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Abstract—Non-Gaussian continuous-variable quantum states
represent a pivotal resource in many quantum information
protocols. Production of such states can occur through photonic
subtraction processes either at the transmitter side prior to
sending a state through the channel, or at the receiver side on
receipt of a state that has traversed the channel. In the context
of quantum protocols implemented over communication channels
to and from Low-Earth-Orbit (LEO) satellites it is unclear what
photonic subtraction set-up will provide for the best performance.
In this work we show that for a popular version of continuous-
variable Quantum Key Distribution (QKD) between terrestrial
stations and LEO satellites, photon subtraction at the transmitter
side is the preferred set-up. Such a result is opposite to that found
for fiber-based implementations. Our results have implications
for all future space-based missions that seek to take advantage
of the opportunities offered by non-Gaussian quantum states.

I. INTRODUCTION

Quantum Communications via satellite offers a paradigm
shift in our ability to deploy quantum information protocols
over very large scales, e.g. [1]–[4]. Propagation through the at-
mosphere to and from LEO satellites can overcome the scourge
of the roughly 100km limited distance that plagues point-to-
point optical-fiber optical links and free-space-optical links.
Indeed, in the past few years great strides have been made
in regard to actual deployments of quantum communications
via satellites [5]–[9]. These latter works on satellite-based
quantum communications are largely based on the deployment
of discrete-variable (DV) quantum information protocols, a
technology that is dependent on the production of single-
photon states.

Continuous-variable (CV) technology offers a different
pathway to the implementation of quantum information proto-
cols. The main advantage of CV technology over DV technol-
ogy is that detection can be realized by more reliable, and more
efficient homodyne (or heterodyne) detectors e.g., [10]–[13].
Indeed, it is argued by many that relative to DV detectors, CV
based-detectors offer the promise of a more pragmatic route
to higher secret key rates for certain QKD protocols, e.g. [14].

Currently, no experimental deployment of space-based CV
quantum technology has been carried out, but this is expected
to change soon (see [4] for review). CV technologies are
largely based around so-called Gaussian states, e.g. [12], [13] -
quantum states in which the quasi-probability distribution (the
Wigner function) of the electromagnetic-field quadratures fol-
low a Gaussian distribution. However, the use of non-Gaussian
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states in the implementation of CV quantum information pro-
tocols has also garnered interest, e.g. [15]–[19]. Non-Gaussian
operations such as photon subtraction (PS) [20]–[26] on a
mode of an incoming two mode squeezed vacuum (TMSV)
state can lead to higher levels of entanglement, potentially
higher secret (QKD) key rates, as well as forming a pivotal
resource for quantum error correction.

In this work we will focus on single PS as a means to
produce non-Gaussian states. We will be specifically focussed
on the question as to whether PS at the transmitter offers a
better pathway to improved QKD (higher secret key rates)
when propagation between ground stations and LEO satellites
is considered. The answer to this question has important
implications not only for future space-based implementations
of CV-QKD protocols, but also potentially for other space-
based quantum information protocols that utilize non-Gaussian
states.

The structure of the remainder of this paper is as follows.
In Section II, the nature of the quantum channel between
terrestrial stations and LEO satellites is described. In Sec-
tion III, a model for CV-QKD with PS at the transmitter
is described, whilst in Section IV a system for PS at the
receiver is described. In Section V our performance analysis
is described, and in Section VI our simulation results are
presented, comparing key rates produced from both systems.

II. EARTH-SATELLITE CHANNELS

We consider the model of single uplink and single downlink
satellite channels in an entanglement-based version of a CV-
QKD protocol.1 Our quantum information carrier will be a
pulsed optical beam. For the uplink, we assume that Alice
first prepares a TMSV state (A0 − B0) at a ground station,
subsequently sending one of her modes (B0) to the satellite.
For the downlink, the TMSV is prepared on the satellite with
B0 being sent to the ground station.

For optical signals in the uplink channel, the dominant
loss mechanism will be beam-wander caused by turbulence
in the Earth’s atmosphere [27]. Assuming the beam spatially
fluctuates around the receiver’s center point, the fading of the
signal as a consequence of the beam-wander can be described
by a distribution of transmission coefficients (amplitude at-
tenuation) η. The probability density distribution of these
coefficients, p(η), can be approximated by the log-negative
Weibull distribution, given by [29] [30]

1Each entanglement-based QKD protocol has an equivalent prepare and
measure scheme that will give, in theory, exactly the same results.
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for η ∈ [0, η0], with p (η) = 0 otherwise. Here, σb2 is the
beam wander variance, λ is the shape parameter, L is the
scale parameter, and η0 is the maximum transmission value.
The latter three parameters are given by

λ = 8h exp(−4h)I1[4h]
1−exp(−4h)I0[4h]

[
ln
(

2η20
1−exp(−4h)I0[4h]

)]−1
,

L = βr

[
ln
(

2η20
1−exp(−4h)I0[4h]

)]−(1/λ)
,

η0
2 = 1− exp (−2h) ,

(2)

where I0 [.] and I1 [.] are the modified Bessel functions, and
where h = (βr/W )

2, with βr being the aperture radius and
W the beam-spot radius. Here we set βr =W = 1 unit length
(which for typical configurations is 1 meter).

In the downlink satellite channel diffraction effects are
anticipated to dominate. This is largely because beam-wander
in the downlink is relatively suppressed since the beam-width,
on entry into the atmosphere from space, is generally broader
than the scale of the turbulent eddies [27]. As such, with
well-engineered designs2 losses in the downlink can be as
small as 5-10 dB, compared to the 20-30 dB losses that
can be anticipated for well-engineered uplink channels. For
simplicity, we model all losses by varying σb.

To investigate the effect of the PS we mainly consider three
schemes. The first scheme is where there is no PS (No-PS).
The second scheme is PS at the transmitter side (T-PS), where
the PS is performed immediately after Alice prepares her
TMSV state. The last scheme is PS at the receiver side (R-PS),
where Bob performs the PS after he receives the mode from
Alice, but before his homodyne measurement. We adopt the
QKD protocol of [31], modified as required for our additional
T-PS scheme. Reverse reconciliation at Alice, in which both
Alice and Bob undertake homodyne measurements is always
used. We will assume the asymptotic limit in the number of
measurements taken.

III. PHOTON SUBTRACTION AT TRANSMITTER SIDE

The system model for the CV-QKD protocol with photon
subtraction is illustrated in Fig. 1. We assume that Alice first
prepares a TMSV A0−B0 at her ground station (for briefness
we just describe the uplink). She then sends one of her modes
(B0) through a PS process in which B0 interacts with a mode
C0 at a beam-splitter with transmissivity (intensity attenuation)
TS . One of the exiting modes (C) is sent to a photodetector

2This involves properly-dimensioned lenses, use of state-of-the-art adaptive
optics, and use of feedback from concurrent classical channel measurements.
On the latter measurements we note fluctuations caused by turbulence are in
the kHz range (compared to the Mhz rate of the laser pulses), thus allowing
for channel-coefficient measurements to be made dynamically (within the
coherence time of the channel) by a ground receiver.
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Fig. 1. Photon subtraction at transmitter side (T-PS). Here Alice (ground
station) prepares a TMSV (A0 − B0), sending B0 through a PS process
using a beam-splitter with transmissivity TS . The exiting mode C is sent to a
photodetector, whilst the exiting B1 is sent to Bob (the satellite). The channel
is controlled by Eve using a second beam-splitter with transmissivity TE .

(PD), whilst the other (B1) is sent to Bob (the satellite). In
the following we take mode C0 to be a vacuum state.3

In this work we assume that Eve performs a collective
attack.4 The channel can then be modeled by Eve feeding
one mode, E0, of a TMSV state (E0 − F ) prepared by her
into a beam-splitter with transmissivity TE , with B1 being fed
into the other input mode of the beam-splitter. After passing
through Eve’s beam-splitter, Eve retains the quantum state F -
E, E being one of the output modes of her beam-splitter.
The other output mode of the beam-splitter is forwarded to
Bob. Setting TE = η2, we assume that Eve sets TE so as to
follow a probability density function given by equations (1)-
(2). Following its traversal through the channel Bob then
receives an “attenuated” version of B1, namely B2.

Note that PS is not a Gaussian operation, but rather an
operation that transforms a Gaussian state into a non-Gaussian
state. Because of this, the state following the PS cannot
be fully described by the first and second moment of the
quadrature operators x̂ and q̂ of the electromagnetic field. As
such, a somewhat more complex state description is required
relative to that used for quantum protocols based on Gaussian-
states. We now describe this more complex quantum state.

Using the Fock basis, Alice’s initial TMSV state |ψ〉AB0

has the form

|ψ〉AB0
=

∞∑
n=0

αn|n, n〉AB0
,

with

αn =

√
α2n

(1 + α2)
n+1 ,

3We note that a PS at the transmitter in the context of a somewhat different
QKD protocol from that studied here has been investigated for the Earth-
satellite channel [28].

4A collective attack is where Eve creates a series of ancillary modes with a
member from this series independently entangling with each incoming mode
sent by Alice. Following Bob’s measurements Eve then takes an optimal
collective measurement on her series of ancillary modes. In the asymptotic
limit, security under collective attacks can be shown to be equivalent to
security under coherent attacks (for many protocols) in which Eve’s ancillary
modes are no longer constrained to interact independently with Alice’s modes.

Approved For Public Release #18-1963; Unlimited Distribution. Dated 9/13/18.



where α2 is the mean photon number of Alice’s mode. We
note that α2 = sinh2r, where r is the squeezing parameter of
the two-mode squeezing operator

S (ξ) = exp
(
ξâb̂− ξâ†b̂†

)
, ξ = reiθ ,

where θ represents the orientation of the squeezing, and where
â and â† represent the annihilation and creation operators,
respectively, of mode A. Here, we assume θ = 0.

Result 1: The quantum state after the channel can be written
as

|ψ〉TPS = − 1√
P1

∞∑
n=1

n−1∑
k=0

∞∑
m=0

m∑
l=0

sn,k,m,l

×|n, n− 1− k + l, k +m− l,m〉AB2EF
,

where sn,k,m,l = αnβm(−1)krTSn,1r
TE
n−1,kr

TE
m,lzn−1,k,m,l, and

the other variables introduced above are defined in the follow-
ing proof.
Proof: Initially we have the following description of the
combined AB0C0B1C mode

|ψ〉AB0C0B1C
=
∞∑
n=0

αn|n, n〉AB0
|0, 0, 0〉C0B1C

=
∞∑
n=0

αn
(b̂†0)

n

√
n!
|n, 0〉AB0

|0, 0, 0〉C0B1C
.

The presence of the beam-splitter at the PS stage alters this
combined mode to the form

∞∑
n=0

αn
(
√
TS b̂
†
1−
√
1−TS ĉ†)

n

√
n!

|n, 0〉AB0
|0, 0, 0〉C0B1C

=
∞∑
n=0

αn
n∑
k=0

(−1)krTSn,k|n, 0〉AB0
|0, n− k, k〉C0B1C

,

where rTn,k =

√(
n
k

)
(
√
T )n−k

√
1− T k. We assume that

the subtraction is for the single photon case (i.e. k = 1 and
C = |1〉). Tracing out mode B0, C, and C0 we have,

|ψ〉AB1
= − 1√

P1

∞∑
n=1

αnr
TS
n,1|n, n− 1〉AB1

,

where

P1 =

∞∑
n=1

(
αnr

TS
n,1

)2
is the probability of subtracting one photon. Similar to Alice,
Eve’s initial TMSV state is,

|ψ〉E0F
=

∞∑
m=0

βm|m,m〉E0F

with

βm =

√
β2m

(1 + β2)
m+1 ,

where β2 is the mean photon number of Eve’s mode - a
parameter used to simulate the channel noise.

As it passes the channel, mode B1 evolves to mode B2.
Prior to Eve acting on the incoming states we have the
following description of the combined AB1E0EFB2 mode

|ψ〉AB1E0EFB2
= − 1√

P1

∞∑
n=1

αnr
TS
n,1|n, n− 1〉AB1

⊗
∞∑
m=0

βm|m,m〉E0F
|0, 0〉B2E

.

The presence of the beam-splitter at Eve alters this com-
bined mode to the form

− 1√
P1

∞∑
n=1

αnr
TS
n,1

(
√
TE b̂

†
2−
√
1−TE ê†)

n−1

√
(n−1)!

|n, 0〉AB1

⊗
∞∑
m=0

βm
(
√
TE ê

†+
√
1−TE b̂†2)

m

√
m!

|0,m〉E0F
|0, 0〉B2E

= − 1√
P1

∞∑
n=1

αnr
TS
n,1

n−1∑
k=0

(−1)krTEn−1,k

×
∞∑
m=0

βm
m∑
l=0

rTEm,lzn−1,k,m,l

×|n, n− 1− k + l, k +m− l,m, 0, 0〉AB2EFB1E0
,

where

zn,k,m,l =

√(
n− k + l

l

)√(
k +m− l

k

)
.

Rearranging the summation and tracing out B1 and E0 we
arrive at the Result 1.

IV. PHOTON SUBTRACTION AT RECEIVER SIDE

If the photon subtraction occurs at the receiver side instead
of the transmitter side (Fig. 2), a different outcome is achieved
for the final state - a result previously derived in [31]. We
simply provide that result here (the proof follows a similar
path to that given for PS at the transmitter). However, we
note the work of [31] considers the fixed-attenuation channel
only, and therefore the results of that work cannot be directly
utilized for the Earth-satellite channels we are concerned with
here.

HOM

QM

QM

HOM

PD

𝑨𝑨 𝑩𝑩𝟎𝟎

𝑬𝑬𝟎𝟎

𝑭𝑭

𝑬𝑬

𝑩𝑩𝟏𝟏 𝑩𝑩𝟐𝟐

𝑪𝑪𝟎𝟎

𝑪𝑪

𝑻𝑻𝑬𝑬 𝑻𝑻𝑺𝑺

Channel

Photon 
Subtraction

Fig. 2. Photon subtraction at receiver side (R-PS). Here Alice (ground station)
prepares a TMSV (A0 − B0), sending B0 through a channel controlled by
Eve using a beam-splitter with transmissivity TE . The exiting mode B1 is
sent by Eve to Bob (the satellite) who undertakes a PS process on B1 using
a beam-splitter with transmissivity TS , leading to B2.

Prior to the PS at the receiver the quantum state is given by

|ψ〉AB1EF
=

∞∑
n=0

n∑
k=0

∞∑
m=0

m∑
l=0

αnβm(−1)krTEn,kr
TE
m,lzn,k,m,l

×|n, n− k + l, k +m− l,m〉AB1EF
.
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After the channel, Bob performs PS on B1, leading to the
B2 mode. This latter mode is subsequently used in Bob’s
homodyne detection.
Result 2: The photon subtracted quantum state at the receiver
can be written

|ψ〉RPS = − 1√
P ′1

∞∑
n=0

n∑
k=0

∞∑
m=0

m∑
l=0

s′n,k,m,l

×|n, n− 1− k + l, k +m− l,m〉AB2EF
,

where s′n,k,m,l = αnβm(−1)krTSn−k+l,1r
TE
n,kr

TE
m,lzn,k,m,l and

P ′1 is a new normalization constant (cf. Eq. (19) of [31]).

V. PERFORMANCE ANALYSIS

A. Covariance Matrix

Before moving into our investigation of the secret key rate
we note that the covariance matrix of a given state |ψ〉AB with
two modes A and mode B, can be written as

MAB =

[
VAI CABσ
CABσ VBI

]
,

where I = diag(1, 1), σ = diag(1,−1). Here,

VA = 〈ψ| 1 + 2â†â |ψ〉AB
is the variance of mode A (likewise VB), and

CAB = 〈ψ| âb̂+ â†b̂† |ψ〉AB
is the covariance between mode A and mode B.

Consider next the variances of mode A and mode F
following PS at the transmitter. Using the above, we can see
that the variances of mode A and F can be given as,

VA = 〈ψ| 1 + 2â†â|ψ〉TPS
= 1− 2√

P1
〈ψ|

∞∑
n=1

n−1∑
k=0

∞∑
m=0

m∑
l=0

nsn,k,m,l

×|n, n− 1− k + l, k +m− l,m〉AB2EF
,

VF = 〈ψ| 1 + 2f̂†f̂ |ψ〉TPS
= 1− 2√

P1
〈ψ|

∞∑
n=1

n−1∑
k=0

∞∑
m=0

m∑
l=0

msn,k,m,l

×|n, n− 1− k + l, k +m− l,m〉AB2EF
,

respectively. Likewise, the covariance between two different
modes, say E and F , can be given by

CEF = 〈ψ| êf̂ + ê†f̂†|ψ〉TPS
= − 1√

P1
〈ψ| ϕ〉 ,

where

|ϕ〉 =
∞∑
n=1

n−1∑
k=0

∞∑
m=0

m∑
l=0

sn,k,m,l
√
m+ 1

√
k +m− l + 1

×|n, n− 1− k + l, k +m− l + 1,m+ 1〉AB2EF
+

∞∑
n′=1

n′−1∑
k′=0

∞∑
m′=1

m′−1∑
l′=0

sn′,k′,m′,l′
√
m′
√
k′ +m′ − l′

×|n′, n′ − 1− k′ + l′, k′ +m′ − l′ − 1,m′ − 1〉AB2EF
.

Similar variance and covariance terms can be derived for
PS at the receiver. These terms can be calculated numeri-
cally simply by using the fact that 〈n, k,m, l|n′, k′,m′, l′〉 =
δnkml,n′k′m′l′ . The usefulness of such terms will become
evident when we calculate the keys rates, an issue we turn
to next.

B. The Secret Key Rate

Under a collective attack, the key rate is related to the
difference of I(A : B2) - the mutual information between
mode A and mode B2; and χ(B2 : EF ) - the Holevo
information that Eve can extract from her measurement [13].
More specifically, we can say, the key rate (per pulse generated
by the source laser) is,

K(TE) = P [fI(A : B2)− χ(B2 : EF )] ,

where f is the decoding reconciliation efficiency, and P is
the probability of subtracting one photon in the PS. However,
calculation of the key rate for a non-Gaussian state is ana-
lytically not tractable since the non-Gaussian state has more
than two non-zero moments. To make progress, we utilize the
Gaussian state (metrics of which will be indicated by the
subscript G) that produces the same covariance matrix M
as the non-Gaussian state |ψ〉AB2EF

. This provides a lower
bound for the key rate by the theorem of Gaussian optimality
[32]. Emphasizing that all key rates discussed from this point
on are bounds, we have5

K(TE) ≥ P [fIG(A : B2)− χG(B2 : EF )] ,

where [13]

IG(A : B2) =
1

2
log2

VB2

VB2|A
,

and the conditional variance VB2|A is

VB2|A = VB2 −
CAB2

2

VA
.

For Eve’s stolen information, we can write

χG(B2 : EF ) =
∑
i

g(vEFi )−
∑
j

g(v
EF |B2

j ) ,

where

g(v) =
v + 1

2
log2

v + 1

2
− v − 1

2
log2

v − 1

2
.

In the above, vEF and vEF |B2 are the symplectic eigenvalues
of the covariance matrices MEF and MEF|B2

, respectively,
where [13]

MEF|B2
= MEF−

[
CEB2

I
CFB2

σ

] [
VB2

−1 0
0 0

] [
CEB2

I
CFB2

σ

]T
.

Finally, we can now determine the bound on the key rate
achieved in the satellite lossy channel by taking the aver-
age over all possible transmission coefficient values, namely,
Kavg =

∫
p(η)K(η2)dη. Allowing the initial squeezing to be

dependent on η allows for further optimization of the key rate
- an issue we ignore for simplicity.

VI. SIMULATION RESULTS

For comparison purposes we first consider a non-variable
attenuation channel, before comparing the performance of our
three schemes for the satellite channel we have discussed

5Note, the beam-splitter attack we use is the most pragmatic, but it is
slightly sub-optimal. Under an optimal attack (purification), the key rate will
be approximately 1.1dB lower for all our schemes.
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earlier in the paper. Unless otherwise stated, the parameters
utilized in the calculations shown are α2 = 1.3, β2 = 0.001,
f = 0.95, and TS = 0.9 (for simplicity a detector efficiency of
1 is assumed). The infinite summation limits are constrained
to 20 for n and m [33].

As stated, we first consider a fixed attenuation channel. Here
we fix the value of α2 for all attenuation conditions. We plot
the key rate against transmissivity in Fig. (3), and against
distance in Fig. (4). In Fig. (4) we assume that the channel has
a fixed attenuation of 0.2dB/km. The results of Figs. (3)-(4)
show that the R-PS scheme has the longest key distribution
range at a cost of a reduced key rate. That is, the R-PS scheme
is in some sense the most robust against channel attenuation
(provides a non-zero key rate at the largest distance). We
further compare the performance of the three schemes as a
function of the noise β2 and the mean photon number α2 (i.e.
sinh2r, r being the squeezing parameter) - the results of which
are shown in Figs. (5) and (6), respectively. Note, that in these
figures the rates are not plotted in the logarithmic domain so
the comparison in the small rate region is not as apparent. As
can be seen, for some parameter space we find distances where
the T-PS scheme shows better key rate performance than the
other schemes. We also find the T-PS and R-PS schemes can
outperform the No-PS scheme in some parameter space (again
we caution that optimisation of the initial squeezing can alter
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these conclusions).
We next investigate the key rates of the three schemes in the

variable Earth-satellite channel, calculating their average key
rates under different average channel fluctuations, quantified
using σb within equations (1)-(2). These results are shown in
Fig. (7). The No-PS case shows better performance in terms
of key rate for the entire range of channel conditions - a result
not found for the fixed attenuation case. The PS cases (T-PS
and R-PS) are impacted by the low probability of obtaining a
subtracted photon in any given pulse, and this effect dominates
when channel averaging over the fading channel is accounted
for. The blue dashed curve (marked normalized) in Fig. (7)
show the impact of a quantum memory in place such that the
low probability for PS can be negated. Here the schemes are
assumed to be a priori storing the required states in memory,
then sending the same rate of quantum states into the satellite
channel on-demand. A close up at low σb is shown in Fig. (8)
for different noise conditions. These latter results show the
rates possible in very-high quality downlinks from the satellite-
to-Earth.6

A main aim of our study was to determine whether PS at the

6 Note that σb = 1 corresponds to approximately 5dB of loss. Such low
loss rates are possible for well-engineered systems in which diffraction of the
beam is the major factor contributing to photon loss.
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Fig. 7. The key rate averaged over the satellite channel as a function of the
standard deviation of the beam wandering for range 0-20.
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Fig. 8. A close up of the key rate averaged over the satellite channel as a
function of the standard deviation of the beam wandering for the range 0-1.

transmitter-side outperforms PS at the receiver-side for a range
of Earth-Satellite channels (where no instantaneous channel-
dependent optimisation of squeezing occurs at the transmitter).
Figs. (7)-(8) provide an answer to this question - yes. This
result holds for all anticipated channel conditions (only at
unrealistic noise levels is the opposite found).

VII. CONCLUSIONS

We have studied the use of non-Gaussian CV quantum
states - created via photon subtraction - in the context of
a straightforward QKD protocol. More specifically, we have
studied the lower-bounds on secret key rates delivered by such
states. Contrary to what is found in fixed attenuation channels
(such as optical fiber), we find that for the variable-channels
anticipated for Earth-satellite communications, photon sub-
traction at the transmitter, for an initially fixed squeezing,
outperforms photon subtraction at the receiver for all realistic
conditions. The authors acknowledge support from the UNSW,
the CSC, and Northrop Grumman.
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