
ar
X

iv
:1

80
9.

05
27

3v
1

 [
ee

ss
.S

P]
 1

4
Se

p
20

18

A linear algorithm for reliable predictive network

control

Richard Schoeffauer and Gerhard Wunder

Heisenberg CIT Group, Free University of Berlin; Berlin, Germany

richard.schoeffauer@fu-berlin.de, g.wunder@fu-berlin.de

Abstract—This paper introduces a novel control approach for
network scheduling and routing that is predictive and reliable in
its nature, yet builds upon a linear program, making it fast in
execution. First, we describe the canonical system model and how
we expand it to be able to predict the success of transmissions.
Furthermore, we define a notion of reliability and then explain
the algorithm. With extended simulations, we demonstrate the
gains in performance over the well known MaxWeight policy.

Index Terms—predictive network control, MPC, MaxWeight,
delay

I. INTRODUCTION

The fifth generation of mobile communication, 5G, aims at

not only enabling communication between billions of people

around the globe but also connecting billions of devices. In this

context, many boundaries are currently tackled by research,

such as increasing data rates, providing security and many

more.

This paper is dedicated to enhance performance of net-

worked devices through a predictive scheduling and routing

of data packets through the network. Specifically, the here

presented network control policy enhances the performance

of interconnected robust model predictive controllers (RM-

PCs). The policy does not only schedule and route data,

but as a novel feature, also predicts their time of arrival at

their corresponding destination. In other words it predicts the

communication delays. Signaling these communication delays

ahead of the arrival of the actual data to the corresponding

RMPCs facilitates them to enhance their control performance,

as was first shown in [1].

As a reference network control policy, we will use the

well known MaxWeight or MaxPressure policy, (from now

on written as MW), first introduced by [2]. In the last

two decades, MW and other network control strategies were

investigated intensively, e.g. in [3]. However, focus has yet

always remained at lowering overall delay while maintaining

the property of maximum throughput, which makes MW such

a good policy in the first place [4]. And though prediction

of has been successfully used to improve overall delay in

broadcast scenarios [5], for the best of our knowledge, trying

to predict individual packet delays is a novel idea.

Another kindred topic is the so-called delay-constrained

routing and scheduling. While originating from area of wired

communication [6], it has also been investigated for the

wireless case [7]. However, results are yet limited to rather

mathematical statements with limited use for practice.

In this paper we represent a fast algorithm to schedule

and route information through a network and at the same

time provide forecasts of specific delay times in a reliable

fashion. We build on the ideas of [8] where we described a

first approach to yield reliable delay forecasts. However the

algorithm that was presented was computationally expensive

(due to its quadratic nature) and had worse performance in the

achieved delay times (caused by a strictly repetitive activation

of links). The algorithm designed in this paper, will eliminate

these shortcomings.

II. SYSTEM MODEL

We make use of the standard queueing model, which is

time discrete, integer valued and offers binary controls. This

is the appropriate choice for packet level modeling. Each of

the n agents in the network may hold multiple (data-) packets

at a given time slot t, which are to be transmitted to other

agents. Those packets are lined up in so-called queues qi, i =
1, . . . n. E.g. qi = 4 represents 4 packets, waiting in queue i

(located at agent i). The vector of all queues will be denoted

as q ∈ N
n. With this model, sending packets from one agent

to another is represented by decreasing and increasing queues

at the corresponding agents. De- and increasing can be done

by a vector rj ∈ {−1, 0− 1}n, j = 1, . . .m, which is called

a link; the matrix of all links is called the routing matrix R ∈
{−1, 0− 1}n×m. In each time slot, we can choose to activate

a link through a binary control vector u ∈ {0, 1}m, so that the

system evolves like

qt+1 = qt +Rtut + at , s.t. Cut ≤ 1 , qt+1 ≥ 0 (1)

where 1 is a vector of ones with appropriate dimension. The

arrival at ∈ N
n expresses an influx of information to the

system and is usually of stochastic nature with expectation

E [at] = ā. The constituency matrix C prohibits to activate all

controls simultaneously, and naturally queues can only hold

a positive number of packets, giving rise to the positivness

constraint. Note, that it is a key feature of wireless links to

have a (stochastically) time dependent current routing matrix

Rt. In each time slot, Rt is a random selection of the

columns from a known routing matrix R, where non selected

columns are set to 0 in Rt. This can be expressed via a

diagonal probability matrix M = diagi=1...m{pi}, holding

the transmission success probabilities pi ∈ [0, 1] for each link.

Performing a Bernoulli trial B[] on M and multiplying it to R

gives the mentioned selection of links: Rt = R·B [M]. Notice,

http://arxiv.org/abs/1809.05273v1

that a controller only knows R and M but not B[M], thus not

every activation (scheduled transmission) will succeed. The

problem lies in finding the best suited control to steer the data

to its destination, though not fully knowing the outcome of

the Bernoulli trial.

In order to use meaningful predictions of future behavior,

we enhance this standard model by defining a whole set of

probability matrices Mi ∈ M instead of only one (as already

done in [8]). In each time slot, the system uses one Mi,

according to a discrete time markov chain, that evolves on

the index set I(M) as σt = M (I(M), P, σ0), P being the

transition matrix and σ0 the initial markov state. Hence we

get Rt = R · B [Mσt
]. We assume that the controller has

full knowledge of M, P , and σt, i.e. knows the expected

transmission success probabilities of all links and all future

times. Of course, the network controller may be required to

measure these parameters before being able to control the

network. In this transient state, the network may be controlled

be the MW policy.

III. RELIABLE PREDICTIVE NETWORK CONTROL

To predict packet transmissions in the system model, the

network controller internally uses a slightly different model

to predict the flow of the packets. This so called prediction

model is shown in Fig. 1 and will be described in this section.

Two major circumstances give rise to the prediction model:

arrive

send

PSfrag replacements

actual setting system model prediction model

p11

data
packet

ω1
1

Fig. 1. The different levels of abstraction

1) Two packets, simultaneously residing at the same agent,

may still be intended for different destination agents. Hence,

in order distinguish different packets mathematically, each one

of them has be cast with its own copy of the system model (1).

These copies will be called subsystems. Suppose that s is

the number of subsystems currently in use (i.e. s packets are

currently present in the network), then with slight abuse of

notation we can define stacked versions of all quantities and

write the evolution of the prediction model as:

qt+1 = qt +Rtut (2)

where from now on

Rt := Is ⊗
[

R · B [Mσt
]
]

uT
t :=

(

u
(1)
t

T
, . . . u

(s)
t

T
)

, qTt :=

(

q
(1)
t

T
, . . . q

(s)
t

T
)

(3)

and (·)(i) corresponds to the i-th subsystem; I denotes the

identity matrix and from now on we use n and m to denote the

dimensions of the stacked vectors. Note that C may change in

a different way depending on the scenario. Here, we can ignore

the arrival at since any new packet arriving at the system will

immediately lead to another subsystem being cast and stacked

on top the current prediction model. E.g. if agent i signals the

initialization of a new packet, then subsystem (s+ 1) will be

cast and the packet will be represented by initializing q
(s+1)
t

with a 1 at the i-th component. In the same way, a subsystem

can be erased from the stack, once the agent, the packet was

intended for, signals (to the controller) its successful delivery.

2) The agents, here RMPCs, are only able to use the

forecasts of packet-specific communication delays, if these

forecasts are reliable (so that the RMPCs can still guaran-

tee robustness). Therefore, our policy will predict the flow

through the network with explicit consideration of possible

transmission failures. Specifically, in its prediction for future

activations, the algorithm will repeat activating a link, until

the accumulative transmission failure probability falls beneath

a single-transmission failure-probability threshold τ . In other

words, if f i
t = 1 − E

[

pit
∣

∣σ0

]

are the expected failure prob-

abilities of link i, then we reliably transmitted a packet over

that link (in the prediction), only if

H−1
∏

t=0

f i
t

ui

t ≤ τ =⇒

H−1
∑

t=0

ui
t logτ f

i
t ≥ 1 (4)

where ui
t is the corresponding control variable for this link and

H is the prediction horizon. It is an easy task, to derive the

expected failure probabilities from the discrete time markov

chain via

f1

. . .

fm

t

= Im −
[

σ0P
t ⊗ Im

]

M1

...

Mp

(5)

Now we return to the network controller. It is implemented

as an MPC, meaning that in each time slot, the controller

minimizes a cost function (influenced by the prediction model)

to yield a control trajectory ũT =
(

uT
0 , . . . u

T
H−1

)

over a

horizon H but then only applies the first component (u0) to

the system. Here, the current time step is set to 0 for ease

of notation. Usually, MPC objective functions are quadratic

in nature, leading to semi definite programs. Since network

control has to happen very fast (depending on the granularity

of the data), a main contribution in this paper is to devise an

algorithm that is specifically designed to be a binary linear

program which is solvable in polynomial time [9].

The intuition behind the algorithm equals a waterfall, always

filling the queues in direct vicinity of already filled ones. As

a first step we introduce the reliability (4) as a constraint. Let

ωi
t = max

{

logτ f
i
t | 1

}

(6)

then we can define

ΩC =
(

diagi
{

ωi
0

}

. . . diagi
{

ωi
H−1

})

∈ R
m×mH (7)

Forcing ΩC ũ ≥ 1 will make all ũ guarantee reliable activations

and hence reliable forecasts as described earlier. However,

applying this to our system evolution so far could contradict

the positiveness constraint on q. E.g. having three scheduled

activations ui of the link i (in order to be reliable) would

result in a negative queue state of 1 − 3 = −2 at the link-

origin queue and suggest the presence of 0 + 3 = 3 data

packets at the link-destination queue. To compensate, we bring

two changes to the prediction model. First, we change the ri

(links) to not decrease any queue states at all. Second, we

multiply the ri with their corresponding ωi
t values, resulting

in the queue vector being real valued (qt ∈ R
n). Incorporating

these changes into (2) while simultaneously considering the

evolution for the whole prediction horizon yields

q1
...

qH

=

q0
...

q0

+

R+

...
. . .

R+ . . . R+

ΩE ũ (8)

with the two definitions

R+
(i,j) = max{0, R(i,j)} (9)

and

ΩE = diagt=0...H−1

{

diagi=1...m

{

ωi
t

}

}

(10)

Note, that ignoring to decrease queues is only viable,

because we are using separate subsystems for each single

packet and therefore need only to consider the propagation of

the packet but not what happens to queues that have already

been passed by it. This way, we also avoid further constraints

for the positiveness of the queues. Furthermore, using ωi
t as

weights means that a a packet is predicted to have successfully

been transmitted over a link, if the link-destination queue is

filled exactly to or beyond 1. However we are still missing

two main ingredients for the prediction model to work: on

the on hand, queues filled just beyond 1 are not supposed to

be filled any further. On the other, only those links can be

activated, whose link-origin queue has been filled exactly to

or beyond 1.

By the virtue of ui
t being binary, we can formulate both

constraints in a linear manner. Let T d ∈ {0, 1}m×n be a

simple transformation matrix, that rearranges qt in such a way,

that the i-th entry in T dqt is the link-destination queue of link

i, and define T o in the same way for the link-origin queues.

Then we get for the first constraint

ut ≤ 2− T dqt

= 2− T dq0 − T dR+
(

Ω0
Eu0 + · · ·+Ωt−1

E ut−1

) (11)

and for the second

ut ≤ T oqt

= T oq0 + T oR+
(

Ω0
Eu0 + · · ·+Ωt−1

E ut−1

) (12)

where Ωt
E describes the part of Ωt

E that corresponds to time

slot t. Defining a block triangular matrix as

∆
(

T dR+
)

=

0

T dR+ . . .

...
. . .

. . .

T dR+ . . . T dR+ 0

(13)

we can write this over the prediction horizon to yield

[

IHm +∆
(

T dR+
)

ΩE

]

ũ ≤ 1H ⊗
[

2− T dq0
]

(14)

for the first and

[

IHm −∆
(

T oR+
)

ΩE

]

ũ ≤ 1H ⊗ [T oq0] (15)

for the second constraint. Together with the reliability con-

straint ΩC ũ ≥ 1 and a suitable constituency constraint

C̃ũ ≤ 1 this completes evolution and constraints of the

prediction model. (In the end of this section, we will discuss

the case, in which the constraints can not be fulfilled.)

This leaves us with the definition of a suitable objective

function J . In a linear fashion, we use the weight vector

γ ∈ R
n, γ < 0 to assign rewards to filling any queue. The

“closer” such a queue is to the subsystem-destination queue,

the higher the reward it grants. With proper γ, the algorithm

thus will automatically push the packet in the right direction.

For simple networks, γ can be constructed by hand. How to

arrive at an optimal γ is however still subject to research. In

any case, the objective function becomes

J =

H
∑

t=1

γT qt =
[

1
T
H ⊗ γ

]

R+

...
. . .

R+ . . . R+

ΩE ũ (16)

To summarize, the control policy consists of solving the

following minimization problem in each time step, while only

applying the first component of the optimal control trajectory

ũ (that minimizes the objective):

min
ũ

(16)

s.t.

C̃ũ ≤ 1

−ΩC ũ ≤ −1
[

IHm −∆
(

T oR+
)

ΩE

]

ũ ≤ 1H ⊗ [T oq0]
[

IHm +∆
(

T dR+
)

ΩE

]

ũ ≤ 1H ⊗
[

2− T dq0
]

(17)

Note that this is a binary linear program with linear constraints.

Furthermore, any matrices can be precomputed offline, making

it feasible to solve. Given an optimal ũ it is an easy task, to

derive at the prediction of when packets will arrive at their

corresponding destination.

For completeness we finally address some technicalities left

open: (1) There are cases in which the reliability constraint can

not be fulfilled by any ũ at all (e.g. if H is too small). As a

solution, we append a dummy control uD to ũ, which has no

influence on the prediction model evolution and is penalized

with suitable weights in J . Writing the reliability constraint as
[

ũT | uT
D

]

[ΩC | Im]
T
≥ 1

T guarantees a feasible solution.

(2) Once the subsystem-destination queue q∗ has been filled,

no further activations in this subsystem are to be scheduled.

To this end, we engineer a dummy queue qD and a link from

q∗ to qD. We reward filling of qD highly in J and disable

the constraint so that it can be filled without limit. Making

activation of the dummy link disjunct to any other activation

in the subsystem will result in the desired behavior.

(3) To ease the understanding we omitted a constraint that

would force the policy to yield only reduced or equal delay

times at consecutive time slots. This constraint has to be added

in order for the policy to stay consistent with its forecasts.

(4) As a general way of defining γ, one can use the Dijkstra

algorithm on each subsystem. Doing this, the weights of the

links should be defined as the number of consecutive repeti-

tions necessary to fulfill reliability over that link. Here, one can

work with time-averaged transmission success probabilities.

Offsetting the derived shortest paths for each queue then yields

the reward coefficients for γ.

(5) For the entire algorithm to work, we assume that all

agents store their received packets until the network controller

signals to alleviate them. Thus, in the system model, we

implicitly also work with R+ instead of R.

IV. SIMULATION

For numerical results, we compare the well known MW

policy with our introduced predictive network control policy

(PNC). We use a scenario in which three robots communicate

via wireless connection as depicted in Fig. 2 and all commu-

nication is routed through a central router. Disturbances in the

communication are caused by periodic environmental effects,

e.g. moving objects in a factory building.

PSfrag replacements
channel behavior

due to disturbance

pattern

Fig. 2. Scenario used for simulations

For their work tasks, the robots need to exchange data. We

assume that at time t = 0, each robot needs to send its data

(modeled as one packet) to the other two and has signaled

this need to the router. The router then assigns communication

resources to the robots. Specifically, we assume that in each

time slot, either one, and only one robot may send its packet

to the router (interference property) or the router may send

a single packet to all robots at once (broadcast property).

Note that we imply, that signaling between the agents is

instantaneous compared to the transmission of the packets,

containing the actual data. This seems to be a reasonable

assumption when working with RMPCs, since exchanged data

consists of entire trajectories of their internal states.

The performance of PNC depends highly on the periodic

disturbances, that dictate the transmission success probabilities

pit. For this reason we simulate over many randomly selected

disturbance patterns and then average the results. We assume

that any disturbance pattern has a period of k steps and evolves

deterministic in time so that it can be represented (in terms of

transmission success probabilities) by a discrete time markov

chain with binary transition matrix and a set M of probability

matrices Mi, holding the pit. Furthermore we specify, that in

each step the transmission success probability is either high

p̂ or low p̌ resulting in 2k − 1 different patterns (we do not

consider the unique pattern, only consisting of p̌). Finally, in

order to avoid non-unique solutions to the optimization, we

slightly vary p̂ for each pattern, once this pattern is selected

for simulation, by using a randomly drawn value from the

uniform distribution [p̂± 0.01p̂] instead of the value p̂ itself;

the same goes for p̌.

A single simulation run follows the system evolution for

N time steps while the PNC policy uses a prediction horizon

of H . We accumulate simulation runs via two loops. The first

one repeats over x randomly chosen cases (without repetition).

A case is defined as an assignment of patterns to the links

of the three robots, resulting in
(

2k − 1
)3

different cases.

In a second loop (having a fixed case) we simulate over

different initializations of the routing matrix (equivalent to

initializations of B [Mσt
] per link per time slot). We repeat

this inner loop y times, resulting in x · y simulation runs.

A. Detailed description of a specific case

We first demonstrate the general disadvantage of MW on a

specific case (i.e. every link has a fixed pattern assigned). We

chose the following parameters:

TABLE I
SIMULATION PARAMETERS (SPECIFIC CASE)

k K p̂ p̌ 1− τ N H x y

3 343 100% 0% 90% 20 4 1 1

The patterns are illustrated in Fig. 3. The blue colors

indicate time slots, in which pit = p̂ = 100%, grey indicates

that pit = p̌ = 0. Robot 1 can only communicate once per

period; Robot 2 twice. In the described setup, each robot has

to send its packet over its link to the router (disjunct actions),

before the router can possibly broadcast the packet, using two

resource blocks at once. Hence, in the very first time slot, in

order to minimize overall delay, it is always optimal to let

PSfrag replacements

Robot 1

Robot 2

Robot 3

optimal first activation

no resources

available

available

resource block

time

period

p10 p11 . . .

p20 . . .

p30 . . .

Fig. 3. Pattern assignment for specific case

123 132 213 231 312 321

0.83

0.76

Sequence in which robots fulfill p̂α > p̂β > p̂δ

R
at

io
o

f
ac

cu
m

u
la

te
d

d
el

ay
:

P
N

C
M

W

Fig. 4. Simulation results (specific case)

Robot 1 send its packet to the router, since Robot 2 has the

uncontested third time slot to do so and Robot 3 can only

communicate in orthogonal time slots. Using PNC, this is

indeed always the first action taken.

However, using MW, the decision which Robot (1 or 2) gets

to communicate in the very first time slot only depends on the

transmission success probabilities p10 and p20. In practice, if p20
is just slightly higher than p10, MW will allocate the this first

time slot to Robot 2, hence resulting in a sup-optimal control

of the network.

To showcase this, we simulate over all possible slight

variations in p̂. The behavior of MW might differ, depending

on how the robots 1, 2, 3 must be mapped to the indices

α, β, δ in order to fulfill the inequality p̂α > p̂β > p̂δ. There

are six different mappings that do that, corresponding to the

symmetry group S3. Fig. 4 shows simulation results for all

six possibilities. MW and PNC are compared by accumulating

(over all robot-queues) their respective delays and taking the

quotient. For this specfic case, PNC reduces overall delay by

about 17 to 24 percent compared to MW, depending on the

transmission success probabilities.

B. General simulation results

Next, we present results for from extended simulation

(Monte Carlo simulation) over several cases.

TABLE II
SIMULATION PARAMETERS (MONTE CARLO)

k K p̂ p̌ 1− τ N H x y

3 343 40 4 10 200

0 0.1 0.2 0.3 0.4 0.5

0.9

0.93

0.95

0.98

1.02

Global low transmission success probability p̌

R
at

io
o

f
ac

cu
m

u
la

te
d

d
el

ay
:

P
N

C
M

W

Fig. 5. Simulation results (Monte Carlo)

We simulate for different p̌, where we adjust p̂ according

to p̂ + p̌ = 1; Fig. 5 holds the results. Note that we also

adjusted the threshold τ when using a different p̌, so that

PNC always deems p̂ reliable, i.e. τ > 1 − p̂. Not adjusting

τ leads to a distinct drop in performance of the PNC policy,

since the short horizon of H = 3 does not suffice to schedule

most of the transmission in a reliable way. In other words, a

high reliability requirement (in comparison to the available

transmission success probabilities), has to be accompanied

with a far enough horizon to enable the algorithm to reliable

schedule in its prediction model.

The simulations show, that we can expect an average

reduction in accumulated delays of about 10%, if transmission

success probabilities (channel states) jump between 1 (superb)

and 0 (not available at all). The closer p̌ and p̂ get, the

more this pleasant reduction diminishes. In the instance, that

p̌ = p̂ = 0.5, MW even exceeds the performance of PNC. This

result is due to the fact, that in this instance, future predictions

are the least helpful (there is no time dependent pattern to take

advantage of and the one step optimal control becomes the

general optimal control).

Note that the resulting quotient of a single simulation

can differ heavily (0.5 to 1.5) from the obtained averaged

performance quotients (0.9 . . . 1.2). Also, the discussion above

does not take into account, that we additionally yield individ-

ual forecasts of delays. One should keep in mind, that the

reduction of accumulated delay is only one benefit of the

PNC algorithm. And finally, the simulated scenario resembles

a bursty stimulation of the network. The disadvantages of MW

become less stringent, once the bursty traffic transitions into

a steady state traffic, because then, MW can use the length

of individual queues to obtain information on good and bad

paths through the network.

2 3 4 5 6 7 8 9 10

1.33
1.67
2.02

2.79

3.29

3.93

4.45

5.14
5.6

Prediction horizon H

R
at

io
o

f
p

ro
ce

ss
in

g
ti

m
e:

P
N

C
M

W

Fig. 6. Simulation results (time consumption over horizon)

C. Time consumption

By applying the binary linear optimization over the horizon

H , the minimization problem in PNC has to be solved for

m ·H unknown binary values. In comparison, MW does only

solve for m unknown binary values, since in each step it solves

min
u

qTRu (18)

where q and R are current queue vector and current routing

matrix. Though one would intuitively suspect an exponential

growth (with H) in time needed for deriving at an optimal so-

lution, at least for scenario presented here, simulations suggest

a linear growth as shown in Fig. 6. The used parameters are

captured in Table III, where we chose N = 7 to ensure that

there are always packets still to be transmitted. If all packets

are transmitted, then the consecutive optimization is trivial

which would in turn compromises the simulation results.

TABLE III
SIMULATION PARAMETERS (TIME CONSUMPTION)

k K p̂ p̌ 1− τ N H x y

3 343 70% 30% 68% 7 . . . 10 100

Finally, we also try to investigate how time consumption

scales with the number of subsystems in the prediction model,

i.e. with the number of packets to be transmitted simulta-

neously. We use again the parameter set from Table III but

vary the number of packets, for which transfer is requested in

the very first time slot; the results are shown in Fig. 7. The

casual decrease in time consumption with growing number

of packets might be a consequence of the utilized optimizer

(gurobi) applying a branch-and-bound procedure to solve the

minimization. This remains to be analyzed. Nevertheless, the

results once more suggest a linear growth in time consumption

with increasing number of packets.

V. CONCLUSION

We provided a proof of concept for a new network con-

trol policy, which is predictive in nature (based on MPC

paradigms), and does provide reliable forecast of delay times

3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

Number of subsystems (packets)

R
at

io
o

f
p

ro
ce

ss
in

g
ti

m
e:

P
N

C
M

W

H = 4
H = 5

Fig. 7. Simulation results (time consumption over subsystems)

of single data packets. The applied optimization problem is

linear and thus quite feasible to implement. The numerical

results show a clear advantage of our approach in compar-

ison to MW when it comes to pure routing and scheduling

decisions. However these advantages are leveraged with an

increased utilization of computational resources, the dimension

of which we could identify.

ACKNOWLEDGMENT

This research is partially supported by the EU H2020-

ICT2016-2 project ONE5G and the DFG Priority Programme

1914 Cyber-Physical Networking (CPN). The views expressed

in this paper are those of the authors and do not necessarily

represent the project views.

REFERENCES

[1] J. Hahn, R. Schoeffauer, G. Wunder, and O. Stursberg, “Distributed mpc
with prediction of time-varying communication delay,” in IFAC Workshop

on Distributed Estimation and Control in Networked Systems (NecSys),
2018.

[2] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
1992.

[3] S. Meyn, Control Techniques for Complex Networks. Cambridge
University Press, 2007.

[4] M. Kasparick and G. Wunder, “Stable wireless network control under
service constraints,” IEEE Transactions on Control of Network Systems,
2017.

[5] C. Zhou and G. Wunder, “Throughput-optimal scheduling with low
average delay for cellular broadcast systems,” in IEEE GlobeCom 2007

- IEEE Global Telecommunications Conference, 2007.
[6] A. Frangioni, L. Galli, and G. Stea, “Delay-constrained routing problems:

Accurate scheduling models and admission control,” Computers and
Operations Research, 2017.

[7] J. Lee and N. Jindal, “Delay constrained scheduling over fading channels:
Optimal policies for monomial energy-cost functions,” IEEE International
Conference on Communications, 2009.

[8] R. Schoeffauer and G. Wunder, “Predictive network control and through-
put sub-optimality of max weight,” in 2018 European Conference on

Networks and Communications (EuCNC), June 2018, pp. 1–6.
[9] E. Munapo, “Solving the binary linear programming model in polynomial

time,” American Journal of Operations Research, 2016.

This figure "fig1.png" is available in "png"
 format from:

http://arxiv.org/ps/1809.05273v1

http://arxiv.org/ps/1809.05273v1

	I Introduction
	II System model
	III Reliable predictive network control
	IV Simulation
	IV-A Detailed description of a specific case
	IV-B General simulation results
	IV-C Time consumption

	V Conclusion
	References

