base station (BS). To the best of our

knowledge, previously clustering has been performed

in a double-directional setting, i.e., considering both

angle of arrival (AoA) and angle of departure (AoD). A

consistent scheme to identify and track clusters based

on the spatial coordinates of the MPCs (the [x, y, z]-
coordinates of the MPCs) is presented. To investigate

the performance of the proposed clustering scheme we

exploit a set of ray-tracer results in Helsinki’s airport

described in [15], which is very accurate to present

the propagation properties such as specular reflections,

diffraction, diffuse scattering [16]. The contributions of

the paper are summarized as follows:

1. We study whether clusters exist or not.

2. For the first time, we perform clustering of dy-

namic multipath channels.

3. [x, y, z] coordinate-based clustering.

A. Outline

The rest of the paper is organized as follows. Section

II describes the ray-tracer and simulation area, and

Section III provides the MPC clustering-and-tracking

framework. The simulation results and discussion are
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presented in Section IV while Section V concludes the

paper.

B. Notation

The following notations are adopted in the rest of

the paper. Uppercase and lowercase boldface letters

are used for matrices and vectors, respectively. The

notation |x|, |X|det and |x|size stand for the absolute

value of x, determinant of matrix X, and the size of

vector x, respectively. X−1 and XT denote the inverse

and transpose of matrix X, respectively. Moreover,

In introduces identity matrix with size n × n. The

Kronecker product of X and Y is presented by X⊗Y.

II. THE RAY-TRACER AND SIMULATION AREA

The in-house ray-tracer simulates multipath chan-

nels for a large number of links between BS and

MS [15]. Note that our ray-tracer works with accurate

descriptions of the environment in the form of point

clouds, obtained by laser scanning, and has the ability

of simulating relevant propagation properties such as

specular reflections, diffraction, diffuse scattering and

shadowing [16]. For more details on our ray-tracer

refer to [15], [16]. A check-in hall of Helsinki airport

as a representative small-cell scenario is considered as

shown in Fig. 1. Exploiting the ray-tracer parameters

in Fig. 1, we obtain the MPCs for links defined by BS

and MS locations as in Fig. 1. The BS is located 1

m from a wall at a height of 5.7 m whereas the MS

is placed at a height of 1.5 m at every 5 cm over a

route. In total, 2639 links including 1816 line-of-sight

(LOS) and 823 obstructed LOS (OLOS) are simulated.

As the ray-tracer calculates interactions of MPC with

physical objects in the environments, we save the first

and last MPC interacting coordinates [x, y, z] instead

of the angle of departure and arrival of each MPC. We

assume downlink where BS transmits and MS receives

radio signals. The first and last interacting coordinates

are the same for a single-bounce path, and are different

for a multiple-bounce path. The ray-tracer also derives

a complex gain for each MPC.

III. CLUSTERING-AND-TRACKING FRAMEWORK

Similar to standard clustering algorithms [17], [18],

we independently perform clustering at each snapshot

and thereafter the clusters are tracked. Consider n =
1, · · · , N data windows, where at each data window

we have L(n) MPCs. Next, we define for each MPC

v
(n)
1,l = [x

(n)
MS,l, y

(n)
MS,l, z

(n)
MS,l] (the position of MPCs

from MS side) and v
(n)
2,l = [x

(n)
BS,l, y

(n)
BS,l, z

(n)
BS,l] (the

position of MPCs from BS side), and finally we have

χ
(n)
l =

[

v
(n)
1,l

]

=
[

x
(n)
MS,l, y

(n)
MS,l, z

(n)
MS,l

]

. (1)

The same equality hold for the BS-side compo-

nents. This enables us after visualising clusters to

Figure 1. Floor plan of the small-cell site in Helsinki airport. For this
simulation set-up fc = 61 GHz, BW = 2 GHz refer to the carrier
frequency and bandwidth, respectively. Moreover, the position of BS
is fixed (the green triangle), while we investigates 2639 positions
for MS (the yellow and red points demonstrate the LOS and OLOS,
respectively. The total MS route is 132 m, and channels simulated
at every 5 cm.

plot clusters separately for v
(n)
1,l and v

(n)
2,l in physi-

cal three-dimensional space as well as defining the

matrix χ(n) = [χ
(n)
1 , · · · , χ

(n)
L ] Moreover, the lth

MPC in window n has a power represented by p
(n)
l

which enables us to define the power vector p(n) =

[p
(n)
1 , · · · , p

(n)
L ].

A. Cluster Parameters

In next step, we define the following parameters for

each cluster:

1. Cluster ID c.

2. Cluster power at time n: γ
(n)
c =

∑

l∈I
(n)
c

pnl ,

where I
(n)
c denotes the set of MPCs belonging

to cluster c at time n.

3. Total number of MPCs in cluster c at time n:

L
(n)
c = |I

(n)
c |size.

4. Cluster centroid position:

µ
(n)
c =

[

x
(n)
MS,c, y

(n)
MS,c, z

(n)
MS,c

]T

=
1

γ
(n)
c

(2)







∑

l∈I
(n)
c

p
n
l x

(n)
MS,l,

∑

l∈I
(n)
c

p
n
l y

(n)
MS,l,

∑

l∈I
(n)
c

p
n
l z

(n)
MS,l







T

.

5. Combined cluster centroid position and speed:

θ
(n)
c = (3)

[

x
(n)
MS,c,∆x

(n)
MS,c, y

(n)
MS,c,∆y

(n)
MS,c, z

(n)
MS,c,∆z

(n)
MS,c

]T

.

6. Cluster spread matrix:

C
(n)
c =

∑

l∈I
(n)
c

p
(n)
l (χn

l − µn
c ) (χ

n
l − µn

c )
T

γ
(n)
c

. (4)

Next, similar to terminology in [17], a Kalman filter

[19] is used to both track and predict the cluster

positions over time. Moreover, an initial-guess process

introduces an appropriate initial guess for cluster cen-

troids, and finally the clustering algorithm determines



the clusters in the ray-tracer results exploiting the

initial guess.

B. Kalman Filter to Track and Predict Cluster Posi-

tions

We exploit the cluster centroid positions and cluster

centroid speeds for the Kalman tracking [19]. The

following state equations are used:































θ(n)
c = Aθ(n−1)

c + B(n),

A = I3 ⊗

[

1 1
0 1

]

µ(n)
c = Dθ(n)

c + E(n),

D = I3 ⊗
[

1 0
]

,

(5a)

(5b)

(5c)

(5d)

where B(n) and E(n) refer to the state-noise with

covariance matrix Q and the observation-noise with

covariance matrix R, respectively. Note that µ
(n)
c in-

troduces the observed cluster centroid position. The

prediction and update equations are given by

Prediction

{

θ(n|n−1)
c = Aθ(n−1|n−1)

c ,

M(n|n−1) = AM(n−1|n−1)
c + Q,

(6a)

(6b)

and update

K
(n|n) = M

(n|n−1)
c D

T
(

DM
(n|n−1)

D
T + R

)−1

,

θ
(n|n)
c = θ

(n|n−1)
c + K

(n|n)
(

µc − Dθ
(n|n−1)
c

)

,

M
(n|n) =

(

I − K
(n|n)

D
)

M
(n|n−1)

(7a)

(7b)

(7c)

C. Association of Clusters

Association of predicted targets to identified targets

is a substantial challenge in any multi-target tracking

[17]. Based on [17], the distance between a cluster

with parameters (µc,Cc) and a cluster with centroid

µ̃ is called the closeness function and is given by

dc (µ̃|µc,Cc) =
1

(2π)
3
2 |Cc|

1
2

det

(8)

exp

(

−
1

2

(

µ̃− µT
c

)T
C−1

c .
(

µ̃− µT
c

)

)

,

First, the closeness function between the old clusters

(with the old covariance matrix) and new centroids

and the closeness function between the new clusters

(with the old covariance matrix) and old centroids

are calculated. Next, for each new cluster the closest

old cluster and for each old cluster the closest new

cluster is determined. Note that the closest cluster

is determined by finding the maximum value of the

closeness function. If the closeness function from both

directions are exactly the same, these two clusters are

associated and assumed to be one cluster. The clusters

which are not associated are assumed to be new ones.

D. Initial Guess for Clusters

The initial guess of the cluster centroids is a chal-

lenging task in clustering algorithms. In [17], the

authors propose a novel initial guess to maximize the

distances between the cluster centroids. If there is

no cluster prediction available, the path having the

strongest power is selected as the first centroid µ̂1

whereas for the case of available cluster prediction,

the initial-guess centroid from the prediction is to be

as the current initial guess. Note that the multipath

component distance (MCD) in this paper is different

from the one used in [17], [20]. The distance measure

between MPCs i and j is given by

MCDij = (9)
√

||MCDxMS ,ij ||2 + ||MCDyMS,ij ||
+||MCDzMS,ij ||

2.

Note that in (10) we have

MCDxMS,ij =
|xMS,i − xMS,j |

∆xMS,max

, (10)

where ∆xMS,max = max {|xMS,i − xMS,j |}, and the

other terms in (10) are evaluated is a the similar way

to (10). Next, the weighted distance matrix Υ ∈ Cl×c

between all paths and all initial-guess centroids is

evaluated as follows:

Υ (χn
l − µ̂c) = log10

(

p
(n)
l

)

MCD (χn
l − µ̂c) .(11)

Following the terminology in [17], we select the path

with the maximum minimum distance to any centroid

as follows:

lsel = max
l

{

min
c

{Υ}
}

. (12)

We then assign all MPCs to their closest centroid and

cluster power is evaluated. If we do not achieve the

maximum number of clusters, and centroid powers

are larger than 0.01% of the total snapshot power, we

repeat the calculation of the weighted distance matrix

Υ ∈ Cl×c in (11). Otherwise, the last centroid is

ignored and the algorithm is stopped.

E. Clustering Algorithm

The KPowerMeans clustering algorithm is investi-

gated in [21], and it performs as follows: the initial-

guess algorithm is applied, and the KPowerMeans

clustering algorithm is run only once as the initial

guess as are constant. For more details on the KPow-

erMeans clustering algorithm refer to [21]. Note that

if any cluster occupies less than 1% of total cluster

power, we re-start the clustering algorithm with the

initial guess, with the number of clusters is reduced by

one. Therefore, it is possible that the algorithm ends

with a single cluster.



Figure 2. Tracked Rx-side clusters in Helsinki airport in snapshot
3.

Figure 3. Tracked Rx-side clusters in Helsinki airport in snapshot
4.

IV. RESULTS AND DISCUSSION

The joint clustering-and-tracking algorithm is ap-

plied to the ray-tracer results at Helsinki airport,

explained in Section II, where we have 2639 links.

Figs. 2- and 6 present the exemplary plots for different

snapshots. The MPCs are shown by dots, where their

power is shown by light blue (weak power) and violet

(strong power). The clusters are shown by ellipsoids

and always 99% of the total power is carried by the

MPCs within clusters. We use different colors for

ellipsoids just to make the cluster recognition easier.

Each cluster is identified by a cluster ID which is

written on each cluster. As these exemplary figures

show for snapshots 2,3 and 4, cluster 2 is always

tracked while the other clusters are determined as new

clusters.

Next, the lifetime of clusters for the available sets of

Figure 4. Tracked Rx-side clusters in Helsinki airport in snapshot
5.

Figure 5. Tracked Tx-side clusters in Helsinki airport in snapshot
12.

ray-tracer results is investigated, for Tx-side clusters

and Rx-side clusters separately. Figs. 7 and 8 show

the histograms of cluster lifetimes for Rx-side (BS-

side) and Tx-side (MS-side) scenarios, respectively.

The figures show that in most cases clusters are active

only for a few snapshots for this set of ray-tracer

results. This requires more investigation. Moreover, the

number of clusters per snapshot is presented in Figs. 9

and 10 for Rx-side and Tx-side clusters, respectively.

The other interesting phenomenon is the movement

of the tracked cluster centroids, which is shown in Fig.

11. Based on these figures the cluster centroids moves

rapidly in the x or y direction while its speed is very

low in other direction. Moreover, the figure show for

these clusters that the centroid’s speed is very low in

the z direction. Finally, Figs. 12 and 13 investigate the



Figure 6. Tracked Tx-side clusters in Helsinki airport in snapshot
13.

0 200 400 600 800 1000

Lifetime (snapshots) of clusters

0

1

2

3

4

5

6

7

8

N
um

be
r 

of
 O

cc
ur

en
ce

s

Figure 7. Histogram of Rx-side clusters cluster lifetimes (snap-
shots).

distribution of the percentage of power in Tx-side and

Rx-side clusters.

V. CONCLUSIONS

In this paper, we have worked on parameterization

for the COST 2100 channel model at 60 GHz band.

We have worked on a ray-tracer, which has been

optimized to match measurements, to get double-

directional channels at mmWaves. We have combined

clustering and tracking to improve the performance of

consistent clustering. The results showed that the joint

clustering-and-tracking allows for cluster identification

and tracking for the ray-tracer results. Cluster lifetime

and number of clusters per snapshot have been inves-

tigated.
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Figure 8. Histogram of Tx-side cluster lifetimes (snapshots).
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Figure 9. Histogram of Rx-side cluster lifetimes (snapshots).
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Figure 10. Histogram of Tx-side cluster lifetimes (snapshots) .
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Figure 11. Tracked centroid of exemplary moving cluster.
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[10] A. Karttunen, J. Järveläinen, A. Khatun, and K. Haneda, “Ra-
dio propagation measurements and WINNER II parametriza-
tion for a shopping mall at 61-65 GHz,” in Proc. IEEE VTC,
May 2015, pp. 1–6.

[11] K. Haneda., L. Tian, H. Asplund, J. Li, Y. Wnag, D. Steer,
C. Li, T. Balercia, S. Lee, Y.-S. Kim, A. Ghosh, T. Tomas,
T. Nakamura, Y. Kakishima, T. Imai, H. Papadopulas, T. S.
Rappaport, G.-R. McCartney, M. K. Samimi, S. Sun, O. Koy-
men, S. Hur, J. Park, J. Zhang, E. Mellios, A. F. Molisch, S. S.
Ghassamzadeh, and A. Ghosh, “Indoor 5G 3GPP-like channel
models for office and shopping mall environments,” in Proc.
IEEE ICC Workshop, May 2016, pp. 694–699.

[12] C. Schneider, J. Gedschold, M. Kaske, R. S. Thoma, and G. D.
Galdo, “Estimation and characterization of multipath clusters
in urban scenarios,” in Proc. IEEE EuCAP, Apr. 2018, pp. 1–5.

[13] N. Iqbal, D. Dupleich, C. Schneider, J. Luo, R. Muller,
S. Hafner, G. D. Galdo, and R. S. Thoma, “Tmodeling of
intra-cluster multipaths for 60 GHz fading channels,” in Proc.
IEEE EuCAP, Apr. 2018, pp. 1–5.

[14] C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On
mm-wave multipath clustering and channel modeling,” IEEE
Trans. Ant. Prop., vol. 62, no. 3, pp. 1445–1455, Mar. 2014.
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