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Abstract—This paper studies a wireless powered mobile edge
computing (MEC) system, where a dedicated energy transmitter
(ET) uses the radio-frequency (RF) signal enabled wireless
power transfer (WPT) to charge wireless devices for sustainable
computation. In such a system, we present a new user cooperation
approach to improve the computation performance of active
devices, in which surrounding idle devices are enabled as helpers
to use their opportunistically harvested wireless energy from
the ET to help remotely execute active users’ computation
tasks. In particular, we consider a basic scenario with one
user (with computation tasks to execute) and multiple helpers,
in which the user can partition the computation tasks into
various parts for local execution and computation offloading to
helpers, respectively. Both the user and helpers are subject to the
so-called energy neutrality constraints, such that their energy
consumption does not exceed the respective energy harvested
from the ET. Under this setup and considering a frequency
division multiple access (FDMA) based computation offloading
protocol, we maximize the computation rate (i.e., the number
of computation bits over a particular time block) of the user,
by jointly optimizing the transmit energy beamforming at the
ET, as well as the communication and computation resource
allocations at both the user and helpers. By leveraging the
Lagrange duality method, we present the optimal solution to
this problem in a semi-closed form. Numerical results show
that the proposed wireless powered user cooperative computation
design significantly improves the computation rate at the user,
as compared to conventional schemes without such cooperation.

Index Terms—Mobile edge computing, wireless power transfer,
user cooperation, energy beamforming, convex optimization.

I. INTRODUCTION

With recent advancements in artificial intelligence, big data,
and internet of things (IoT), it is envisioned that future wireless
networks need to support massive low-power wireless devices
(e.g., sensors and actuators) with real-time communication and
computation, in order to enable various new applications such
as industrial automation, smart transportation, and unmanned
aerial vehicles (UAVs). Towards this end, how to provide rich
computation capability and sustainable energy supply for these
wireless devices is becoming a critical technical challenge to
be tackled.

Recently, mobile edge computing (MEC) has emerged as a
promising solution to enhance wireless devices’ computation
capability [1]–[3]. Different from conventional mobile cloud
computing (MCC) with centralized clouds that are normally
far apart from wireless devices, MEC offers remote compu-
tation services at the network edge in their close proximity.

∗J. Xu is the corresponding author. This work was supported in part by the
National Natural Science Foundation of China (Project No. 61871137).

By allowing wireless devices to offload computation tasks
to nearby base stations (BSs), WiFi access points (APs), or
even smart phones and laptops for remote execution in MEC,
these devices can enjoy enhanced computation capability
and reduced computation latency. On the other hand, radio-
frequency (RF) signal based wireless power transfer (WPT)
has been recognized as a viable and convenient solution to
charge low-power electronic devices by deploying dedicated
energy transmitters (ETs) for energy broadcasting (see, e.g.,
[4]–[7]). Simultaneous wireless information and power trans-
fer (SWIPT) and wireless powered communication networks
(WPCNs) are two main WPT applications that aim to provide
sustainable wireless communications in the IoT era [8]–[11].

To exploit both benefits of MEC and WPT, wireless powered
MEC has been recently proposed to achieve self-sustainable
computing for wireless devices, in which a new type of hybrid
APs are deployed to not only serve as ETs to wirelessly
charge devices, but also act as edge servers to help remotely
execute their offloaded computation tasks [12]–[16]. The work
in [12] first considered a wireless powered single-user MEC
system, in which the WPT at the AP as well as the local
computing and computation offloading at the users are jointly
optimized, to maximize the user’s successful computation
probability, subject to the computation latency constraints. The
work in [13] further investigated a wireless powered multiuser
MEC system under a time-division multiple access (TDMA)
based partial offloading protocol, in which the multi-antenna
energy beamforming at the AP and the computation/offloading
decisions at the users are jointly optimized to minimize the
overall energy consumption of the system, subject to the users’
computation latency constraints. Furthermore, the authors in
[14], [15] and [16] studied a wireless powered multiuser MEC
system with computation rate maximization and a wireless
powered single-relay system for MEC, respectively.

Despite the research efforts on wireless powered MEC,
the above works [12]–[16] focused on the scenario with a
centralized edge server co-located at the ET (i.e., the hybrid
AP). Such a design, however, is generally not applicable in
other WPT scenarios when ETs are dedicatedly deployed
without computation capabilities. Also, this design fails to
exploit the rich computation resources at surrounding end
users. It is worth noting that nowadays, smart IoT devices
are densely deployed in wireless networks. Due to the burst
nature of wireless traffic, it is highly likely that, when some
devices are actively computing, there exist some surrounding
idle devices with unused computation resources. Thanks to
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the broadcast characteristics of WPT, these idle devices can
also efficiently harvest wireless energy from ETs. Motivated
by these facts, we propose a new wireless powered user
cooperative computing approach to exploit both the unused
computation resources and the opportunistic wireless energy
harvesting at surrounding idle devices, in which these devices
are enabled as helpers to use their opportunistically harvested
wireless energy to help remotely execute the active users’ com-
putation tasks, thus improving the computation performance.
Notice that the cooperative computation between two users
has been investigated in our previous work [17], the energy-
efficient multiuser computation offloading designs based on a
non-orthogonal multiple access (NOMA) protocol have been
pursued for improving the MEC system performance [18],
and the so-called federated learning has been developed by
Google to enable multiple mobile phones to collaborate in
executing machine learning tasks [19]. However, these works
only considered the users’ cooperative computation under
fixed energy supplies (e.g., batteries), while our work in this
paper unifies both cooperative computing and WPT, where
the energy consumption of helpers comes from the wireless
energy transferred from the ET, thus leading to self-sustainable
computation cooperation among users.

In this paper, we consider a wireless powered multiuser
MEC system consisting of a multi-antenna ET, an active-
computing user, and multiple helpers for cooperative com-
puting. The ET broadcasts wireless energy to charge all the
user and helpers simultaneously. Relying on the harvested
energy, the user can partition its computation tasks into various
parts that are computed locally and offloaded to multiple
helpers for parallel execution, respectively. In order to avoid
the co-channel interference, we consider that the WPT and the
computation task offloading are implemented over orthogonal
frequency bands. Furthermore, a frequency-division multiple
access (FDMA) protocol is adopted for the task offloading
and result downloading between the user and different helpers.
For the cooperative computation between the user and each
helper, the computation time block of our interest is divided
into three time slots, for task offloading from the user to the
helper, the helper’s task execution, and the computation results
downloading from the helper to the user, respectively. Under
this setup, we maximize the computation rate (i.e., the number
of computation bits over a particular time block) at the user,
by jointly optimizing the transmit energy beamforming at the
ET, as well as the communication and computation resource
allocations at both the user and helpers, subject to their
energy neutrality constraints (i.e., their energy consumption
does not exceed the respective energy harvested from the
ET). By leveraging the Lagrange duality method, we present
the optimal solution to this problem in a semi-closed form.
Numerical results show that the proposed wireless powered
user cooperative computation design significantly improves
the computation rate at the user, as compared to conventional
schemes without such cooperation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless powered cooperative computation sys-
tem as shown in Fig. 1, which consists of an N -antenna ET,
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Fig. 1. An illustration of the wireless powered user cooperative computation
system.

a single-antenna user, and a set K , {1, . . . ,K} of K single-
antenna helpers. The ET employs the RF signal based transmit
energy beamforming to simultaneously charge the user and
the K helpers. Relying on the harvested energy, the user can
execute part of its computation tasks via local computing,
and offload the remaining parts to the K helpers for remote
execution. In order to avoid the co-channel interference, we
consider that the WPT and the multiuser communication (for
task offloading and results downloading) are implemented over
orthogonal frequency bands.

We focus on one particular time block with duration T ,
during which the wireless channels are assumed to remain
unchanged and the user aims to maximize the computation rate
(to be defined later) over this block. Furthermore, we assume
that there is a central controller that can collect the global
channel state information (CSI) and the computation-related
information. Therefore, the central controller can coordinate
the WPT and the computation offloading.

A. Energy Beamforming at ET

First, we consider the energy beamforming from the ET to
the user and helpers. Let s ∈ CN×1 denote the energy-bearing
signal sent by the ET, and Q = E[ssH ] ∈ CN×N denote
the transmit energy covariance matrix, where E[·] denotes
the expectation operation and the superscript H denotes the
conjugate transpose. Accordingly, the transmit power at the ET
is given by E[‖s‖2] = tr(Q), where ‖·‖ denotes the Euclidean
norm of a vector and tr(·) denotes the trace of a matrix.
Denoting Pmax as the maximum transmit power of the ET,
it follows that tr(Q) ≤ Pmax. In general, the ET can employ
multiple energy beams to deliver wireless energy, i.e., Q can
be of any rank. In particular, suppose that r = rank(Q) ≤ N ,
where rank(A) denotes the rank of matrix A. Accordingly,
there are a total of r energy beams that can be obtained by
the eigenvalue decomposition (EVD) of Q.
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Fig. 2. An illustration of the FDMA-based computation offloading protocol.

Furthermore, let g0 ∈ CN×1 and gk ∈ CN×1 denote the
channel vectors from the ET to the user (with index 0 for
notational convenience) and helper k ∈ K, respectively. The
received RF power at the user and helper k are given by |gH0 s|2
and |gHk s|2, respectively, where | · | denotes the absolute value
of a scalar. As commonly adopted in the WPT literature [4]–
[6], we assume a linear energy harvesting (EH) model for
both the user and helpers. Consequently, the harvested energy
amount by the user (with index k = 0) or helper k ∈ K over
this block is given by

Ek = TζkE[|gHk s|2] = Tζktr(Qgkg
H
k ), k ∈ {0} ∪ K, (1)

where 0 < ζk ≤ 1 denotes the constant EH efficiency of the
user or helper.

B. User Cooperative Computing

Next, we explain the cooperative computation between the
user and helpers. Consider the partial offloading case [12],
[13], such that the user can arbitrarily partition the computa-
tion tasks into (K + 1) parts for parallel execution at the user
and the helpers, respectively. We denote `0 as the number of
task input-bits for the user’s local computing and `k as that
for computation offloading from the user to helper k ∈ K.

The computation offloading between the user and the K
helpers is based on the FDMA protocol, as shown in Fig. 2.
The communication between the user and each helper is
allocated with an orthogonal frequency band with bandwidth
B. For each helper k ∈ K, the block is divided into three
time slots with durations tk,1, tk,2, and tk,3, for user’s task
offloading to helper k, helper k’s remote computing, and
computation result downloading from helper k to the user,
respectively. It thus follows that

∑3
i=1 tk,i ≤ T .

Let hk denote the channel power gain between the user and
helper k ∈ K. In the first slot, the number of offloaded task
input-bits from the user to helper k is given as

`k = tk,1B log

(
1 +

hkqk
σ2
k

)
, (2)

where qk denotes the transmit power of the user for offloading
task to helper k and σ2

k is the power of additive white Gaussian

noise (AWGN) at helper k ∈ K. Correspondingly, the total
transmission energy consumption for the user’s offloading is
given by

E0,tx =

K∑
k=1

qktk,1 =

K∑
k=1

tk,1(2
`k

tk,1B − 1)
σ2
k

hk
. (3)

In the second slot, each helper k ∈ K executes `k task
input-bits. Let Ck denote the central process unit (CPU) cycles
required for executing one input-bit of the offloaded task.
To successfully execute the Ck`k CPU cycles, the energy
consumption for helper k’s remote computing is given by [3]

Ek,comp =

Ck`k∑
n=1

ξkf
2
k,n, (4)

where ξk and fk,n denote the effective CPU switch capacitance
and the CPU frequency for executing the nth CPU cycles of
helper k, respectively. To minimize the energy consumption of
helper k’s local computing, an identical CPU frequency should
be adopted for every CPU cycle [13], i.e.,

fk,1 = fk,2 = . . . = fk,Ck`k =
Ck`k
tk,2

. (5)

Substituting (5) into (4), the energy consumption for helper
k’s computing is re-expressed as

Ek,comp =
ξkC

3
k`

3
k

t2k,2
, k ∈ K. (6)

In the last slot with duration tk,3, the user downloads the
corresponding computation results from each helper k ∈ K.
For ease of analysis, we assume that the size of the compu-
tation results is proportional to the size of the corresponding
task input-bits, which is denoted as β`k for helper k ∈ K, with
β > 0 denoting a task-specific constant [3]. Let pk denote the
transmit power of helper k for sending the computation results
to the user. We then have

β`k = tk,3B log

(
1 +

hkpk
σ2
0

)
, k ∈ K, (7)

where σ2
0 is the power of AWGN at the user. The correspond-

ing transmission energy consumption for helper k ∈ K is given
by

Ek,tx = pktk,3 = tk,3(2
β`k
tk,3B − 1)

σ2
0

hk
. (8)

In addition, the user performs local computing to execute
the C0`0 input-bits of the partitioned task over the whole
duration-T block, where C0 is the CPU cycles required for
each task input-bit at the user. Similarly, an identical CPU
frequency C0`0/T is adopted for each CPU cycle at the user.
The resultant energy consumption for local computing at the
user is given by [3]

E0,comp =
ξ0C

3
0`

3
0

T 2
, (9)

where ξ0 is the constant switch capacitance of the user’s CPU
architecture.

Furthermore, notice that the energy consumption at each
of the user and the K helpers is supplied by the WPT from
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the ET. Therefore, the user and K helpers are each subject
to the so-called energy neutrality constraints to achieve self-
sustainable operation [7], i.e., over the particular block, the
total energy consumed by each node cannot exceed the total
energy harvested at that node. Therefore, we have

Ek,tx + Ek,comp ≤ Ek (10)

for all k ∈ {0} ∪ K.

C. Problem Formulation

In this paper, we aim to maximize the computation rate (i.e.,
the total number of task inputs

∑K
k=0 `k within the block) at

the user for this wireless powered cooperative computation
system. Towards this end, we jointly optimize the energy
transmit covariance matrix Q at the ET, the numbers {`k}
of the partitioned task input-bits, and the time allocations
{tk,1, tk,2, tk,3} for the cooperative computing between the
user and each helper. Mathematically, the energy-constrained
computation rate maximization problem is formulated as

max
Q�0,`,t

K∑
k=0

`k (11a)

s.t.

K∑
k=1

tk,1(2
`k

tk,1B − 1)
σ2
k

hk
+
ξ0C

3
0`

3
0

T 2

≤ Tζ0tr(Qg0g
H
0 ) (11b)

tk,3(2
β`k
tk,3B − 1)

σ2
0

hk
+
ξkC

3
k`

3
k

t2k,2

≤ Tζktr(Qgkg
H
k ), ∀k ∈ K (11c)

3∑
i=1

tk,i ≤ T, ∀k ∈ K (11d)

`k ≥ 0, ∀k ∈ {0} ∪ K (11e)
0 ≤ tk,i ≤ T, ∀i ∈ I, k ∈ K (11f)
tr(Q) ≤ Pmax, (11g)

where ` , [`0, `1, . . . , `K ]†, t , [t†1, . . . , t
†
K ]†, tk ,

[tk,1, tk,2, tk,3]†, and I , {1, 2, 3} are defined for notational
convenience, with [·]† denoting the transpose of a vector. Note
that problem (11) is convex, due to the fact that the objective
function is linear and all the constraints are convex. Therefore,
problem (11) can be efficiently solved by standard convex
optimization techniques such as the interior-point method [21].
Nevertheless, to reveal essential engineering insights, in the
next section we employ the Lagrange duality method to obtain
the optimal solution to problem (11).

III. OPTIMAL SOLUTION TO PROBLEM (11)

In this section, we present an efficient algorithm for opti-
mally solving (11) based on the Lagrange duality method.

Let λ0 ≥ 0, λk ≥ 0, µk ≥ 0, k ∈ K, and ρ ≥ 0
denote the Lagrange multiplier associated with the constraints
in (11b), (11c), (11d), and (11g), respectively. Then the partial
Lagrangian of problem (11) is expressed as

L(Q, `, t,λ,µ, ρ) =

tr

(( K∑
k=0

λkTζkgkg
H
k − ρI

)
Q

)
+ ρPmax +

K∑
k=1

µkT

+ `0 −
λ0ξ0C

3
0

T 2
`30 +

K∑
k=1

(
`k −

λ0σ
2
ktk,1
hk

(2
`k

Btk,1 − 1)

−
3∑
i=1

µktk,i −
λkσ

2
0tk,3
hk

(2
β`k
Btk,3 − 1)− λkξkC

3
k`

3
k

t2k,2

)
. (12)

Accordingly, the dual function is given by

G(λ,µ, ρ) = max
Q�0,`,t

L(Q, `, t,λ,µ, ρ) (13a)

s.t. (11e) and (11f). (13b)

Then, the dual problem is expressed as

min
λ,µ,ρ

G(λ,µ, ρ) (14a)

s.t. λ > 0, µ ≥ 0, ρ ≥ 0 (14b)
F (λ, ρ) � 0, (14c)

where F (λ, ρ) ,
∑K
k=0 λkTζkgkg

H
k − ρI with I being an

identity matrix of size N × N . Note that the constraint of
λ > 0 in (14b) and that in (14c) are imposed to ensure the
dual function G(λ,µ, ρ) bounded from above (as proved in
Appendix A).

As problem (11) is convex and satisfies the Slater’s con-
dition, strong duality holds between the primal problem (11)
and the dual problem (14). Therefore, we can solve problem
(11) by equivalently solving problem (14). In the following,
we first evaluate the dual function G(λ,µ, ρ) under any
given (λ,µ, ρ) ∈ X , where we denote X as the feasible
set of (λ,µ, ρ) of problem (14), and then find the optimal
dual variables (λ,µ, ρ) to minimize G(λ,µ, ρ). We denote
(λopt,µopt, ρopt) as the optimal dual solution to problem (14).

A. Evaluating Dual Function G(λ,µ, ρ)

First, we obtain the dual function G(λ,µ, ρ) under any
given (λ,µ, ρ) ∈ X by solving problem (13). Problem (13)
can be readily decomposed into the following (K+2) indepen-
dent subproblems, one for optimizing Q, one for optimizing
`0, and the remaining K subproblems for jointly optimizing
`k’s and tk’s.

max
Q

tr
(
F (λ, ρ)Q

)
s.t. Q � 0 (15)

max
`0

`0 −
λ0ξ0C

3
0

T 2
`30 s.t. `0 ≥ 0 (16)

max
`k,tk

`k −
λ0σ

2
ktk,1
hk

(2
`k

Btk,1 − 1)−
3∑
i=1

µktk,i

− λkσ
2
0tk,3
hk

(2
β`k
Btk,3 − 1)− λkξkC

3
k`

3
k

t2k,2
(17a)

s.t. `k ≥ 0, 0 ≤ tk,i ≤ T, ∀i ∈ I, (17b)

where each subproblem k in (17) is for one helper k ∈ K.
For problem (15), under the condition F (λ, ρ) � 0, the

optimal value is zero and the optimal solution Q∗ to problem
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(15) can be any positive semidefinite matrix in the null space
of F (λ, ρ). Here, we set Q∗ = 0 for the purpose of evaluating
the dual function G(λ,µ, ρ).

As for the optimal `∗0 of problem (16), under given λ0,
the objective function in (16) is concave with respect to `0.
Therefore, based on the first-order derivative condition [21],
we have

`∗0 =
T√

λ0ξ0C3
0

. (18)

For the kth problem in (17), it is convex and satisfies the
Slater’s condition. Based on the Karush-Kuhn-Tucker (KKT)
conditions [21], we obtain the optimal solution of `k and tk to
problem (17) in a semi-closed form, as stated in the following
lemma.

Lemma 3.1: The optimal solution of `∗k and t∗k to problem
(17) is given by

`∗k


= 0, if M(r∗k, λ0, λk, µk) < 0

∈ [0,mini∈{1,2,3} r
∗
k,iT ], if M(r∗k, λ0, λk, µk) = 0

= mini∈{1,2,3} r
∗
k,iT, if M(r∗k, λ0, λk, µk) > 0

and t∗k,i = `∗k/r
∗
k,i for all i ∈ I, respectively, where r∗k ,

[r∗k,1, r
∗
k,2, r

∗
k,3]† with

r∗k,1 =
B

ln 2

(
1 +W

( µkhk
λ0σ2

ke
− 1

e

))
(19a)

r∗k,2 =
1

Ck

( µk
2λkξk

) 1
3

(19b)

r∗k,3 =
B

β ln 2

(
1 +W

( µkhk
λkσ2

0e
− 1

e

))
(19c)

and M(r∗k, λ0, λk, µk) ,

1− λ0σ
2
k

hkr∗k,1
(2

r∗k,1
B − 1)−

3∑
i=1

µk
r∗k,i

− λkσ
2
0

hkr∗k,3
(2

βr∗k,3
B − 1)− λkξkC3

kr
∗2
k,2 (20)

for any k ∈ K. Note e is termed Euler’s number and thatW(·)
in (19) is the Lambert W function [20].

Proof: See Appendix B.
As stated in Lemma 3.1, if G(r∗k, λ0, λk, µk) = 0, then

`∗k,i ∈ [0, T ] is generally not a unique solution to (17). In
this case, we set `∗k = 0, k ∈ K, to facilitate the dual
function evaluation. An additional procedure will be employed
in Section III-C to retrieve the optimal primal `optk ’s, together
with toptk,i = `optk /roptk,i for all i ∈ I and k ∈ K.

By combining the optimal Q∗ = 0, `∗0 in (18), and Lemma
3.1, the dual function G(λ,µ, ρ) can be readily evaluated
under given (λ,µ, ρ) ∈ X .

B. Obtaining Optimal (λopt,µopt, ρopt) to Minimize
G(λ,µ, ρ)

Generally, the dual function G(λ,µ, ρ) in (13) is convex
but non-differentiable. As a result, the optimal dual solution
(λopt,µopt, ρopt) to problem (14) can be obtained by sub-
gradient based methods such as the ellipsoid method [19]. To

begin with, we choose a given (λ,µ, ρ) ∈ X as the center
of the initial ellipsoid and set its volume to be sufficiently
large to contain the optimal (λopt,µopt, ρopt). Then, at each
iteration, we update the dual variables (λ,µ, ρ) based on the
subgradients of both the objective function and the constraints
in problem (14), and accordingly establish a new ellipsoid with
reduced volume. When the ellipsoid volume is below a certain
threshold, the iteration terminates and the ellipsoid center is
chosen to be the optimal (λopt,µopt, ρopt).

To implement the ellipsoid method, it remains to determine
the subgradients of both the objective function and constraints.
For the objective function in (14a), the subgradient with
respect to (λ,µ, ρ) is given as[

Tζ0tr(Qg0g
H
0 )−

K∑
k=1

tk,1(2
`k

tk,1B − 1)
σ2
k

hk
− ξ0C

3
0`

3
0

T 2
,

T ζ1tr(Qg1g
H
1 )− σ2

0t1,3
h1

(2
β`1
t1,3B − 1)− ξ1C

3
1`

3
1

t21,2
, . . . ,

T ζKtr(QgKg
H
K )− σ2

0tK,3
hk

(2
β`K
tK,3B − 1)− ξKC

3
K`

3
K

t2K,2
,

T −
3∑
i=1

t1,i, . . . , T −
3∑
i=1

tK,i, Pmax − tr(Q)
]†
.

The subgradients for the constraints in (14b) are given by ek
for all k ∈ {0} ∪ K and eK+k for all k ∈ K, respectively,
where ej ∈ R(2K+2)×1 is the standard unit vector with one
in the jth entry and zeros elsewhere. By using this together
with (21a), the ellipsoid method can be applied to efficiently
update (λ,µ, ρ) towards (λopt,µopt, ρopt) for problem (14).

C. Finding Optimal Primal (Qopt, `opt, topt)

With the optimal dual solution (λopt,µopt, ρopt), it remains
to determine the optimal primal solution to problem (11).
Specifically, substituting λ∗ and µ∗ with λopt and µopt,
respectively, we obtain the optimal `opt0 and roptk . Due to
the non-uniqueness of `∗k’s and Q∗, one cannot obtain `optk ’s
and Qopt directly here but resort to an additional procedure.
By substituting `opt0 and roptk,i = `k/tk,i, i ∈ I, k ∈ K, in
problem (11), we solve the following semidefinite program
(SDP) problem to obtain the optimal primal Qopt and `optk ’s:

max
Q�0

{`k,k∈K}

K∑
k=1

`k (21a)

s.t.

K∑
k=1

(2
r
opt
k,1
B − 1)

σ2
k`k

hkrk,1
+ ξ

1
2
0 C

3
2
0 T/

√
λopt0

≤ Tζ0tr(Qg0g
H
0 ), ∀k ∈ K (21b)

(2
βr

opt
k,3
B − 1)

`kσ
2
0

hkrk,3
+ ξkC

3
k`kr

opt
k,2

≤ Tζktr(Qgkg
H
k ), ∀k ∈ K (21c)

K∑
k=1

`k

roptk,i

≤ T, `k ≥ 0, ∀k ∈ K (21d)

tr(Q) ≤ Pmax. (21e)
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Fig. 3. The average number of computation bits of the user versus the block
duration T .

Note that the SDP in (21) can be efficiently solved via CVX
toolbox [19]. With `optk ’s obtained, we have the optimal primal
toptk,i = `optk /roptk,i , i ∈ I, k ∈ K, to problem (11). Then, by
combining Qopt, `optk ’s, and topt here, together with `opt0 , the
optimal solution to problem (11) is finally found.

IV. NUMERICAL RESULTS

In this section, we present numerical results to evaluate the
performance of the proposed wireless powered user coopera-
tive computing design, as compared with the following two
benchmark schemes.

1) Local computing only: The user accomplishes its com-
putation task by local computing only. This scheme corre-
sponds to solving problem (11) by setting `k = 0 and tk = 0
for all k ∈ K.

2) Equal time allocation for offloading: The time durations
for the task offloading from the user to each helper, the
task execution at each helper, and the computation result
downloading from different helpers to the user are equally
allocated. This scheme corresponds to solving problem (11)
by setting tk,1 = tk,2 = tk,3 = T/3 for all k ∈ K.

In this simulation, we set the number of antennas at the ET
as N = 4 and the number of helpers as K = 3. For both the
user and the helpers, we set the EH efficiency as ζk = 0.6, the
switch capacitance as ξk = 10−28, the required CPU cycles per
bit as Ck = 103 [13], the receive noise power σ2

k = 10−9 Watt
(W), k ∈ {0}∪K. The bandwidth used for the communication
between the user and each helper is set as B = 1 MHz. All
channels are modeled as independent Rayleigh fading with an
average power gain of PL0 × d−3k , where PL0 = 10−3 is the
channel power gain at a reference distance of 1 meter (m), dk
denotes the distance from the user to helper k ∈ K, and the
path-loss exponent is assumed to be 3.

Fig. 3 shows the average number of computation bits of the
user versus the block duration T , where the distances from
the user and the helpers are set to be d1 = 2 m, d2 = 3 m,
and d3 = 5 m, respectively. It is observed that the proposed

Fig. 4. The average number of computation bits of the user versus the distance
from the ET to the helpers.

Fig. 5. The average number of computation bits of the user versus the distance
from the user to the helpers.

design outperforms the two benchmark schemes. This shows
the merit of the joint resource allocation in our design for
performance optimization.

Fig. 4 shows the average number of computation bits of the
user versus the distance d between the ET and the helpers,
where the locations for the ET and the user are fixed and
the block duration is T = 0.1 sec. The proposed design is
observed to outperform all the benchmark schemes. As the
distance d increases, the average numbers of computation bits
achieved by the proposed design and the equal-time-allocation
scheme both reduce significantly. This is due to the fact that
the harvested energy at the helpers becomes smaller, and thus
the user cooperative computation gain decreases.

Fig. 5 shows the average number of computation bits of the
user versus the distance between the user and the helpers,
where the locations of the ET and the user are fixed and
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the block duration is T = 10−3 sec. It is observed that
the performance gain of the proposed design reduces as the
distance between the user and helpers increases.

V. CONCLUSION

In this paper, we investigated a novel wireless powered
user cooperative computation design for MEC systems, where
nearby wireless devices are exploited as helpers that can
opportunistically harvest wireless energy for cooperatively
computing active users’ tasks. Specifically, we developed an
efficient design framework to maximize the computation rate
at the user within a given block subject to the energy neutrality
constraints at the user and helpers. Based on the Lagrange
duality method, we obtained the optimal semi-closed solution
to this problem. Numerical results showed the substantial
performance gain of the proposed wireless powered user
cooperative computing design, over the benchmark schemes
without such cooperation. It is our hope that the proposed
design can provide a new viable means to efficiently improve
the computation performance of wireless devices in future IoT
networks that integrate wireless communication, computation,
and power in a unified manner.

APPENDICES

A. Proof of Conditions F (λ, ρ) � 0 and λ > 0

The condition F (λ, ρ) � 0 can be verified by contradiction.
Assume that F (λ, ρ) is not negative semidefinite. Denote
by ν ∈ CN×1 an eigenvector corresponding to one positive
eigenvalue of F (λ, ρ). By setting Q = τννH ≥ 0 with τ
going to positive infinity, it follows that

lim
τ→+∞

tr
(
F (λ, ρ)Q

)
= lim
τ→+∞

τνHF (λ, ρ)ν = +∞, (22)

which in turn implies that the value G(λ,µ, ρ) in (14) is
unbounded from above over Q � 0. Hence, to ensure that
G(λ,µ, ρ) is bounded, it requires that F (λ, ρ) � 0.

Under the condition of λk = 0, k ∈ {0} ∪ K, since that `k
is the dominant term in the expression L(Q, `, t,λ,µ, ρ), the
value of G(λ,µ, ρ) becomes positive infinity as `k approaches
positive infinity. Thus, it follows that λ > 0.

B. Proof of Lemma 3.1

Given (λ,µ, ρ) ∈ X , we solve problem (17) for any
k ∈ K. First, define θ̄k , [θ̄k,1, θ̄k,2, θ̄k,3]† and θk ,
[θk,1, θk,2, θk,3]†. The Lagrangian of problem (17) is given
by Lk(`k, tk, γk, θ̄k,θk) ,

`k −
λ0σ

2
ktk,1
hk

(2
`k

tk,1B − 1)− λkσ
2
0tk,3
hk

(2
β`k
tk,3B − 1) + γk`k

− λk
ξkC

3
k`

3
k

t2k,2
+

3∑
i=1

(
θ̄k,i(T − tk,i) + θtk,i − µktk,i

)
, (23)

where γk, θ̄k,i, and θk,i, i ∈ I, are the non-negative Lagrange
multipliers associated with `k ≥ 0, tk,i ≤ T , and tk,i ≥ 0,
respectively. Based on the KKT conditions, the necessary

and sufficient conditions for the optimal primal-dual point
(`∗k, t

∗
k, γ
∗
k , θ̄
∗
k,θ
∗
k) are [21]

`∗k ≥ 0, 0 ≤ t∗k,i ≤ T, ∀i ∈ I (24a)

γ∗k ≥ 0, θ̄∗k,i ≥ 0, θ∗k,i ≥ 0, ∀i ∈ I (24b)

γ∗k`
∗
k = 0, θ̄∗k,i(T − t∗k,i) = 0, θ∗k,it

∗
k,i = 0, ∀i ∈ I (24c)

1− λ0σ
2
k ln 2

Bhk
2
r∗k,1
B − βλkσ

2
0 ln 2

Bhk
2
βr∗k,3
B − 3λkξkC

3
kr
∗2
k,i

+ γ∗k = 0 (24d)
λ0σ

2
k

hk
2
r∗k,1
B

(r∗k,1
B

ln 2− 1
)

+
λ0σ

2
k

hk
− θ̄∗k,1 + θ∗k,1 − µk = 0

(24e)

2λkξkC
3
kr
∗3
k,3 − θ̄∗k,2 + θ∗k,2 − µk = 0 (24f)

λkσ
2
0

hk
2
βr∗k,3
B

(βr∗k,3
B

ln 2− 1
)

+
λkσ

2
0

hk
− θ̄∗k,3 + θ∗k,3

− µk = 0, (24g)

where r∗k,i , `∗i /t
∗
k,i for all i ∈ I. The left-hand-side (LHS)

terms of (24d)–(24g) are the first-order derivatives of Lk with
respect to `∗k, t∗k,1, t∗k,2, and t∗k,3, respectively. From (24b) and
(24e), it follows that

(
r∗k,1
B

ln 2− 1)e(
r∗k,1
B ln 2−1) =

µkhk
λ0σ2

ke
− 1

e
. (25)

For the function y = xex of x > 0, its inverse function can
be shown to be x =W(y) [20]. Therefore, based on (25) and
some simple manipulation, we have

r∗k,1 =
B

ln 2

(
1 +W

( µ∗khk
λ0σ2

ke
− 1

e

))
. (26)

Based on (24b) and (24f), it follows that

r∗k,2 =
1

Ck

( µk
2λkξk

) 1
3 . (27)

Similarly, from (24b) and (24g), we have

r∗k,3 =
B

β ln 2

(
1 +W

( µ∗khk
λkσ2

0e
− 1

e

))
. (28)

To determine the optimal `∗k to problem (17), we substitute
r∗k , [r∗k,1, r

∗
k,2, r

∗
k,3]† into problem (17) and then obtain the

following equivalent linear program (LP):

max
`i

`kM(r∗k, λ0, λk, µk) (29a)

s.t. 0 ≤ `k ≤ r∗k,iT, ∀i ∈ I, (29b)

whereM(r∗k, λ0, λk, µk) , 1− λ0σ
2
k

hkr∗k,1
(2

r∗k,1
B −1)−

∑3
i=1

µk
r∗k,i
−

λkσ
2
0

hkr∗k,3
(2

βr∗k,3
B − 1) − λkξkC

3
kr
∗2
k,2 for any k ∈ K. From the

solution to the LP (29), it follows that the optimal `∗k to
problem (17) is given by

`∗k


= 0, if M(r∗k, λ0, λk, µk) < 0

∈ [0,mini∈{1,2,3} r
∗
k,iT ], if M(r∗k, λ0, λk, µk) = 0

= mini∈{1,2,3} r
∗
k,iT, if M(r∗k, λ0, λk, µk) > 0.

Next, the optimal t∗k,i of problem (29) is readily obtained as
t∗k,i = `∗k/r

∗
k,i for all i ∈ I.
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