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Abstract—To avoid unnecessarily using a massive number of
base station antennas to support a large number of users spa-
tially multiplexed multi-user MIMO systems, optimal detection
methods are required to demultiplex the mutually interfering
information streams. Sphere decoding (SD) can achieve this,
but its complexity and latency becomes impractical for large
MIMO systems. Low complexity detection solutions such as linear
detectors (e.g., MMSE) or likelihood ascendant search (LAS)
approaches, have significantly lower latency requirements than
SD but their achievable throughput is far from optimal. This
work presents the concept of Antipodal detection and decoding,
that can deliver very high throughput with practical latency
requirements, even in systems where the number of user antennas
reaches the number of base station antennas. The Antipodal
detector either results in a highly reliable vector solution, or it
does not find a vector solution at all (i.e., it results in an erasure),
skipping the heavy processing load related to finding vector
solutions that have a very high likelihood to be erroneous. Then,
a belief-propagation-based decoder is proposed, that restores
these erasures and further corrects remaining erroneous vector
solutions. We show that for 32⇥32, 64-QAM modulated systems,
and for packet error rates below 10%, Antipodal detection and

decoding requires 9 dB less transmitted power than systems
employing soft MMSE or LAS detection and LDPC decoding
with similar complexity requirements. For the same scenario, our
Antipodal method achieves practical throughput gains of more
than 50% compared to soft MMSE and soft LAS-based methods.

Index Terms—MIMO systems, belief-propagation decoding,
spatial multiplexing

I. INTRODUCTION

One of the most important challenges in the design of next
generation wireless communication systems is to meet users’
ever-increasing demand for capacity and throughput [1]. Large
Mulitple-Input-Mulitple-Output (MIMO) systems with spatial
multiplexing are among the most promising ways to satisfy
this demand and, therefore, it will be a key technology in
upcoming cellular [2] and local-area [3] networks.

Although, spatial multiplexing can increase the net -
throughput in both the uplink and downlink directions of
wireless communication systems, here we focus on the uplink
case where a large number of users concurrently transmit
information to a multi - antenna base station.

To take full advantage of the potential of spatial multiplex-
ing, and to avoid the current trend of unnecessarily using a
massive number of base - station antennas to support a large
but limited number of users there is a challenging prerequisite.
We need to be able to optimally demultiplex the mutually in-
terfering information streams. Sphere decoding (SD) is a well-
known technique that dramatically reduces the complexity for
optimally, in the maximum-likelihood (ML) sense, detecting
mutually interfering information streams by translating the
ML detection problem into a tree search problem [4], [5].
ML detection is known from theory to minimize detection
errors and, therefore, it can substantially outperform simple,
but suboptimal, linear detection schemes like zero-forcing
(ZF) and mimimum-mean-square-error (MMSE). While the
throughput gains of sphere decoding increase with the number
of mutually interfering information streams, the corresponding
processing complexity becomes impractical for high-order
modulation alphabets and for large numbers of mutually
interfering information streams [6], [7]. The recently proposed
Geosphere [8], [9] algorithm enables the transmission of very
dense symbol constellations (e.g., 1024-QAM), however with
a complexity that still increases exponentially with the number
of the mutually interfering information streams. In addition,
traditional sphere decoding provides “hard” information (i.e.,
detected symbols) instead of “soft information” (likelihoods)
that is required in order to perform a-posteriori probability
(APP) decoding and apply powerful state-of-the-art coding
schemes (e.g., LDPC coding). Extensions that deliver “soft
information” are indeed known [10], [11], but their complexity
and latency requirements are beyond the capabilities of current
processors for targeting very large MIMO systems.

Examples of low-complexity non-linear MIMO detectors
exist in the family of “local neighborhood search”, including
the complexity efficient likelihood ascendant search (LAS)
algorithm [12] and the reactive tabu search (RTS) algorithm
[13]. By levering the asymptotic characteristics of MIMO
systems with massive numbers of mutually interfering infor-
mation, these approaches are able to approach ML perfor-
mance at a fraction of the SD complexity. Their performance
however degrades drastically when transmitting dense sym-



bol constellations or for moderate numbers (of the order of
tens) of interfering streams. Furthermore, similarly to sphere
decoding, traditional local neighborhood search algorithms
provide only “hard” information. To enable powerful APP
decoding schemes like LDPC, LAS has been extended to
provide approximate soft-information [14] but again such an
approximation is only efficient for low-order symbol constel-
lations (e.g., 4-QAM).

In this work we present the concept of Antipodal Detection
and Decoding, that has been designed to deliver very high
throughput in large MIMO systems with a practical number
(in the order of tens) of interfering streams. In contrast to
local neighbourhood searches, the Antipodal detector can
efficiently utilize very dense constellations (e.g., 256-QAM)
and it “naturally” (at no extra costs) supports powerful LDPC
channel coding. In addition, Antipodal processing can adjust
its complexity and latency in order to meet the limitations
imposed by the base station’s hardware and the systems needs.

Antipodal detection and decoding is based on a simple
observation. In order for a vector solution to be highly reliable,
there should be no other (or only a few) candidate vector with
similar Euclidean distance to the received signal. When this
holds, proposed SD tree pruning approaches can drastically
reduce the search space and consequently the ML solution
can be identified fast. On the other hand, if a solution is less
reliable, this practically means that there are many candidate
solutions with a similar Euclidean distance to the received
signal. Then the SD has to visit a significantly higher number
of possible solution before identifying the ML one, resulting in
substantially increased complexity and latency. In other words,
most of the SD’s processing complexity and latency is devoted
to find unreliable solutions. Therefore, instead of wasting the
vast majority of the resources to identify vector solutions that
have a significant likelihood to be erroneous, we focus the
available processing power on identifing reliable solutions and
leave the identification of the rest to the Antipodal decoder.

In particular, the Antipodal detector is realized by means
of a “depth-first” sphere decoder with statistical pruning. The
Antipodal pruning approach improves on [15] and leverages
the noise statistics to define strict pruning conditions which
promptly exclude vectors that have a small likelihood to be
the correct solution. When the Antipodal detector finds, within
strict latency limitations, a vector that passes all pruning
checks this vector is classified as highly reliable. Otherwise,
the transmitted vector is treated as an erasure. Consequently,
the outcome will be Antipodal. The detector result is either
highly reliable or is an erasure (e.g., no solution has been
found). To handle the erasure traditional LDPC decoders could
be employed. However, we propose a specifically tailored
Antipodal decoder that is based on the belief-propagation
principle. Exploiting the Antipodal decoder input, we can
significantly simplify the internal operation of the decoder.
Additionally, the proposed decoder introduces an iterative
technique that can identify detection errors in the as highly
reliable classified solutions. As a result, the Antipodal decoder
can reduce the achievable packet error rate (PER) by an order

of magnitude compared with traditional LDPC decoders. In
extensive simulations, we show that Antipodal detection and
decoding with practical complexity requirements significantly
outperforms linear and non-linear decoding strategies by more
than 10dB.

II. SYSTEM MODEL

A Nt⇥Nr flat-fading multi-user MIMO channel is assumed
where multiple single-antenna users concurrently transmit
LDPC encoded streams to a multi-antenna access point. When
transmitting the vector s over a flat-fading communication
channel with Nt mutually interfering transmission stream to
Nr receiving entities (e.g antennas), the received vector is
given by

y = Hs + n, (1)

with H being the Nr ⇥ Nt MIMO channel matrix. The
Nt elements of the transmit vector s belong to a complex
constellation Q and the set of possible transmission vectors is
denoted as |Q|Nt . The Nr dimensional vector n denotes the
additive white Gaussian noise (AWGN).

III. SPHERE DECODER

To put the Antipodal Detector into perspective, this Section
revists the principles of “depth-first” sphere decoding with
the Schorr-Euchner enumeration and radius update, which is
a particularly efficient method for solving the ML problem.
Within the employed system model the ML problem is defined
as

sML = arg min
s2|Q|Nt

= ky � Hsk2. (2)

SD simplifies the minimization problem by transforming the
problem into an equivalent tree search [8]. In particular, by QR
decomposing the MIMO channel matrix as H = QR, where Q
is a orthonormal matrix and R is an upper triangular matrix,
the ML problem can be transformed into:

sML = arg min
s2|Q|Nt

kȳ � Rsk2. (3)

with ȳ = Q⇤y. The tree has a height of Nt and a branch
factor of |Q|. Each level l of the tree is related to the symbol
transmitted from a specific antenna. In addition, each node of
a specific level l is associated with a partial symbol vector
sl = [s(Nt � l), .., s(Nt)] containing all potential transmitted
symbols down to this level, and it is characterized by its Partial
euclidean Distance (PD) [4]

c(sl) =

0

@ȳ(l)�
NtX

p=l

R(l, p)· sl(p)

1

A
2

+c(sl+1), (4)

with R(k, p) being the element of R at the kth column and
the pth row and ȳ(l) being the lth element of the vector ȳ.
The PD of the root of the tree c(sNt+1) is zero. Then, the
ML problem is translated into finding the leaf node with the
minimum c(s1). For depth-first sphere decoders with Schnorr-
Euchner enumeration and radius reduction [16] the radius is
initially set to infinity. Then, whenever a leaf s1 is reached with



its PD less than the squared radius r2, the radius is updated
to c(s1). Upon meeting a node sl, if c(sl) > r2 this node,
its children and this nodes siblings that have not been visited
are all pruned. To define the search order, according to the
Schnorr-Euchner enumeration, the children of a parent node
are visited in ascending order of their PDs [16].

IV. ANTIPODAL DETECTION AND DECODING

The proposed method consists of the Antipodal detector and
the Antipodal decoder. (i) The Antipodal detector is realized
by meas of a “depth-first” SD approach in combination with
statistical pruning. The proposed pruning in combination with
the tight complexity limitations promptly exclude unreliable
solutions from the search space. As a consequence all solutions
found are reliable. If no reliable solution exists then the
transmitted vector is treated as an erasure. (ii) The Antipo-
dal decoder is realized through a tailored to the Antipodal
input belief-propagation approach. The Antipodal decoder first
restores the bits that have been erased by the Antipodal
detector. Then, an iterative method is utilized to corrected the
erroneously detected bits. To maximize the synergy between
Antipodal detection and Antipodal decoding, the employed
statistical pruning is adjusted according to the correction
capability of the applied LDPC code.

A. Antipodal Detector

The antipodal Detector employs a pruning approach, accord-
ing to which a vector solution, or a set of vector solutions, is
excluded from the search if one or several pruning conditions
are met. As a result, the pruning approach reduces the search
space. The probabilistic pruning metric is based on the statis-
tics of the AWGN. In particular, a pruning condition is defined
for each layer of the search tree. For the l-th layer, the pruning
metric is

rp(l) = �2 · F�1
�2(2(Nt�l+1))(1� �). (5)

Where rp(l) is the pruning metric of layer l of the search
tree, F�1

�2(N) is the inverse of the cumulative distribution
function (CDF) of the chi-squared distribution with N degrees
of freedom, and � is the pruning parameter. During the tree
traversal, if the PD metric of a node is larger that the pruning
metric of the level in which the particular node is located,
this node, its siblings and all its children nodes are pruned.
A vector solution is characterized as being highly reliable
when only one vector solution passes all pruning conditions.
To quantify the reliability of an accepted solution we define
s? as the transmitted symbol vector. Then, all symbol vectors
s̃ that fulfill the following properties:

s̃(p)� s?(p) = 0 , 8p 6= l (6)
s̃(l)� s?(l) = |Dmin|, (7)

(where Dmin is the minimum distance between two symbols
of the utilized constellation) build the set ⇥. Since the vectors
in ⇥ have the smallest Euclidean distance to the transmitted
symbol vector, they are the most likely vectors to cause a
detection error. Therefore, we approximate the reliability of

an accepted vector solution, by the probability that none of
the vectors in ⇥ pass the pruning check in the last layer of
the SD tree:

P (ŝ 6= s?) < P (c(ŝ1) < rp(1))

⇡ P (c(s̃1) < rp(1)|8s̃ 2 ⇥). (8)

Using (6) and (7), the c(s̃1) is calculated as:

c(s̃1) = ky � Hs̃k2

= kH(s? � s̃) + nk2, (9)

that can be expressed as:

c(s̃1) =
NtX

p=1

kH(p, l) ·Dmin + n(l)k2. (10)

For the employed system model, H(p, l) and n(l) are i.i.d.
Gaussian distributed random variable. Due to that, the random
variable Dmin ·H(p, l) + n(l) is also Gaussian distributed

(H(p, l) ·Dmin + n(l)) ⇠ N (0, D2
min + �2). (11)

From (11) follows that c(s̃1) is a �2 distributed random
variable. Then, (8) can be written as

P (ŝ 6= s?) < P (c(ŝ1) < rp(1))

⇡ 4 ·Nt · F�2(2Nt)

✓
�2 · rp(1)

D2
min + �2

◆
. (12)

The pruning boundary rp(1) (defined in (5)) is monotonically
decreasing function of the pruning parameter �. Decreasing
the value of the pruning parameter increases the reliability
of the outcome of the Antipodal Decoder. Here we employ
the statistics of the Rayleigh fading channel to analytically
show the relationship between the pruning parameter and the
likelihood of the resulting vector solution to be erroneous.
Still, the same pruning approach can be used in any channel,
independently of its statistics. To maximize the synergy be-
tween the Antipodal Detection and Decoding the parameter �
is adjusted in a way that the probability (PEr) of not finding
a solution is below a threshold ⌧E , where ⌧E is chosen with
respect to the erasure tolerance of the applied decoder.

B. Antipodal Decoder

In this work, the Antipodal decoder is a modification of a
traditional belief-propagation-decoder tailored to the Antipodal
detector output. Exploiting the the Antipodal nature of the
detector output, we could significantly simplify the internal
operation of the proposed decoder. Specifically, the Antipodal
decoder employs only binary additions to correct the detector’s
output. We note that, while some detected bits are charac-
terized as being highly reliable, bit errors may still occur in
practice. Therefore, the Antipodal Decoder utilizes an iterative
technique to correct the erroneous bits that have been falsely
classified as being reliable. As a result and in particular for
long codewords lengths, the proposed decoding structure has a
superior decoding performance compared to traditional belief-
propagation decoders.
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Let vector d contain the Antipodal outcome of the detected
bits for a transmitted packet. The vector’s dimension is 1⇥B
with B being the packet length. Its elements take one of the
three values [0, 1, e], where e represents an erased bit (i.e.,
no outcome) and [0, 1] represents highly reliable bits as have
been detected from the Antipodal detector (after symbol-to-
bit-mapping).

Erasure Recovery: Similar to a traditional belief-
propagation decoder, the Antipodal Decoder can be described
in terms of a factor graph. The nodes within the graph are
separated into variable nodes and check nodes, where the
variable nodes are only connected to check nodes and the
check nodes are only connected to variable nodes. A variable
node Vi corresponds to the ith coded bit in the encoded packet,
and each check node represents one parity check equation as
determined by the employed LDPC code, as shown in Figure
1. To recover the erased bits, the Antipodal decoder creates a
list Le of all check nodes connected to at least one variable
node representing an erased bit. Then, the detector tests if the
first node on the list Le is “resolvable”. Namely, if the value of
the erased bit can be calculated using the parity check equation
at the specific check node

Ve =
X

8i2�,i 6=e

Vi, (13)

where � is the set of indexes of the variable nodes connected
to the resolvable check node, and Ve is the variable node where
the related erasure lies. When the decoder visits a resolvable
check node, it recovers the corresponding erased bit and
deletes the check node from the Le before continuing to the
next node in the list. If the visited check node is not resolvable
the decoder moves to the next check node in Le. Several
iterations of this process may take place before decoding is
terminated. In particular, the Antipodal decoder revisits the
list Le either until it becomes empty, or when no additional
erasures have been recovered during an iteration. Even if the
detector has characterized a detected outcome, and therefore
the corresponding bits, as being highly reliable, in practice
some of these bits may still be erroneous. The proposed
decoder has the ability to identify such cases, and take further
steps to improve the final detection/decoding performance.
Specifically, when all erasures have been recovered and the
parity checks across all check nodes are correct, the decoder
output can be characterized as being highly-reliable. If not,
the decoder output is characterized as non-reliable and it is
an indication that a detection error may be present. Therefore,
the decoding outcome is also Antipodal.

Bit Correction: As discussed before, the bits detected by
the Antipodal detector may have been classified as highly
reliable, but still in practice detection errors occasionally
happen. One erroneously detected bit can corrupt the whole
codeword and results in an undecodable packet. Assuming
uncorrelated detection errors, and a bit-error-rate of ⌧ for all
bits, the probability that a packet error is caused by wrongly
detected bits, follows a geometric distribution

P⌧ =
LX

l=1

✓✓
l

B

◆
· (⌧)l · (1� ⌧)L�l

◆
,

⇡ B · ⌧. (14)

The approximation (14) holds for tau that are small relative to
the packet length B (⌧ ⌧ B�1). Further, the approximation
shows that most of the packet errors induced by erroneously
detected bits, are caused by only one flipped bit. Based on
the above rationale, our proposed approach operates under the
hypothesis that a packet error has been caused by a single bit
error.

The Antipodal decoder distinguishes between exposed and
hidden bit errors. To clarify the difference between the two
different error types we introduce the notation of “erasure
free” check nodes. A check node is “erasure free” if it is
not connected to any variable node that is associated with an
erased bit. Then, a bit error is exposed if the corresponding
variable node is connected to at least one “erasure free” check
node.

An exposed bit error can be easily recognized before the
first decoding attempt. In particular, if the parity check of
any “erasure free” check node is violated, at least one of the
connected variable nodes is associated with the erroneous bit.
In such cases, the proposed decoder simply intentionally erases
all bits connected to this check node and later recovers them
together with the Antipodal detector erasures.

A hidden bit error is more difficult to locate since the
corresponding variable node is not connected to any erasure
free check node. The Antipodal decoder requires multiple
iterations to locate and corrected such a hidden error. After
the first attempted to recover the erasures, a hidden error
will cause several parity check violations. In the best case,
only the check nodes directly connected to the variable node
associated with the erroneously detected bit would fail the
parity checks. Unfortunately, some erased bits might been
recovered based on the erroneous bits and consequently the
resolved bits are also erroneous (see (13)). Thus, it is possible
that the variable node associated with the initial erroneous
detected bit is not connected to any of the check nodes
with unsuccessful parity checks. This makes the correction
of the hidden bit error challenging. Initially the location
of a hidden error can only be narrowed down to bits that
have been classified as reliable. Thus, the variable nodes
corresponding to those bits are saved in the list of possible
error locations LL. After an unsuccessful erasure recovery,
the decoder, for each of the variable’s node in LL, sums its
connections to check nodes with unsuccessfully parity check.



Then, all the variable nodes sharing the maximum number of
such connections constitute the list of “doubtful” nodes. After
temporary saving the bits associated to these doubtful nodes
the decoder changes the value of the corresponding elements
in d from 1 or 0 to erasure, and restarts the erasure recovery
process. If the erasure recovery is successful it means that
the hidden bit error was associated with one doubtful variable
node. Otherwise, the hidden bit error was not associated to
one doubtful variable node. Therefore, the decoder restores
the corresponding original bit values (i.e., the 1 or 0 that has
been temporarily erased) in d and deletes the doudtful variable
nodes from the list of possible error locations LL. Before the
next erasure recovery attempt, the decoder rebuilds the set of of
suspicious nodes, based on the updated list LL. The decoding
algorithm terminates when a corrected codeword is found or
when the maximum number of iterations is reached. At each
decoding iteration the decoder reshuffles the list Le in order
to increase the likelihood to find the hidden bit error.

V. EVALUATION

In this Section we evaluate the throughput performance
of the Antipodal detection and decoding method through
extensive simulations. The proposed method is evaluated under
practical complexity/latency requirements and is compared to
other soft (LDPC encoded) and hard (convolutionally encoded)
detection/decoding schemes of similar complexity. The MIMO
channel is modeled as Rayleigh fading and it is assumed
static per transmitted packet. A coding rate of 0.75 is adopted
and 4, 16, 64 and 256-QAM constellations are considered.
The Antipodal method is compared against three benchmark
detection/decoding schemes of similar complexity. The first
scheme is LDPC encoded, with the generator matrix of IEEE
802.11n [17], and it employs a soft MMSE detector and a
belief-propagation channel decoder. The second scheme is
again LDPC encoded, and a LAS detector that provides soft-
information is utilized [14]. The third scheme is convolu-
tionally encoded [18] and it uses the hard version of the
LAS detection algorithm [12] followed by a Viterbi decoder
[18]. Comparisons with optimal ML decoders (e.g. sphere
decoding) have not been included due to their corresponding
prohibitive complexity. For example, in a 32 ⇥ 32, 64-QAM
modulated system, at an SNR of 28dB a traditional sphere
decoder [4] requires an average of 108 complex multiplications
to process just a single received symbol vector. Since the
proposed detector is an SD-based approach, a one-visited-
node-per-cycle architecture, can be assumed [9]. This allows
us to model any practical latency constraints by means of ↵Nt

visited nodes (or clock cycles). For the rest of this Section,
unless explicitly stated otherwise, an ↵ = 16 and a pruning
parameter � = 0.025 is assumed.

Fig. 2 shows the achievable throughput of Antipodal de-
tection and decoding in comparison with the corresponding
throughput achieved by the three other detection/decoding
schemes. While the throughput performance of the three
evaluated schemes is comparable in the case of 4-QAM, the
proposed methods outperforms the MMSE based detection and
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Fig. 2. Throughput of Antipodal detection and decoding compared with other
detection and decoding scheme of similar complexity in a 32 ⇥ 32 MIMO
system using code rate of 0.75.
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decoding scheme by 5.5 dB when 16-QAM is used and by
9dB when 64-QAM symbols are transmitted. Notice also that
the proposed method significantly outperforms the non-linear
LAS detection regardless of the utilized decoding strategy. For
example, using 64-QAM modulation and LAS in combination
with LDPC requires 9.5 dB more transmitted power to reach
90% of the corresponding peak throughput. Fig. 2 also shows
that in the SNR regime of up to 35 dB, Antipodal is the only
detection and decoding scheme that can fully exploit the 256-
QAM modulation and reach the corresponding maximum rate.

In addition, at 33.5dB our Antipodal approach achieves
56% higher throughput than “soft”-MMSE and 76% higher
throughput than “soft”-LAS approaches.

Fig. 3 compares the detection complexity of the Antipodal
and the LAS detector when they are both normalized to the
complexity of the MMSE detection (without including the
calculation of the LLR values for MMSE). At each evaluated
SNR point the plot depicts the complexity associated with the
QAM modulation that maximizes the provided throughput.
It is shown that in the evaluated SNR regimes the average
processing requirements of the Antipodal detector are at
most 4⇥ higher than MMSE’s requirements. However, the
Antipodal detector, in contrast to MMSE, does not require
any additional complexity to calculate soft-information (e.g.,
LLR values). Fig. 3 also shows that the Antipodal detector



Fig. 4. Throughput of Antipodal detection and decoding with different delay
constrains in a 32⇥ 32 MIMO system using 64-QAM and code rate of 0.75.

Fig. 5. Impact of bit error probability ⌧ on the decoding performance of
the Antipodal decoder (solid) and traditional belief-propagation (dashed) in
Antipodal channel with 0.1 erasure probability and code rate 0.75

is consistently less complex than the non-linear LAS detector
while it provides substantially higher throughput (see Fig. 2).

Fig. 4 shows the achievable throughput of Antipodal method
under varying latency constraints (i.e., under distinct ↵ values)
for 64-QAM modulated symbols. As expected, the achievable
throughput increases when allowing larger ↵ values and there-
fore longer processing time. However, increasing the ↵ value
from 4 to 16 results in an SNR gain of only 1.5 dB.

Fig. 5 shows the detection performance of the Antipodal
decoder in comparison with the traditional belief-propagation
decoder, for several Antipodal bit sequences. To simulate the
those sequences we have used a modified Binary Ensure
Channel (BEC) with erasure probability 10%, and we have
randomly flipped non erased bits with a probability of ⌧ . As
expected, the PER of both decoders increases when increasing
the error probability ⌧ . However, the Antipodal decoder out-
performs traditional belief-propagation in terms of achieved
PER by an order of magnitude for all tested packet lengths
and over the whole evaluated range of ⌧ .

VI. CONCLUSION

In this paper we propose the novel concept of Antipo-
dal detection and decoding that enables the joint detection
of large numbers of LDPC encoded mutually interfering
information streams with practical complexity and latency
requirements. We have shown that our proposed approach
can substantially perform prior approaches in terms of achiev-
able throughput. Future work, will focus on generalizing the

Antipodal detection and decoding framework to apply to
several non-orthogonal transmission schemes, including the
Non-Orthogonal Multiple Access ones.
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