
 

Abstract—Over The Top (OTT) service providers require 

platforms to support distributed, complex, cloud-oriented, 

scalable, micro-service based systems. Such systems require on-

the-fly placement of Virtual Network Functions (VNF) to 

support streaming and transcoding of content based on QoE 

feedback provided by the end-user. This paper proposes a QoE 

Scheme to support on-the-fly virtual network functions 

deployment for OTT video streaming and transcoding. The QoE 

feedback considers limited cloud resources, transcoding 

requirements, throughput and latency. Both horizontal and 

vertical scaling strategies (including VM migration) are 

discussed to cover up availability and reliability of intermediate 

and edge Content Delivery Network (CDN) cache nodes. 

Index Terms—QoE, Cloud, VNF, OTT Video Streaming  

I. INTRODUCTION 

NLINE video market has been growing exponentially 

over the last decade. Globally, IP video traffic will be 82 

percent of Internet traffic by 2021 [1]. Internet video will 

continue to grow at a rapid pace. Additional demand 

necessitates a parallel advance in scalability, availability and 

reliability requirements. Depending on the system 

implementation, it is generally quite easy to meet these 

demands by running more Virtual Machine (VM) instances 

[2]. However, this might trigger a corresponding increase in 

cloud hosting costs [3]. Since the introduction of Content 

Delivery Networks (CDN) [4], the architecture of video 

delivery systems have evolved. This has led to a breakthrough 

in efficiency by many aspects, including service capacity, 

reduced latency and better cache management [5]. The 

procedure starts with the user request, followed by a pull 

model [6] caching unless a pre-push model [7] is configured 

[8]. The content that is frequently used stay in the cache 

longer time [9]. Depending on different CDN deployments, 

the distributed cache nodes may have the capability to search 

other nodes’ caches [10] for a requested content and copy it 

from a closer and cost-efficient neighboring node. Current 

academic research viewpoint [5,7] and state-of-the-art 

technology point of view [3, 8, 9, 11] provide an 

understanding that only relies on objective network metrics 

and cloud resource constraints whereas this paper introduces 

a brand new foundational understanding of the impact of QoE 

on load balancing and resource optimization. The edge CDN 

cache pulls the content, and end-users get the service via their 

video players [12]. 

 The architecture of the working mechanism of edge content 

nodes [13] involves cache content copy that resides in a VM 

as VNF that is pulled from origin [14]. Actual contact points 

for the users are the front-line load balancers [15] that redirect 

requests to the containers that run web servers [16], which 

deliver the chunks of video data. Therefore, optimizing the 

number of running VM instances in the cloud [17], plays a 

crucial role for enhancing the QoE. Any unexpected peak in 

user requests results in a parallel-unforeseen scalability 

demand and equivalent unpredicted costs on the cloud. An 

attempt to confront this demand requires other additional 

investment on redundancy [3].  

The primary intention of this paper is to overcome the 

limitations of the solutions that have been proposed in the 

literature discussed above, taking into account video QoE 

characteristics. For this purpose, scalable online video 

delivery systems have been developed to compare the 

proposed QoE-based scheme against different load balancing 

strategies [18] to provide an on-the-fly orchestration to 

rebalance the limited cloud resources [19].. 

The remainder of the paper is organized as follows: Section 

II discusses related works and literature review. Section III 

presents various types of scaling algorithms. Section IV 

introduces a proposed QoE-based scheme for VNF 

placement. Section V explains warming up and cooling down 

machanisims and compares the performance of scaling 

strategies. Section VI formulates computational resource 

constraints for online video streaming via VNFs. Finally, 

Section VII concludes with the results and future work. 

II. RELATED WORK 

 Defining a scalable methodology for cloud-based services 

has attracted a lot attention due to the demand for distributed 

applications that provide reliability [20], durability [21] and 

availability [22]. Kesevaraja et al have modeled [23] single 

VM instance taking into account the success rate of a physical 

node, current utilization of the processor, the maximum 

capacity of the processor,, current utilization of primary 

memory, maximum available capacity of primary memory, 

the data bits transferred among time interval and the network 

bandwidth. Chunlin et al have proposed multiple context-

based service-scheduling models [24] that adopt network 

utility maximization framework to maximize total system 

utility. When the mobile device application’s job is accepted 

by the cloud system, it is scheduled and assigned to the cloud 

resource. Bilal et al have provided a formula [25] for cloud 

costs taking into account computational instances, the total 
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amount of data in bps required for the server and the total cost 

for data per second.  

QoE for OTT has been standardized in ITU-T P.1203.3 

recommendation [26]. In this recommendation, a media 

session quality score is formulated based on a number of 

stalls, total stall duration, buffering duration. This provides a 

basis for a single user’s watching experience. 

 

QoE = 𝑒−
𝑛𝑢𝑚𝑆𝑡𝑎𝑙𝑙𝑠

𝑠1 . 𝑒−
(

𝑡𝑜𝑡𝑎𝑙𝑏𝑢𝑓𝑙𝑒𝑛
𝑇

)

𝑠2 . 𝑒−
(

𝑏𝑢𝑓𝑑𝑢𝑟
𝑇

)

𝑠3  
 

(1) 

This paper proposes a hybrid scalability model for VNF 

placement that considers QoE, cost, and resource efficiency 

aspects of online video delivery a dynamic virtual network 

function with on-the-fly deployment in multi-location cloud 

based on the QoE feedback. Comparison of pros & cons for 

different scaling strategies is presented. Additionally, 

formalization of memory and computation demand related to 

video parameters clarifies the usage of cloud instances with 

real-life scenarios on cloud [27]. 

III. LOAD BALANCING STRATEGIES FOR EDGE CLOUD COMPUTING 

There are several load balancing strategies widely employed 

in web-based services based on random-access, number of 

users, throughput, CPU usage, memory efficient. In this 

section, these strategies are going to be -presented. 

A. Random-access (a.k.a. Round-Robin) 

 Random-access load balancing works on the assumption 

that the users should connect randomly to any server through 

a list of available servers. The definition of randomness 

becomes an important fact and strictly related to the expected 

number of users that intend to use the service [28]. 

 u𝐴(t) =
∑ 𝑢𝑖(𝑡)𝑣

𝑖=0

𝑣
 

 

(2) 
 Average number of users across all VMs where V 

“u𝐴(t)” can be defined as "𝑢𝑖(𝑡)" sum of number of users 

getting service from v as given by Eq 2. 

 S𝐷(t) = (𝑢𝑖(𝑡) − 𝑢𝐴(𝑡))2 (3) 

Nonetheless, as none of the servers inform a central 

decision mechanism, early termination of instances is 

generally impossible, unless the number of requests hit the 

total number of running VMs. 

B. Number of users 

The number of users is the main decisive parameter to 

determine the capability of a VM instance. If the capacity of 

the first VM is overrun, a new VM instance is triggered. When 

the demand from the users tends to decrease, subsequently, 

the same pattern may be practiced for a cool down session. 

This refers to a state where all the running VM instances have 

less number of users when compared to their max capacity.  

C. Throughput based 

 Most of the load balancer implementations that are based 

on network metrics, contrive to rely on the efficiency and 

adequateness of throughput, goodput, bandwidth and latency 

metrics [18, 25]. A decisive mechanism could trigger new 

instances to meet the demand by comparing the maximum 

carrier bandwidth, routing capability and throughput capacity 

of a single or a cluster of instances for the requested service 

by the users,.  

𝑇𝑖(𝑡) = ∑ 𝐵𝑗(𝑡)𝑛
𝑗=1 , subject to  

𝐿𝑀𝑖𝑛 < 𝑇𝑖(𝑡),  𝐿𝑀𝑎𝑥 > 𝑇𝑖(𝑡)                                               (4) 
 

The difference of throughput based load balancing from the 

other techniques is the capability to prioritize any user 

according to the origin of connection or application. 

D. CPU or Memory capacity based  

 This is usually the most frequently implemented and used 

load balancing technique. In this technique, the requested 

CPU or memory load caused from the users that do not meet 

the total capability of the running VM instances, will trigger 

the instantiation of new VMs. Moreover, in order to serve 

more users from the same machine, there is another technique 

called VM migration where either the container or VM is 

migrated to another cloud resource that has more CPU or 

memory capacity availability. In order to keep the downtime 

at a minimum, migration must take place including all 

necessary memory, latest cache state. Until all this 

information is moved to the new machine, previous VM must 

continue to serve and this will keep the downtime to a 

minimum. 

E. Hybrid Scaling Strategies 

 Hybrid scaling strategies are load-balancing mechanisms 

that are based on a collaborated understanding of application, 

network and cloud resource oriented objective metrics. To act 

as a flexible solution that can suit various circumstances, the 

importance of any parameter must be represented by 

corresponding weights. The range and the values of these 

weights can differ fundamentally according to the deployment 

strategy, corresponding usage scenarios and marketing 

requirements. 

 The constraints that introduced anticipate the concurrent 

availability of following items for each VM; required 

bandwidth, computational power and memory resources. Any 

of these unmet conditions might trigger a scaling activity. 

Cooling down in a hybrid load balancing environment shows 

better performance when compared to previous strategies due 

to the possibility of multiple termination triggers which shuts 

down under-utilized VMs faster. 

IV. SCALING AGAINST QOE PERFORMANCE 

In this section, a proposed methodology will be presented 

to recalibrate limited cloud resources to handle any case of 

QoE deterioration. The repositioning of the resources will be 

realized by using different load balancing techniques and a 

comparative resulting scheme will be provided. QoE for a 

user that is receiving a service from online video delivery 

system can be based on video player related parameters. For 

any HTML5 based online video player, it is easy to retrieve 

objective video statistics such as; initial buffering duration, 

number of stalls, total stall duration and resolution. There are 

many approaches to use these parameters and evaluate QoE 

for a single user [23, 25, 26]. Moreover, QoE for a cluster of 

users “𝑢𝑣” can also be calculated that can be used as a basis 

to a subjective user experience. Each corresponding 𝑄𝑣(𝑡) 



 

value for particular VM for V, QoE for overall system can 

be estimated as: 𝑄𝑣(𝑡) = ∑
𝑄𝑢(𝑡)

𝑢𝑣

𝑢𝑣
𝑖=1              (5) 

Conclusively, each corresponding 𝑄𝑣(𝑡) value for 

particular VM for V, QoE for overall system can be 

estimated as given by:    𝑄𝑜𝐸(𝑡) = ∑
𝑄𝑣(𝑡)

𝑛

𝑢𝑣
𝑖=1       (6) 

The primary benefit of a QoE based load-balancing strategy 

for an online video service is the prioritizing of customer 

satisfaction. Cooling down sessions will act in parallel to 

terminate active VM sessions. Unless objective video metrics 

across the cluster of users do not meet required minimum QoE 

constraints, termination of underused VMs will not take 

place. The following Algorithm presents a lucid 

understanding of the scaling triggering mechanism, which 

takes QoE as basis. In this methodology, each user’s 

experience creates an impact on the overall behavior of the 

scaling.  
ALGORITHM: QOE BASED LOAD BALANCING ALGORITHM 

PREREQUISITES:  

NUMBER OF USERS AT INSTANCE T FOR VIRTUAL MACHINE V; 𝑢𝑣(𝑡), UU. 

0. WHILE (TRUE FOR ANY  V  𝑢𝑣(𝑡)>0) 

1. MEASURE  Q𝑢 = 𝑒−
𝑛𝑢𝑚𝑆𝑡𝑎𝑙𝑙𝑠

𝑠1 . 𝑒−
(

𝑡𝑜𝑡𝑎𝑙𝑏𝑢𝑓𝑙𝑒𝑛
𝑇 )

𝑠2 . 𝑒−
(

𝑏𝑢𝑓𝑑𝑢𝑟
𝑇 )

𝑠3  , 𝑓𝑜𝑟 𝑢 U; 

2. EVALUATE Q𝑉   𝑓𝑜𝑟 V; 

3. CALCULATE QOE FOR THE WHOLE SYSTEM 𝑄𝑜𝐸(𝑡). 
4. CONTROL IF A SYSTEM WIDE QOE DETERIORATION IS AVAILABLE OR NOT 

BY CHECKING IF %50 OF THE Q𝑉  𝑓𝑜𝑟 V MEET FOLLOWING CRITERIA : 

Q𝑉 < |𝑄𝑜𝐸𝐿𝐼𝑀𝐼𝑇| 
5. IF (COUNT > %50 OF V ) SCALE HORIZONTALLY. 

6. ENDIF. 

7. FOR EACH Q𝑣WHERE 𝑣 V  

8. IF ((ΔQ𝑣= Q𝑣(𝑡1) − Q𝑣(𝑡2)) && (ΔQ𝑣 < 0) && (|ΔQ𝑣|<|S𝑄|)) 

9. ADD 𝑉𝑀 𝑣 V TO TERMINATION QUEUE. 

10. END WHILE. 

V. SIMULATION ENVIRONMENT 

 In previous sections, an overall understanding of the load 

VM balancing strategies has been presented. A testbed 

environment has been developed to test these VM balancing 

strategies. 

The simulation environment is built using a cluster of 

small-sized VM bots that consist of a light-weight Linux 

distribution (Ubuntu 16.04 LTS) including html5 web 

browsing capability (Firefox 58.0.2, Google Chrome 65 & 

Opera 51), which will request online content from the video 

service. QoE grading of each individual VM will be measured 

through QoE equations which are related to initial buffering 

time, a number of stalls, total stall duration and average 

resolution quality of the content [26] through the individual 

session. The number of these VMs will change through the 

testing period based on real-life data that is originated from 

Broadcasters’ Audience Research Board (BARB) [30], 

providing user access statistics and rating information for a 60 

minutes period. The performance of the online video 

platform, QoE deterioration handling approach and the cost 

success rate of the strategies can be compared objectively. 

Figure 1 visualizes the test bed environment. The example 

streaming capable VM is accessible at 

“www.utkubulkan.co.uk/cloudqoe.html” and the 

corresponding QoE statistics database regarding the 

simulation information is publicly available through   

“www.utkubulkan.co.uk/cloudqoedatabase.php”. 

 

 
Figure 1. VM Simulation Environment 

 

VI. COMPARISON OF LOAD BALANCING STRATEGIES 

The VM load balancing testing techniques that have been 

introduced in the previous section are compared in the testbed 

environment. The results for warming up and cooling down 

haven been presented in terms of instantiating and terminating 

the VM instances. The data that have been collected and 

presented with cloud QoE database constitute the foundation 

of these inductions. 

A. Warming Up Performance 

 The scaling strategy of a load balancer implementation has 

a significant impact on warming up performance and thus it 

can be the main bottleneck against the requested QoE levels. 

When the requests reach to an unexpected peak, the number 

of servers must scale proportionally with the demand.  

Figure 2 shows the comparison of scalability strategies in 

terms of resource usage efficiency. The random-access 

implementation must be aware of the average or a total 

number of users that are accessing the system to be able to 

scale horizontally. Throughput and other resource-based 

strategies also show good performance especially for 

scenarios where the systems are optimized for prioritized user 

schemes. The scaling algorithms that proposed by Kesevaraja 

et al [23] & Chunlin et al [24] show similar performance as 

network oriented throughput-based algorithms, however, they 

lack to meet the demand of a QoE related degradation. 



 

 
Figure 2. Resource Usage Efficiency for Different Scaling 

Techniques during Warming Up 

B. Cooling down Performance 

 Cooling down strategy of an online video delivery system 

is as important as the warming up because this is one of the 

main parameters that the success rate of this implementation 

defines the budget estimation. In terms of cooling down, 

random-access shows the worst performance along with 

Chunlin et al [24] and QoE based scaling, as shown in Figure 

3. That occurs due to the fact that average number of users 

that are connected to an instance can not be zero while the 

VMs are instantiated. So shifting the load from one server to 

another cannot be easily achieved. The performance of QoE 

based methodology guarantees customer satisfaction and 

prioritizes QoE, which leads to late termination of VM 

instances. 

Due to the nature of throughput based scaling strategies, 

any significant drop in the throughput or minus delta between 

two-time epochs might be interpreted as cooling down. These 

instances can be marked as a low chance of selection in the 

priority queue for the load balancers decision mechanism. As 

soon as the load reaches zero where the users stop getting the 

service from that instance, the VM can be terminated. 

In terms of costs, although Kesevaraja et al [23] & Chunlin 

et al [24] show good performance along with throughput and 

resource-based scaling strategies while cooling down, still, a 

conspicuous QoE degradation takes place during some of the 

VM termination incidents. 

 
Figure 3. Resource Usage Efficiency for Different Scaling 

Techniques during Cooling Down 

C. Scalability Strategy vs Availability 

For any online video broadcasting system, availability is an 

important parameter. Degradation in system availability may 

cause increased initial buffering duration and impact expected 

number of stalls. Scaling strategy changes the influence of 

availability over QoE. Although scalability usually sounds 

quite flawless in many perspectives as a microservice 

architecture terminology, it comes with many deficiencies. 

One example is the transmission of the system-wide 

distribution of all server status, which obviously depends on 

the strategy, either centralized or distributed load balancer. 

Another one is the availability and average downtime due to 

new instance creation or VM migration. 

 
Figure 4. Availability Comparison for Scalability Strategies 

during Warming Up & Cooling Down 

Due to its simplicity, random-access shows the best 

performance in terms of availability while users keep on 

trying new servers in the list unless a successful connection is 

established, as shown in Figure 4. Any new instances that are 

created will be added to the DNS server list. Users that request 

to join the service will continue to randomly try to access any 

of the servers. Resource-based load balancing methods show 

similar availability performance to the strategies where a 

number of users are taken as the main decision parameter.  

D. Scalability Strategies vs Costs  

Cloud service providers supply the needed infrastructure 

for the video content delivery by making available the 

necessary VMs instance running capability. This brings the 

corresponding cost for each hosted VM, where a tight 

delivery budget and keeping QoE for all users is a challenging 

task. Different scaling strategies that are provided in previous 

sections result in different VM costs and different budget 

consumption. 

Due to simplistic nature of random access implementation, 

VM termination during cooling down is quite difficult which 

leads to the worst cost performance when compared with 

other strategies. Furthermore, CPU-memory & throughput 

based strategies provide acceptable warming up and cooling 

down strategies similarly, as shown in Figure 5. However, this 

may cause a tradeoff between QoE degradation and cost in 

some cases. The hybrid methodology offers both QoE 

optimization and cost maintenance. Although costs seem 

slightly higher than average, avoiding QoE degradation is 

guaranteed hence user satisfaction is considered as the 

primary scaling trigger. 



 

 

Figure 5. Cloud Hosting Costs comparison for Scaling 

Techniques 

E. Scalability Strategies vs QoE 

In terms of QoE and user satisfaction, user-based scaling 

methodologies shows better performance when compared to 

resource maintenance strategies. Especially for cases where 

users are not prioritized and behaved equally, scaling against 

users provide an acceptable performance, which is generally 

above average. However, for any prioritized implementation, 

resource-based models can provide better response to the 

demand in peak moments. The hybrid method introduced in 

this paper shows the flexibility to recover through QoE 

degradation and shows better performance when compared 

with the rest of the scaling strategies. 

VII. FORMULATION OF COMPUTATIONAL RESOURCES 

CONSTRAINTS FOR VNF VIDEO STREAMING  

 In this section, formalization for memory and CPU power 

required to serve video streaming using VNF.  

A. VNF Video Streaming 

In this section, resource analysis for streaming H264 

content using Apache web server will be presented. For a 

VNF that is responsible for video streaming, the required 

memory 𝑀𝑤𝑒𝑏(𝑡), computation power 𝐶𝑤𝑒𝑏(𝑡) and required 

storage space to operate 𝑆𝑤𝑒𝑏 can be formulized as a function 

of bitrate, encoding type and number of users. Without loss of 

generality, the following arguments have been considered; 

𝑎𝑀=175MB stands for the base memory requirement for 

fundamental operating system resources to operate and 

𝜆𝑀=0.2 is the argument representing user impact. 

Additionally, 𝑎𝐶=0.3 is the base computational usage for 

operating system and any additional user cause extra load on 

CPU with fitting arguments 𝜆𝐶=0.08 and impact of encoding 

types are represented by 𝑐𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = {266 (main profile), 

133(high profile), 75 (baseline profile)}. From a general point 

of view, the bitrate of any video stream increases relatively to 

the resolution. 𝑉𝑏𝑖𝑡𝑟𝑎𝑡𝑒 corresponds to required bandwidth for 

the content; 8mbit, 4mbit, 2mbit, 1mbit, 0.5mbit for 

resolutions 4K, 1080p, 720p, 480p, 360p accordingly.  

The induction for the coefficients have been evaluated 

through empirical tests on a VNF hosted on Amazon Web 

Services (AWS) running Amazon Cloud Linux Distribution 

with kernel version 4.9.43-17.38.amzn1.x86_64 executing 

Apache/2.4.27 (Amazon) and ffmpeg 4.0. 

𝑀𝑤𝑒𝑏(𝑡) = 𝑎𝑀 + 𝜆𝑀. 𝑒

𝑢𝑣(𝑡).𝑉𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑐𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔                 (7) 

 

𝐶𝑤𝑒𝑏(𝑡) = 𝑎𝐶 + 𝜆𝐶 . 𝑒

𝑢𝑣(𝑡).𝑉𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑐𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔                   (8) 

 

𝑆𝑤𝑒𝑏 = 𝜆𝑆.
𝑉𝑏𝑖𝑡𝑟𝑎𝑡𝑒

𝑐𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔
                    (9) 

Obviously, it is expected that any online video platform 

will be capable to support different bitrates and encoding 

types adaptive bitrate streaming. The following figure reflects 

the capability of a single web server against content bitrate 

versus number of users. 

z  
Figure 6. Memory requirement vs # of users to serve Video as a VNF 

B. Transcoder as a VNF 

Transcoders are the other fundamental application for any 

online video platform. Any uploaded mezzanine content 

through Content Management System (CMS) needs to be 

real-time encoded in order to support all connected screens at 

a time. The availability of transcoder VNFs shows crucial 

importance for the success rate of the whole delivery system. 

On the other hand, transcoding requires a considerably 

excessive amount of computational overhead. Major 

encoding schemes mpeg4, hevc and vp9 show different 

performance in terms of bitrate and storage size considering a 

wide range of encoding parameters.  

 The following figure shows the necessary amount of CPU 

and memory required for transcoder VM running FFMPEG 

on Amazon Linux where the transcoding should keep up with 

live streaming. The estimations correspond to physical 

2.9Ghz i5 processors that are being used in AWS. Obviously, 

for such a task, performance degradation can be crucial and 

ruin QoE for the whole system. 

 
Figure 7. vCPU required for VNF vs # of Concurrent Transcoding 



 

VIII. CONCLUSION AND FUTURE WORK 

In this work, a comparison of scaling strategies during VNF 

placement for online video systems have been presented using 

metrics such as warming up & cooling down performance, 

cloud hosting costs and QoE efficiency. According to the 

analysis, user-oriented scaling methodologies show 

acceptable competence on warming up durations however the 

cooling down efficiency lacks the adeptness to free the 

underused resources when compared to resource-based 

approaches. Throughput and computational capacity based 

scaling techniques show above average performance in cloud 

hosting costs and cooling down durations. However, they 

generally lack the agility to comprehend QoE degradation. To 

bring forward a solution for these circumstances, QoE scaling 

technique has been presented which considers all aspects of 

online video delivery that shows outstanding performance 

when compared with conventional cloud scaling strategies. 

ACKNOWLEDGMENT 

The present work was undertaken in the context of the “Self- 

Organization toward reduced cost and Energy per bit for 

future Emerging radio Technologies” with contract number 

734545. The project has received research funding from the 

H2020-MSCA-RISE-2016 European Framework Program. 

REFERENCES 

[1] Cisco White Paper, 2017, https://www.cisco.com/c/en/us/solutions/ 

collateral/service-provider/visual-networking-index-vni/complete-
white-paper-c11-481360.pdf 

[2] K. Chen et al, “Complexity of cloud-based transcoding platform for 
scalable and effective video streaming services”, Springer Science 

Multimedia Tools Applications, New York, 2016.  

[3] J. He et al, “Toward Optimal Deployment of Cloud-Assisted Video 
Distribution Services”, IEEE Transactions On Circuits And Systems 

For Video Technology, Vol. 23, No. 10, March 2013. 

[4] V. Stocker et al, “The growing complexity of content delivery 
networks: Challenges and implications for the Internet ecosystem”, 

Elsevier Telecommunications Policy, Vol. 41, March 2017. 

[5] K. Mokhtarian and H.-A. Jacobsen, “Flexible Caching Algorithms for 

Video Content Distribution Networks”, IEEE Transactions on 
Networking, Vol. 25, No.2, April 2017. 

[6] A K. Pathan et al, “A Taxonomy and Survey of Content Delivery 

Networks”, Technical Report, [online content], 
http://www.cloudbus.org/reports/CDN-Taxonomy.pdf, 2007. 

[7] Cisco Whitepaper, “The Cisco Content Delivery Network Solution for 
the Enterprise”, https://www.cisco.com/c/dam/global/tr_tr/assets/docs/ 

Enterprise.pdf, [online content], 2000. 

[8] Ooyala White Paper, “How Publishers and Brands Can Build ROI with 
Original Video Content”, http://www.ooyala.com/products/video-

platform/content-management-system 

[9] S. Du et al, “The Optimization of LRU algorithm based on pre-selection 

and cache prefetching of files in hybrid cloud”, 17th International 
Conference on Parallel and Distributed Computing, Applications and 

Technologies, Guangzhou, China, December 2016. 

[10] S. Jošilo et al, “Distributed algorithms for content placement in 
hierarchical cache networks”, Elsevier Computer Networks, Vol. 125, 

May 2017.  

[11] N. Kamiyama, “Cache Replacement Based on Distance to Origin 
Servers”, IEEE Transactions On Network And Service Management, 

Vol. 13, No. 4, August 2016. 

[12] D. Pauwels et al, “A Web-Based Framework for Fast Synchronization 

of Live Video Players”, IFIP/IEEE Symposium on Integrated Network 
and Service Management (IM), Lisbon, Portugal, July 2017 

[13] X. Li et al, “Content Placement With Maximum Number of End-to-
Content Paths in k-Node (Edge) Content Connected Optical Datacenter 

Networks”, Journal of Optical Communications and Networking, Vol. 

9, No.1, January 2017.  

[14] C. Rotsos et al, “Network service orchestration standardization: A 

technology survey”, Elsevier Computer Standards & Interfaces, Vol. 
54, February 2017. 

[15] H. He et al, “Dynamic Load Balancing Technology for Cloud-oriented 
CDN”, Computer Science and Information Systems, Vol. 12, No. 2, 

February 2015.  

[16] P. Frangoudis et al, “CDN-As-a-Service Provision Over a Telecom 
Operator’s Cloud”, IEEE Transactions On Network And Service 

Management, Vol. 14, No. 3, September 2017. 
[17] C. Barba-Jimenez et al, “Cloud based Video-on-Demand service model 

ensuring quality of service and scalability”, Elsevier Journal of 

Network and Computer Applications, Vol. 70, July 2016. 

[18] S. Razzaghzadeh, “Probabilistic modeling to achieve load balancing in 

Expert Clouds”, Elsevier Ad Hoc Networks, Vol. 59, May 2017. 
[19] J. Yue et al, “Femto caching in video content delivery: Assignment of 

video clips to serve dynamic mobile users”, Elsevier Computer 

Communications, Vol. 51, September 2015. 

[20] C. Lin, “Strategy analysis for cloud storage reliability management 

based on game theory”, Journal of Computer Security, Vol. 25, No. 2, 
January 2017. 

[21] J. Liu, H. Sen, “A Popularity-aware Cost-effective Replication Scheme 
for High Data Durability in Cloud Storage”, IEEE International 

Conference on Big Data (Big Data), Washington, USA, December 

2016. 

[22] Y. Tang, “Achieving convergent causal consistency and high 

availability for cloud storage”, Elsevier Future Generation Computer 
Systems, Vol. 74, September 2017. 

[23] D.Kesavaraja, A. Shenbagavalli, “QoE enhancement in cloud virtual 

machine allocation using Eagle strategy of hybrid krill herd 
optimization”, Journal of Parallel and Distributed Computing, Vol. 

118, August 2018. 
[24] L. Chunlin et al, “Multiple context based service scheduling for 

balancing cost and benefits of mobile users and cloud datacenter 

supplier in mobile cloud”, Elsevier Computer Networks, Vol. 122, July 
2017. 

[25] K. Bilal, A. Ebrad, “Impact of Multiple Video Representations in Live 
Streaming: A Cost, Bandwidth, and QoE Analysis”, IEEE International 

Conference on Cloud Engineering, Vancouver, BC, Canada, April 

2017. 

[26] ITU-T, “P.1203.3, Parametric bitstream-based quality assessment of 

progressive download and adaptive audiovisual streaming services over 
reliable transport –Quality integration module”, 2016. 

[27] Amazon Web Services White Paper, “Cost Optimization Pillar AWS 

Well-Architected Framework”, November 2017, [online content] 
https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-

Optimization-Pillar.pdf 

[28] L. Chen, “Supporting high-quality video streaming with SDN-based 
CDNs”, Springer Journal of Supercomputing, USA; 2016. 

[29] Microsoft, [online content] https://technet.microsoft.com/en-
us/library/cc728211(v=ws.10).aspx 

[30] Broadcasters’ Audience Research Board, [online resource],  
http://www.barb.co.uk/trendspotting/analysis/online-tv-viewing/ 

http://www.cloudbus.org/reports/CDN-Taxonomy.pdf
https://www.cisco.com/c/dam/global/tr_tr/assets/
https://0-www.sciencedirect.com.lispac.lsbu.ac.uk/science/journal/10848045
https://0-www.sciencedirect.com.lispac.lsbu.ac.uk/science/journal/10848045
https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-Optimization-Pillar
https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-Optimization-Pillar
https://technet.microsoft.com/en-us/library/cc728211(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc728211(v=ws.10).aspx

