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Abstract—In this paper, we provide the model of the multi-
layer aerial network (MAN), composed unmanned aerial vehicles
(UAVs) that distributed in Poisson point process (PPP) with
different densities, heights, and transmission power. In our
model, we consider the line of sight (LoS) and non-line of sight
(NLoS) channels which is probabilistically formed. We firstly
derive the probability distribution function (PDF) of the main
link distance and the Laplace transform of interference of MAN
considering strongest average received power-based association.
We then analyze the successful transmission probability (STP) of
the MAN and provide the upper bound of the optimal density
that maximizes the STP of the MAN. Through the numerical
results, we show the existence of the optimal height of UAV due
to a performance tradeoff caused by the height of the aerial
network (AN), and also show the upper bounds of the optimal
densities in terms of the STP, which decrease with the height of
the ANs.

Index Terms—Stochastic geometry, aerial networks, multi-
layer, Poisson point process, association rule, optimal density.

I. INTRODUCTION

Recent developments in the unmanned aerial vehicle (UAV)

technology increase payloads capacity, average flight time,

and battery capacity that enables the UAV to play an im-

portant role in wireless networks. In the area which needs

quick deployment of the base station (BS) due to disaster or

events, UAVs are expected to act as a temporal BS as well

[1]. Furthermore, the data collection from the devices under

certain energy constraints can be done by using UAVs [2].

In addition, demands on the data acquisition using UAV in

crowd surveillance have arisen [3]. To utilize UAVs for the

aforementioned applications and services, the research on the

establishment of reliable aerial network (AN) is required.

The UAV based wireless communications has been studied

in [4]–[6] after modeling the wireless channel and the mobil-

ity, which are different from those of the terrestrial networks.

In [4], the probability that a link forms line of sight (LoS), i.e.,

the LoS probability, is modeled, which is determined by the

angle from the ground, and also proposed the optimal UAV

deployment that maximizes the coverage area. In addition,

UAV relay networks in cellular networks and device-to-device

communications are considered in [5] and [6], respectively.

However, the studies mentioned above have considered only

the small number of UAVs, which can show the performance

only for the limited scenarios.

Recently, the research on the ANs, which consist of UAVs,

is presented in [7], [8] using stochastic geometry, which is

a widely-used tool for randomly distributed nodes [9]. The

coexistence of AN and the terrestrial cellular networks is

studied by considering the distribution of UAVs as Poisson

point process (PPP) in [8]. The coverage probability of UAV

by using binomial point process (BPP)-based distribution is

presented in [7]. In addition, [10] studies the multi-tier UAV

networks and shows the downlink spectral efficiency of the

network via simulations. However, except for [10], most of

these works did not consider the multiple layer structure

of ANs. Nevertheless, no analytical approach is provided in

[10]. In ANs, the UAV have limitation on height due to

the hardware and the law [11]. Furthermore, as a number

of UAV have mobility for serving different service, to avoid

the collision between UAVs and to efficiently manage the

resource, it is required to have the multiple layer structure

in AN which differentiate the height according to the roles

and types of UAV.

Therefore, in this paper, we investigate the performance of

the multi-layer aerial network (MAN) with various types of

UAV. Specifically, the MAN is composed of K layer ANs

that have UAVs with different transmission power, spatial

densities, and heights. Note that the multiple layer structure

has been considered for terrestrial networks, which is called

as the heterogeneous networks [12]–[14]. However, different

to those works, the heights of nodes need to be considered

together with the channel model which has the LoS probability

determined by the height of node. This leads to new analysis

on the interference and the successful transmission probability

(STP) of the MAN considering association rule. To our best

knowledge, there is no analysis on the STP for multi-layer

UAV networks considering association rule, LoS, and non-

line of sight (NLoS) channel. Furthermore, our analysis on

the upper bound of the optimal density gives useful insights

for future MAN implementation. Our contribution can be

summarized as follows:

• using stochastic geometry, we newly analyze the Laplace

transform of interference of MAN by considering NLoS

and LoS channels with the height-dependent LoS prob-

ability;

• we derive the STP when a ground node selects a UAV
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Fig. 1. An example of two layer AN with ground nodes (i.e., 0-layer). The
black lines represent the main link from a transmitter to a receiver and red
dashed lines represent interference links which comes from other UAVs.

with association rules considering strongest average re-

ceived power for communications;

• to give insight on the effect of UAV density on STP, we

provide the upper bounds of the optimal UAV densities

of each layer AN that maximize the STP; and

• we show the effects of channel and network parameters

on the optimal heights of ANs and the compatibility of

the upper bound of optimal densities.

II. SYSTEM MODEL

In this section, we present the system model of MAN

with UAV including the network description and the channel

model. Furthermore, we describe the association rule which

is used to obtain the probability distribution function (PDF)

of the main link distance.

A. Multi-layer Aerial Networks

We consider a MAN which consists of K layers of ANs

at different altitudes with a terrestrial network as shown in

Fig. 1. We denote K as the set of AN layer indexes, i.e., K =
{1, · · · ,K}, and layer 0 as the terrestrial network. We assume

UAV in ANs and the ground nodes in the terrestrial network

are distributed according to PPPs [9]. Although each UAV has

given path scheduled by controller, location of UAVs at given

time is random from the perspective of other layers, hence, we

use the PPP for the location of the UAV as [8]. Specifically,

in the k-layer, the node locations follows a homogeneous PPP

Φk with density λk and they are at the fixed altitude hk and

transmit with the power Pk. Note that the altitude of nodes in

the 0-layer (i.e., the terrestrial layer) is h0 = 0 and altitudes

of other layers are hk > 0 for k ∈ K.

In the MAN, we consider the communication from a UAV

to a ground node.1 In the communication with UAVs, we

should consider both LoS and NLoS channels since the

existence of obstacles (e.g., buildings) between the transmitter

1Note that we omitted analysis including the air-to-air channel in the
paper, even though our framework is readily expandable for communication
in between UAV which will be presented in the future research.

and the receiver can be changed with the altitude of UAV.

In [4], the probability of forming LoS chanel is modeled

by a signomial approximation of the probability of having

obstructions between transmitter and receiver. When a node

in the k-layer transmits to a ground node, the LoS probability

is defined as [4]

ρ(L)
k (x) =

1

1 + a exp(−b[sin−1
(

hk

x

)

− a])
(1)

where a and b are the parameters related with environments,

and x is the link distance between the transmitter and the

receiver. In real environment, UAVs can act as obstacles,

e.g., UAV in 1-layer can block the channel between ground

and 2-layer AN. Here, we assume existence of UAV does not

affect the air-to-ground channel since the density of AN is

low, therefore, the obstruction caused by UAV is negligible.

From (1), we can see that the LoS probability increases with

x which means higher altitude gives higher LoS probability

since there will be fewer obstructions. The NLoS probability

is then given as ρ(N)
k (x) = 1− ρ(L)

k (x).
Since each link between a transmitter and a receiver can

be in either LoS or NLoS with the probabilities, ρ(L)
k (x)

and ρ(N)
k (x), respectively, we can divide a set of the k-layer

transmitters into the ones in LoS and the ones in NLoS

as Φ(L)
k and Φ(N)

k , respectively, which are non-homogeneous

PPPs. The densities of nodes in Φ(L)
k and Φ(N)

k with the

distance x from a receiver are, respectively, defined according

to the link distance x as λ(L)
k (x) = 2πxλkρ

(L)
k (x) and

λ(N)
k (x) = 2πxλk − λ(L)

k (x).
We also consider different channel models for links in LoS

and NLoS. The pathloss exponents for LoS and the NLoS

links are denoted by α(L) and α(N), respectively, and generally,

2 ≤ α(L) ≤ α(N) ≤ 6. We consider the Nakagami-m fading

for the channels of LoS and the NLoS links, of which channel

gains are respectively presented by G(L) ∼ Γ(m(L), 1
m(L) ) and

G(N) ∼ Γ(m(N), 1
m(N) ). Here, we use m(N) = 1, which gives

Rayleigh fading, i.e., G(N) ∼ exp(1), while m(L) ≥ 1.

B. Association Rule

In this paper, we assume a receiver connects to the transmit-

ter, which has the strongest average received power described

in [15]. This can be applied to the scenario that in the presence

of UAV based BSs [1], a user selects a BS to receive its data.

Based on the association rule, we can present the selected

transmitter’s coordinates xmain as

xmain = argmax
x∈Φk,k∈K

Pk ‖x− xrec‖
−αx (2)

where xrec is the coordinates the receiver is located, and αx

is the pathloss exponent of the link between the transmitter at

x and the receiver.

Based on the association rule above, we can determine the

PDF of the distance for the main link from a selected trans-

mitter to a receiver. In conventional terrestrial networks, the

PDF of main link distance is determined by the transmission

power, the pathloss exponent, and the link distance. However,

in ANs, we need to additionally consider the LoS/NLoS



probabilities for all links to the transmitters. We denote the

channel environment by c ∈ {N,L}, where c = N and c = L,

respectively, means the LoS and NLoS environments of the

link. The PDF of main link distance in c channel condition is

presented in following lemma.

Lemma 1: When a transmitter in the j-layer under the

channel environment c is selected, the PDF of main link

distance Yj
(c) is given by

f
Y

(c)
j

(y)=
f
V

(c)
j

(y)

A
(c)
j

∏

k∈K,co∈{L,N},
(k,co) 6=(j,c)

F̄
V

(co)
k





(

Pky
α(c)

Pj

)
1

α(co)



 (3)

where A
(c)
j is association probability given by

A
(c)
j =

∫

y>0

f
V

(c)
j

(y)
∏

k∈K,co∈{L,N},
(k,co) 6=(j,c)

F̄
V

(co)
k





(

Pky
α(c)

Pj

)
1

α(co)



.dy

(4)

Here, V
(c)
j is the distance to the nearest node among the nodes

in the k-layer under the channel environment c. F̄
V

(c)
j

(v)

and f
V

(c)
j

(v) are the complementary cumulative distribution

function (CCDF) and the PDF of V
(c)
j , given by

F̄
V

(c)
j

(v) = exp

[

−

∫ max(v,hj)

hj

2πλjxρ
(c)
j (x)dx

]

, (5)

f
V

(c)
j

(v) = 2πλjvρ
(c)
j (v) exp

[

−

∫ v

hj

2πλjxρ
(c)
j (x)dx

]

.

The PDF f
V

(c)
j

is 0 when v < hj .

Proof:

The cumulative distribution function (CDF) of V
(c)
j is given

by

F
V

(c)
j

(v)
(a)
= 1− exp

[

−

∫ max(v,hj)

hj

λ
(c)
j (x)dx

]

(6)

where (a) is from the void probability of PPP, and from

(6), we have (5).Since the main link have smallest pathloss,

probability that main link distance is smaller than y when

xmain ∈ Φ
(c)
j is given by

P

(

Y
(c)
j ≤ y ∩ xmain ∈ Φ

(c)
j

)

=

∫ y

0

f
V

(c)
j

(v)P
(

xmain ∈ Φ
(c)
j ∩ V

(c)
j = v

)

dv (7)

(a)
=

∫ y

0

f
V

(c)
j

(v)
∏

k∈K,co∈{L,N},
(k,co) 6=(j,c)

P

[

Pjv
−α(c)

≥Pk

(

V
(co)
k

)

−α(co)
]

dv

where (a) from (2). Therefore, we derived the association

probability as (4) by y → ∞. Furthermore, we can derived

the PDF of the main link distance as (6).

III. INTERFERENCE ANALYSIS AND SUCCESSFULLY

TRANSMISSION PROBABILITY

In this section, we analyze the Laplace transform of the

interference considering association rules. Then, we derive the

STP of the MAN and the upper bound of the density of AN

that maximize the STP of the MAN.

A. Laplace Transform of the Interference

In the MAN, we first consider interference from specific

layer and channel environment. Since there is no interferer

which have stronger power than main link transmitter, we an-

alyze interference from specific layer and channel to analyze

total interference. Here, the interference from transmitters in

the k-layer under the channel environment co is given by

I
(co)
k =

∑

x∈Φ
(co)
k

P
(co)
k (‖x− xrec‖) (8)

where Pk
(co) is the received power from a transmitter which

is given by

P
(co)
k (x) = PkG

(co)x−α(co)

. (9)

Here, we represent distance between the transmitter and the

receiver as x = ‖x− xrec‖. The Laplace transform of the

interference is given in the following lemma. In the lemma,

we use x
(c)
j (y) to represent the main link under channel

environment c with distance y is selected.

Lemma 2: When a transmitter in the j-layer under the

channel environment c with distance y is selected, the Laplace

transform of the interference from the transmitting nodes in

the k-layer under the channel environment co is given by (10),

which presented on the top of next page, where R
(c,co)
j,k (y) is

R
(c,co)
j,k (y) =

(

Pky
α(c)

/Pj

)

1/α(co)

. (11)

Proof: The Laplace transform of the interference is

L
I
(co)
k

|x
(c)
j

(y)
(s)

(a)
= E

Φ
(co)
k







∏

x∈Φ
(co)
k





1

1 + sPkx−α(co)

m(co)





m(co)

∣

∣

∣

∣

x
(c)
j (y)






(12)

where (a) is from the expectation over channel G(co) which

gives the moment-generating function (MGF) of Gamma dis-

tribution as [15]. Since λ
(co)
k (x) = 2πxλkρ

(co)
k (x), the proba-

bility generating functional (PGFL) of non-homogeneous PPP

needs to be obtained as [9]

E







∏

x∈Φ
(co)
k

f(x)

∣

∣

∣

∣

x
(c)
j (y)







= exp

(

−2πλk

∫ ∞

R′

x(1− f(x))ρ
(co)
k (x) dx

)

. (13)

In (13), selecting a transmitter in the j-layer under the channel

environment c by (2) means there is no interfering node

in the k-layer under channel environment co, closer than

R′ = max
(

R
(c,co)
j,k (y), hk

)

. Combined with (12) and (13),



L
I
(co)
k

|x
(c)
j

(y)
(s) = exp






−2πλk











∫ ∞

max
(

R
(c,co)
j,k

(y),hk

)

xρ
(co)
k (x)






1−





1

1 + sPkx−α(co)

m(co)





m(co)





dx
















(10)

we obtain the Laplace transform interference under condition

x
(c)
j (y) as (10)

From Lemma 2 and property of the Laplace transform, we

can obtain the Laplace transform of the sum of the interference

and noise as

L
I|x

(c)
j

(y)
(s)=exp(−sσ2)

∏

k∈K,co∈{L,N}

L
I
(co)
k

|x
(c)
j

(y)
(s) (14)

where I =
∑co∈{L,N}

k∈K I
(co)
k +σ2 and σ2 is for the noise power.

B. Successful Transmission Probability

In this subsection, we define the STP when the distance and

the channel environment is given. Then, we derive the STP

of the MAN by using association probability and the PDF of

the main link distance. When the main link is in the channel

environment c with the link distance y, the STP is defined

using signal to interference plus noise ratio (SINR) as

p
(c)
j (y) = P

[

SINR
(c)
j (d) > β

]

(15)

where SINR
(c)
j (d) = P

(c)
j (d)/I, and β is the target SINR,

which is related with the transmission rate. When the associ-

ation rule in (2) is used, the STP of MAN is presented in the

following lemma.

Lemma 3: The STP of the MAN is given by

P =
∑

j∈K, c∈{L,N}

∫ ∞

hj

p
(c)
j (y)f

Y
(c)
j

(y)A
(c)
j dy (16)

where f
Y

(c)
j

(y) and A
(c)
j is in (3) and (4), p

(c)
j (y) is

p
(c)
j (y) =

m(c)−1
∑

n=0

(−s)n

n!

dn

dsn
L
I|x

(c)
j

(y)
(s)

∣

∣

∣

∣

∣

∣

s=S
(c)
j

(y)

, (17)

S
(c)
j (y) =

m(c)β

Pjy−α(c)
, (18)

and L
I|x

(c)
j

(y)
(s) is in (14).

Proof: From the definition of STP, we have the con-

ditional STP when a transmitter in j-layer under channel

environment c is selected with the main link distance j
represented as

p
(c)
j (y)

(a)
= E

[

1−
1

Γ(m(c))
γ

(

m(c),
m(c)β

Pjy−α(c)
I

) ∣

∣

∣

∣

x
(c)
j (y)

]

(b)
= E





m(c)−1
∑

n=0

(sI)
n

n!
exp (−sI)

∣

∣

∣

∣

x
(c)
j (y)





∣

∣

∣

∣

∣

∣

s=S
(c)
j

(y)

(19)

where (a) follows from the Gamma distribution of channel

gain and (b) follows from the property of lower incomplete

Gamma function. Notice that we derived (18) from (b). Using

the property of the following Laplace transform

(−I)nLI(s) =
dn

dsn
LI(s) (20)

we obtain (17). Furthermore, from the PDF and association

probability in the Lemma 1, we obtain (16).

When UAVs are deployed as BSs which serve for ground

receiver, it is important to maximize STP. In our works, we

analyze optimal density of the transmitter. As shown in (16), it

is hard to present STP in a closed form, hence, hard to obtain

the optimal densities of each AN layer that maximize STP.

However, in the following corollary, we present the closed-

form upper bound of the optimal densities for a special case.

Corollary 1: For the case of m(N) = m(L) = 1, when the

optimal density of the j-layer AN is λ∗
j , its upper bound is

λ∗
j ≤ λb

j =
1

2πǫj(S
(L)
j (hj))

(21)

where S(L)
j (hj) is in (18), and ǫj(s) is given by

ǫj(s) =

∫ ∞

hj

x

(

1−
ρ(L)
j (x)

1 + sPjx−α(L)
−

ρ(N)
j (x)

1 + sPjx−α(N)

)

dx.

(22)

Proof: See Appendix A.

In Corollary 1, the upper bound λb
j is only affected by the

network parameter of the j-layer AN such as hj , but inde-

pendent with the density, height, and transmission power of

other ANs. Hence, the upper bound of each layer’s density in

MAN can be determined independently each other. Although

function ǫj(s) is not in the closed form, it is easy to evaluate

and analyze. 2 Furthermore, due to the above independency,

we can also obtain the upper bound of the total density of

MAN as λb
T =

∑

k∈K λb
k.

IV. NUMERICAL RESULTS

In this section, we present the numerical results to evaluate

our analysis on the STP of MAN with single or two layers of

ANs under the interference-limited environments. i.e., σ2 = 0.

For the numerical results, we use β = 0.7, Pk = 1 for all k,

α(L) = 2.5, and α(N) = 3.5. Except for Fig. 2, m(N) = 1 and

m(L) = 1 are used. Moreover, we use a = 12.4231 and b =
0.1202 are used for the LoS probability, which are determined

for the urban area environment in [4].

Fig. 2 shows the STP as a function of the altitude h1

in single AN for different values of channel coefficient

2Note that the upper bound of optimal density λb
j is decrease with height

hj under condition βhα(L)

j > 1, hj > 1 which is omitted in this paper. The

conditions are readily achieveable for aerial networks.
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Fig. 2. STP of single AN according to the altitude h1 and the LoS coefficient

m(L) when λ1 = 10−5. ρ
(L)
j (x) = 1 represent the STP when every link is

under LoS channel.

m(L) = {1, 3, 20, 100}, where λ1 = 10−5[nodes/m2]. We

shows the STP when LoS probability is 1 which represented

with ρ(L)
j (x) = 1. Simulation results, obtained from Monte

Carlo simulations, are presented by the dashed lines with

filled markers, while analysis results for m(L) = {1, 3} are

presented by the solid lines with unfilled markers. From Fig. 2,

we can first see that the simulation results match well with

the analysis. We can also see that for all m(L), the STP first

increases and then decreases with h1. For small h1, as the

height increases, the LoS channel probability increases, which

makes the main link power stronger and results in the higher

STP. However, as h1 keeps increasing, the main link distance

also increases, which makes the main link power smaller. As

a result, the optimal value of height can be obtained from the

tradeoff between the link distance the the LoS probability.

When the LoS probability is 1, there is no tradeoff, the STP

of the AN decrease with height, which is same for ρ(L)
j (x) = 0.

Furthermore, by comparing the results for different m(L),

we can see that for small h1, larger LoS coefficient m(L)

give higher STP. In smaller h1, power from the main link is

dominant and mostly LoS channel. Since larger LoS channel

coefficient gives smaller variance to the main link channel

in smaller h1, larger m(L) can give higher STP. Contrary, in

larger h1, power from the interference is dominant. Therefore,

larger LoS channel coefficient gives smaller variance to the

interference channel which gives lower STP. However, trends

of STP according to the height are the same for different m(L).

Therefore, we use m(L) = 1 in the following numerical results

because it can give sufficient insights on the performance of

MAN.

Fig. 3 shows the contour of STP as a function of the

altitude h1 and the density λ1 of UAV in single AN where

m(L) = 1. We represent the optimal density as a white

line with circles and the upper bound of optimal density,

obtained from Corollary 1, as a red line with diamonds. By

comparing the optimal density and the upper bound of the
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Fig. 3. STP of single AN as functions of the density λ1 and the height h1

when m(L) = 1. The white line marked by circles represents the optimal
density when the height is given and the red line marked by diamonds
represents the upper bound of the optimal density.
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Fig. 4. STP of 2-layer MAN as functions of the density of 1-layer λ1 and
the density of 2-layer λ2 of UAV when m(L) = 1, h1 = 100, and h2 = 200.
The white line represents the optimal λ2 in given λ1. The magenta, yellow,
and cyan lines with symbols represents the area which have same total density
λT = λ1 + λ2 = {10−6, 10−5.3, 10−4.6}

optimal density, we can notice that the trends according to h1

are the same. From Fig. 3, we can also see that as the height

increases, the optimal density and its upper bound decrease.

This is because the number of interfering links in LoS increase

with h1, so the interference becomes larger.

Fig. 4 shows the contour of STP of MAN with two AN

as a function of the density of 1-layer λ1 and the density of

2-layer λ2 of UAV, where m(L) = 1, h1 = 100, h2 = 200. In

this figure, the optimal density of 2-layer λ2 is presented by

a white line with circles. The lines with color and symbol

represent the STPs of the MAN that have the total density

as λT = λ1 + λ2 = {10−6, 10−5.3, 10−4.6}[nodes/m2],

respectively. We can see when density of corresponding AN

is low, the STP increase with the density, and when density is



high, the STP decrease with density which is same with the

result of single-layer MAN. Furthermore, from the colored

lines, we can get the relationship of optimal ratio of densities

when the total density of MAN is given. When the total

density of the MAN is small, e.g., the magenta line, the

optimal density is λ2 = λT . However, for the large total

density, e.g., the cyan line, the optimal density is λ1 = λT . In

other case, as shown in yellow line, we can see the optimal is

neither λ1 = λT nor λ2 = λT . Since optimal height of larger

AN is low as shown in single AN, optimal ratio of lower layer

is increased with the total density.

V. CONCLUSION

This paper models the MAN which is wireless networks

consist of multi-layers of UAVs that distributed in PPP with

different densities, heights, and powers. We consider LoS and

NLoS channel and the strongest transmitter association for

the AN. Our approach is to derive the PDF of the main link

distance and the Laplace transform of the interference for the

STP analysis. By analyzing the STP, we show that each AN

in the MAN have the upper bound of optimal density which

is given by the function of the height of corresponding AN.

In addition, our numerical results show the tradeoff caused by

height of the AN, affection of LoS coefficient, significance of

the upper bound of the optimal density, and optimal densities

and optimal ratio of densities in the 2-layer MAN. Specially,

our results show higher altitude AN have sparser optimal

density and show that the optimal ratio of densities in the

2-layer MAN is changed with the total density of the MAN.

APPENDIX

A. Proof of Corollary 1

From Lemma 3, the STP can be represented by

P =
∑

j∈K

∫ ∞

hj

(

ϕ(L)
j (y) + ϕ(N)

j (y)
)

dy, (23)

ϕ
(c)
j (y) = 2πρ

(c)
j (y)λjy exp

[

−2π
∑

k∈K

λkφ
(c)
j,k

(

y,S
(c)
j (y)

)

]

,

φ
(c)
j,k(y, s) =

∑

co∈{L,N}

[

∫ R′

hk

xρ
(co)
k (x)dx+

∫ ∞

R′

xρ
(co)
k (x)

(

1−
1

1 + sPkx−α(co)

)

dx

]

,

and R′ = max
(

R
(c,co)
j,k (y), hk

)

, Notice that φ
(c)
j,k(y, s) is in-

crease with y and s. In addition, we can derive the differential

of the total STP with density λj as

∂

∂λj
P =

∑

k∈K

∫ ∞

hk

∂

∂λj

(

ϕ(L)
k (y) + ϕ(N)

k (y)
)

dy (24)

where components inside the integral are given by

∂

∂λj
ϕ
(c)
j (y) =

ϕ
(c)
j (y)

λj

(

1− 2πλjφ
(c)
j,j (y,S

(c)
j (y))

)

(25)

∂

∂λj
ϕ
(c)
j′ (y) = ϕ

(c)
j′ (y)

(

−2πφ
(c)
j′,j(y,S

(c)
j (y))

)

(26)

where j′ used to represent j′ 6= j. Notice that (25) is

differential of the STP when main link is j-layer. On the other

hand, (26) is differential with λj for the STP when main link

is not j-layer, hence the STP always decrease with λk .

From (25) and (26), we derive the range of λj that makes

the total STP decreased with the λj . Here, ϕ
(c)
j (y) and λj is

positive for all domain. Hence, the total STP decreases with

λj , if following inequality holds.

max
y,c

[

1

2πφ
(c)
j,j (y,S

(c)
j (y))

]

≤ λj . (27)

Furthermore, as φ
(c)
j,j (y, s) is increase with y and s, we can

put the minimum value of y and s which gives

φ(L)
j,j

(

hj , S
(L)
j (hj)

)

= ǫj

(

S(L)
j (hj)

)

. (28)

Hence, the upper bound of optimal density is given by (22).
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