
27 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Emerging Distributed Programming Paradigm for Cyber-Physical Systems Over LoRaWANs / Danilo Pianini,
Ahmed Elzanaty, Andrea Giorgetti, Marco Chiani. - ELETTRONICO. - (2018), pp. 1-6. (Intervento presentato
al convegno 2018 IEEE Globecom Workshops (GC Wkshps) tenutosi a Abu Dhabi nel 2018)
[10.1109/GLOCOMW.2018.8644518].

Published Version:

Emerging Distributed Programming Paradigm for Cyber-Physical Systems Over LoRaWANs

Published:
DOI: http://doi.org/10.1109/GLOCOMW.2018.8644518

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/670773 since: 2019-02-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/GLOCOMW.2018.8644518
https://hdl.handle.net/11585/670773

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

D. Pianini, A. Elzanaty, A. Giorgetti and M. Chiani, "Emerging Distributed
Programming Paradigm for Cyber-Physical Systems Over LoRaWANs," 2018 IEEE
Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018, pp. 1-
6.

The final published version is available online at:
http://dx.doi.org/10.1109/GLOCOMW.2018.8644518

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109/GLOCOMW.2018.8644518

Emerging Distributed Programming Paradigm for
Cyber-Physical Systems over LoRaWANs

Danilo Pianini, Ahmed Elzanaty, Andrea Giorgetti, and Marco Chiani

Abstract—The growing interest around the cyber-physical
systems (CPS), populated with open systems counting myriads of
devices, is calling for new technologies both in telecommunica-
tions and software engineering with full integration among them.
One of the most promising wireless communication technologies
for the CPS is LoRaWAN, which enables long range transmis-
sion with low power consumption. Typical application scenarios
include smart-homes, smart-cities, precision agriculture, and
intelligent transportation. On the software side, novel paradigms
are emerging to dominate the complexity introduced by the CPS
with a large number of spatially distributed devices. Among
them, aggregate computing is gaining traction, for it enables
expressing the behavior of aggregates of devices by considering
their ensemble as a single computational entity, allowing ex-
pressive space-time computations. In this paper, we introduce
a software architecture which allows aggregate programming
software to execute on a network of LoRa-communicating de-
vices. We also provide an open source prototype implementing
such architecture, which we use to study the current limitations
of existing aggregate programming interpreters in resource-
constrained scenarios. We conclude by drawing recommendations
for developing such interpreters in order to pave the way to a
more power- and data-efficient design.

I. INTRODUCTION

Cyber-physical systems (CPS) are dynamic systems where
software, networks, and computational elements are integrated
to monitor and control physical systems in a collaborative
and possibly distributed manner. This integration provides ab-
stractions and design methods for the overall system. Possible
applications include smart grids and cities, intelligent trans-
portation, e-health care, and precision agriculture. The growing
interest around the CPS is fostering development both in the
telecommunications and computer engineering. In many cases,
however, these two disciplines progress separately, hindering
the full integration required by CPS. More precisely, novel
software paradigms and techniques do not take full advantage,
nor deal with the limitations of the latest advancements in
telecommunication technologies, and the latter are often not
designed with innovative (but not yet industrialized) software
stacks in mind.

One of the notable lines of work in telecommunications
engineering devoted to the CPS are Low Power Wide Area
Network (LPWAN) systems, which offer communication links
with high robustness to noise, enabling information exchanges

The authors are with the University of Bologna, Italy; A. Giorgetti and
M. Chiani are also with IEIIT-CNR and CNIT, Italy (e-mail:{danilo.pianini,
ahmed.elzanaty, andrea.giorgetti, marco.chiani}@unibo.it). This work is sup-
ported in part by project eCircular (EIT Climate-KIC), by project HyVar
(EU Horizon 2020) under grant agreement No 644298, by ICT COST Action
IC1402 ARVI, and by Ateneo/CSP project RunVar.

on ranges longer than a dozen kilometers. This robustness is
achieved at the expense of data rate, and whether or not this is
an issue depends on the specific application: many scenarios
of interest in the CPS are known to require limited data rates
(e.g., smart metering, smart grid, data collection from wireless
sensor networks (WSNs) for environmental monitoring), as
demonstrated in existing analyses on data traffic requirements
in several CPS and Internet of Things (IoT) applications [1]–
[3].

Currently, the dominant technologies in unlicensed fre-
quency bands are Sigfox and Low power, Long Range Wide
Area Network (LoRaWAN). Sigfox systems depends on ultra
narrow band technology, with bit rate ranging around 10 kb/s.
Sigfox systems feature a limited throughput (15 packet/day per
device with a maximum payload of 12 bytes) and a proprietary
network stack (subscription is required for network access),
two factors limiting the diffusion of the technology. On the
other hand, LoRaWAN is a wireless network that implements
the low power long range (LoRa) protocol in the physical
layer, achieving ranges up to 15 km, with a maximum data
rate of 11 kb/s (50 kb/s using Frequency Shift Key (FSK)
modulation). Consequently, LoRa is considered one of the
most promising enabling technologies for CPS, as witnessed
by the growing count of applications relying on it, e.g., in
smart energy production [4], e-health [5], and water network
control [6].

At the same time, aggregate computing emerged as a novel
programming paradigm aiming at providing an effective way
to write composable behaviors for ensembles of devices. Its
core idea is shifting the focus of the software designer from the
single device to the aggregate of devices: the aggregate is con-
sidered as a single computational entity, whose computation
evolves distributed data structures known as computational
fields [7]. A comprehensive discussion of the computational
model and programming abstractions provided by aggregate
programming is beyond the scope of this work; however, the
interested reader may refer to [8]. This programming paradigm
is currently available in two programming platforms: Protelis1

[9], an interpreted, duck-typed language hosted on the JVM;
and Scafi [10], a Scala implementation of the aggregate
computing semantics. The approach has been demonstrated
to be effective for a variety of systems on diverse scale,
ranging from service recovery [11], to WSN [12], to large
urban events [7]. To the best of our knowledge, however, most
of the aggregate programming applications presented to this

1Protelis is publicly available at www.protelis.org

day are either executed in environments which can provide
high data rates (e.g. enterprise services [11]), or are validated
via simulation (e.g. in [7], [12]), with little or no analysis on
the load imposed on the network.

In this paper, we contribute to the state of the art by
i) discussing the portability of aggregate programming on
devices with access to a LoRa network interface; ii) propos-
ing a networking architecture for aggregate programming
interpreters that can cope with the LoRa requirements; iii)
providing a reference, open source implementation of such
architecture; and iv) drawing recommendations for further
development and refinement of aggregate programming in-
terpreters to better cope with limited data rates. Note that
providing an aggregate programming interpreter suitable for
computationally constrained nodes is not in the scope of this
work: our aim is to leverage the existing LoRa devices as
networking interfaces of nodes that already support aggregate
programming.

To the best of our knowledge, this is the first work tackling
the problem of enable execution of programming languages
based on next-generation paradigms in environments with
non-negligible network constrains. Other works discussing
aggregate programming on a physical (non simulated) setup
either do not feature a resource-constrained environment [11];
do not mention the actual execution platform [13], or focus
on a general software architecture which is not specifically
tailored for resource constrained environments [14].

The remainder of this paper is organized as follows. Sec-
tion II overviews the LoRa communication system; Section III
discusses how aggregate programming interpreters deal with
networking; Section IV introduces our proposed architecture,
whose prototype implementation is exercised in Section V
providing insights on future development of aggregate pro-
gramming interpreters. Finally, Section VI concludes the work.

II. LORAWAN OVERVIEW

The foundational elements of LoRaWANs are end devices
(EDs), gateways (GWs), and LoRa servers. End devices
(sometimes called “nodes”) and gateways form a star topol-
ogy. Gateways communicate with a LoRa server, building
an overall star of stars topology. In such network, each ED
willing to communicate (uplink) broadcasts its message to
all nearby GWs through single hub wireless links. All the
GWs receiving the packet forward it to the server through any
available networking backhaul (the protocol does not govern
how the GWs should be connected to the server). In downlink
communications (from servers to ED), the server selects the
GW that deems best to deliver data to the recipient.

A. LoRa Air Interface: physical layer

The physical layer of LoRaWAN is called LoRa. It is
considered as the air interface of the system, where two modu-
lation schemes are adopted: FSK and a version of chirp spread
spectrum modified to ensure a continuous phase modulation
[15], [16]. Therefore, it is robust to non-linearities introduced
by power amplifiers, to multipath fading, and to noise, and, as

a consequence, enables long range communication with a low
cost receiver [17]. One important parameter of the modulation
scheme is the spreading factor (SF) which indicates the num-
ber of bits in each symbol and determines the symbol length.
The SF ranges from 7 to 12, and provides a compromise
between range and bit-rate, with higher SFs leading to lower
bit-rates and longer ranges [18]. LoRa uses the unlicensed sub-
GHz frequency Industrial, Scientific and Medical (ISM) band,
e.g., 863 − 870MHz in Europe and 902 − 928MHz in the
USA.

B. Multiple access scheme and device classes: MAC layer

In contrast to synchronous multiple access schemes, re-
quiring high cost nodes (as in cellular networks), LoRaWAN
specifies an asynchronous Aloha-like protocol for random
access. For uplink communications, EDs randomly select a
transmission slot based on their own communication require-
ments. Downlink communications must instead deal with an
important trade-off: being able to receive messages requires
the wireless hardware to be powered on, and, as a conse-
quence, increases the power consumption; on the other hand
though, reducing the occasions in which a message could
be received negatively impacts the communication latency.
Consequently, LoRa defines three device classes (A, B, and C)
to fit different application domains with distinct requirements
of power consumption and communication latency.

More precisely, Class A nodes open two receive windows
at specific predefined times after their own transmission to
allow for the reception of downlink messages from the GW.
This class has the lowest power consumption, however, since
downlink packets can only be received after a successful
uplink, the latency in the downlink communication increases.
For applications that require lower downlink latency, Class B
devices can schedule additional downlink time slots (besides
the two receive windows defined in class A) by synchroniz-
ing with the GW through periodically sent beacons. Finally,
Class C devices are designed for applications requiring the
lowest possible latency with relaxed constrains on the power
consumption: EDs are always in receive mode except when
transmitting themselves.

Besides the discussed trade-off between downlink latency
and power requirements, LoRa has a number of other lim-
itations. Usage of unlicensed bands decreases the costs, but
negatively affects the system performance. In fact, the Euro-
pean telecommunications standards institute (ETSI) imposes
restrictions on the maximum duty cycle for occupying each
channel (i.e., the maximum time percentage during which a
channel can be occupied by an ED) to prevent congestion. For
some channels, the maximum duty cycle allowed in ISM band
is less than 1%, severely limiting the network throughput, and
restricting the number of generated packets per node [19], [20].
Additionally, the maximum payload size is restricted to 51 to
222 bytes for SF = 7 and SF = 12, respectively. Reliability is
affected by the count of ED in the system: since in pure Aloha
protocol there is no coordination, packet collisions increase
with the number of users. In order to guarantee successful

Fig. 1. LoRaServer architecture, blue boxes are part of the LoRaServer
software stack. Multiple packet-forwarders (gateways) communicate with a
LoRa gateway bridge, which abstracts the communication as JSON over
MQTT. MQTT packets are forwarded to the LoRa server and in turn to
the LoRa app server, with wich the actual application can communicate by
subscribing and publishing to the appropriate MQTT topics. Image courtesy
of the LoRaServer website.

packet transmissions, a confirmation message should be send
by the GW. However, this is not always feasible as the
GW is subject to duty cycle limitations as well. Moreover,
acknowledgments decrease the throughput, as GWs can not
receive while transmitting.

C. LoRa software stack: network, transport, application layers

Packets received by GWs get forwarded to the network
server (NS) via UDP. These packets are usually not directly
intercepted at the application-level: in fact, working directly
with the UDP protocol complicates debugging, poses security
challenges, and makes scheduling downlinks difficult, as it
requires manual intervention to deal with node sessions, data
de-duplication, authentication, and encryption. Fortunately,
some available software products lower the burden for the
developer, by providing the ability to abstract UDP over
a higher level protocol, as well as the possibility to orga-
nize communication with publish-subscribe interaction pattern.
Among them, LoRaServer2 is particularly notable due to its
modular architecture, feature richness, and permissive MIT
license. The LoRaServer software architecture is depicted in
Figure 1. It comprises three main components: i) the LoRa
Gateway Bridge, which abstracts the UDP communication
from GWs into JSON over MQTT; ii) the LoRa network
server, which deals with cryptography, session, authentication,
and other network-related aspects; and iii) the LoRa App
Server, which implements an application server compatible
with LoRa Server, offering abstractions like users, organi-
zations, and LoRa-enabled applications. In order for this

2https://www.loraserver.io/

architecture to operate, additional external components are
required: a database (e.g. Postgresql) where the Server can
store its configuration, and an MQTT broker.

III. NETWORKING IN AGGREGATE COMPUTING

This section discusses the execution model of an aggregate
programming interpreter, the support it expects from the
networking subsystem, and introduces some of the relevant
details of the existing interpreter implementations.

Aggregate programming’s effectiveness at providing support
for concisely expressing elaborate distributed algorithms is
founded on two key aspects: i) the approach is composable
and layered, namely functional blocks can be stacked and
replaced, allowing for building increasingly complex systems;
ii) all the low-level aspects of device interaction (messages,
protocols, etc.) are abstracted away and hidden under-the-
hood. However, for the purpose of providing actual networking
support to aggregate programming interpreters, some details of
what happens under the hood need to be understood.

Aggregate programming languages are rooted on the higher-
order field calculus [21], in which devices undergo compu-
tation in non-synchronous rounds. In each round, a device
sleeps for some time, wakes up, gathers information about
messages received from neighbors while sleeping, performs an
evaluation of the program, and finally emits a message to all
neighbors with information about the outcome of computation
before going back to sleep. Messages are broadcasted to
neighbors: the logical network is purely peer to peer, but no
requirements are set for physical network. In some scenarios
(e.g. WSN) the logical and physical network may be identical,
in other cases the former may be an overlay on the latter [13].

The way aggregate programming abstracts away network
protocols is by providing a single primitive, nbr, which shares
data and accesses shared data. A call to nbr(foo) implies
a bidirectional communication: the local value of foo will
get shared (sent away at the end of the round), and values
computed in the neighborhood (and received by mean of
previous messages) will be returned mapped with the origin
device identifier. The interpreter allows for an arbitrary number
of nbr calls: consistency preserved because, internally and
transparently to the programmer, the shared data is decorated
with “code paths”, namely metadata tracing the sequence
of calls and instructions that led to each nbr invocation.
Consequently, payloads sent over the network are shaped as
mappings between “code paths” and values, with one entry for
each nbr call. The implementation of code paths is an internal
detail of aggregate programming interpreters, often entirely
unknown to programmers. Intuitively, however, in bandwith-
constrained environments such detail could massively impact
the network requirements, as there will be one code path sent
for each piece of shared data.

IV. ARCHITECTURE FOR A LORA-ENABLED AGGREGATE
PROGRAMMING NETWORKING BACK-END

In this section we compare the LoRa network protocol
and the network requirements of aggregate programming,

Fig. 2. Aggregate computing interaction rebuilt on top of a network subject to
class A LoRa devices restrictions: the LoRa server is responsible for storing
and relaying messages from / to nodes. In the figure, ε is an empty message.

proposing a software architecture that enables interoperability.

A. Scheduling and retransmission

At first glance, aggregate computing seems to be requiring
LoRa class C devices. In fact, the computational model re-
quires to be able to receive messages from neighbors while
in sleep phase, and class C devices are designed to do
so. Actually, however, the only requirement is that, at the
beginning of the computation round, each node can retrieve
a table where, for each neighbor, every code path is mapped
to its value. The interpreter is agnostic with respect to the
way such structure is built and maintained. Consequently, it is
possible to devise a strategy which allows any kind of LoRa
device to work, an example of which is provided in Figure 2:
i)) EDs send their messages at the end of their round to the
GW; ii) the GW forwards them to the server, which is in turn
responsible for collecting and storing such messages; and iii)
once a new message is received from an ED, the server initiates
a downlink transmission during the receive window of that ED,
forwarding all messages received by all other neighboring EDs
since the previous uplink of the same node.

B. Segmentation

The aggregate programming interpreters expect to be en-
abled to send any amount of data through the communication
channel. However, due to the LoRa limitations discussed
in Section II, the payload sent over the network must get
segmented (and joined on the other side) in order to fit the
packet size. This issue is rather prominent and cannot get
ignored even in a simplistic implementation designed to work
only if programs are guaranteed to provide payloads smaller
than a packet size: in fact, in the reasonable hypothesis that
devices compute rounds at approximately the same frequency,
the downlink response message size grows linearly with the
number of neighboring devices, likely requiring segmentation
also for very simple programs when a sufficient number of
nodes joins the system.

C. Software architecture

With a consistent mapping between the LoRaWAN protocol
and aggregate programming networking expectations, we can

Protelis interpreter

Protelis program

LoRa Network
backend

Serial port
communication

LoRa
gateway
bridge

LoRa
server

MQTT
broker

LoRa App
server

UDP

MQTT

MQTT

MQTT

UDP

LoRa server
software

Aggregate
computing
backbone
emulation

Neighborhood
management

MQTT

Fig. 3. The proposed architecture, comprising both the node side (left) and
the server side (right). Circles with arrow depict active components. Novel
components are depicted in orange, pre-existing ones in lime green. The
LoRa server software is surrounded by a darker box. Two new modules
bridge the existing Protelis interpreter with the serial interface exposed
by a LoRa module. Multiple gateways forward their packets to a LoRa
gateway bridge, which translates to MQTT. The LoRa server and LoRa app
server deal with encryption and authentication issue. The novel Aggregate
Computing backbone emulation builds the concept of neighborhood, receives
and assembles uplinks from the node, computes and sends back downlinks.

include in the picture the existing LoRa and aggregate pro-
gramming software, and identify a possible logical architecture
to serve as foundation for an actual design. Our proposal is
depicted in Figure 3. It includes two macro-modules: one,
in charge of using the LoRa node as a network interface
on the LoRa enabled devices; the other, sitting on a device
which can communicate with the MQTT broker, in charge of
orchestrating the communication among multiple nodes.

The “client side” components implement a Protelis
NetworkManager, which serializes, segments, and sends
the message produced at the end of the computation. In order
to send it, it may need to open the communication multiple
times in order to transmit the whole payload, as the packet
size can be as small as 51 bytes. After each message sent, it
tries to receive new messages, originally sent by neighbors,
and relayed by the gateway. Because the size of messages to
be received could be (and usually is) larger than the size of
the message sent, and because (at least for class A devices)
a downlink to the node can happen only after a successful
uplink, the node may initiate a sequence of communications
with no payload with the sole goal of successfully receiving
all the data being sent from the gateway.

The “server side” components depicted in the right-hand
side of Figure 3 could be living on the same server or be
spread on different machines, given that: i) the LoRa gateway
bridge can successfully communicate with the gateway(s); and
ii) all the components can publish and subscribe to topics of
the same MQTT broker. There are two key novel components:
the backbone emulator which is in charge of implementing
the communication protocol, and the neighborhood manager
that encodes the strategy for building the logical network
overlay on top of the physical star of star network native
of LoRaWAN. In this architecture, the backbone emulator
subscribes to a topic where the LoRa software infrastructure

publishes messages received from registered nodes, appropri-
ately decrypted and decorated with network information. Such
data is reassembled in case of segmentation and then stored,
along with relevant network information. Upon the reception
of the first chunk of an end-round message, the backbone
emulator queries the neighborhood manager for the current set
of devices neighboring the sender, gathers their most recent
message, serializes (and, if necessary, segments) them, then
schedules a sequence of downlinks to send responses to the
sender, realizing the protocol depicted in Figure 2.

The overlay configuration produced by the neighborhood
manager may be changed in order to achieve the best trade off
between network diameter and bandwidth usage. For instance,
an aggregate application with small payloads, whose perfor-
mance scale with the network diameter (such as a replicated
gossip [22]), and with a number of devices in the order of
tenths, could benefit from a fully connected topology. Other
applications may require or work best with a topology defined
on the basis of the physical distance between devices, and
other may require different logical topologies.

V. EXPERIMENTS WITH THE PROTELIS LORA-BACKEND

We provide a prototype implementation of the proposed
architecture, written in Java and Kotlin, for the Protelis
language.3 The aim of the prototype, besides providing a
reference implementation, is to better understand the issues
related to the interplay of the two technologies in analysis.

A. Hardware platform and software configuration

We deployed the system using a Microchip LoRa evaluation
kit, comprising a single gateway and two class A end nodes.
All the hardware was connected to the same desktop computer
via USB for power and direct control. Both EDs and the
GW expose themselves as serial devices, and can be config-
ured and controlled directly from any USB-equipped machine
(including Android phones). The gateway is connected with
a point-to-point network to a server where the LoRa server
stack, the MQTT broker, and the Protelis backbone emulator
are executing. As stated in the introduction, we do not aim
to provide a new aggregate programming interpreter which
can execute on the computationally-limited microcontroller
integrated on the LoRa devices. In our experiments, we
used LoRa nodes as supplemental networking interfaces for
computationally better equipped systems, e.g., Rasperry PI-
like devices and smartphones.

B. Experiment design

The goal of our initial investigation is understanding the
impact of using a LoRa communication backend on the
Protelis interpreter, the limitations it imposes on programs,
and collect a set of recommendations for future, LoRa-aware
development of the interpreter internals. Hence, we used the
payload size as metric for our investigation to measure how big
are payloads generated by Protelis, using different techniques
for encoding them. Payload size directly impacts the count of

3The prototype is available at https://github.com/DanySK/protelis-lora-mqtt

TABLE I
THE APPLICATION PAYLOAD SIZES, WHERE ALL VALUES ARE IN BYTES

AND THE SIZE OF LZMA-COMPRESSED DATA IS BETWEEN PARENTHESES.

Local program
Java Kryo Elsa

Identity 135 (138) 27 (52) 2 (25)
Flatten 44 (67) 23 (48) 20 (44)
Json 9 (33) 4 (27) 3 (26)

Simple share program
Java Kryo Elsa

Identity 297 (261) 71 (86) 57 (79)
Flatten 148 (142) 39 (60) 24 (49)
Json 29 (49) 24 (44) 24 (44)

Gradient program
Java Kryo Elsa

Identity 740 (490) 368 (242) 439 (292)
Flatten 549 (355) 315 (209) 398 (260)
Json 360 (240) 357 (238) 356 (235)

Device count program
Java Kryo Elsa

Identity 1536 (749) 898 (420) 1005 (497)
Flatten 1309 (611) 839 (384) 940 (466)
Json 1032 (479) 1028 (474) 1027 (473)

uplinks and downlinks required, with direct consequences on
power and time-on-air, which in turn limits the round rate a
Protelis program can be executed at.

Before being sent, the payload can get through three phases:
preparation (e.g. to rip off ancillary data), serialization, and
compression. Only the central phase is strictly required. We
compared three preparations: identity, in which the phase is
not performed; flatten, in which code paths are cleaned of
data not strictly required to rebuild them, and the mapping
between them and the computed object is reduced to a linear
array of alternating values; and json, in which code paths are
cleaned and transformed in base 64 strings, and the whole
map is encoded in JSON. The latter strategy is fragile, as
it requires all the data sent away to be JSON-serializable.
We deployed three serialization mechanisms: the built-in Java
serialization library; and two third party libraries, Kryo4

and Elsa5. We tested both the size with uncompressed and
LZMA-compressed (a variation of LZ77 [23]) payloads. We
compared all the strategies across four Protelis programs with
increasingly higher complexity: Local computes a local func-
tion, its payload serves the sole purpose of notifying neighbors
that the node is still alive in the neighborhood; Simple share
computes the minimum value across neighbors; Gradient
builds a distributed data structure measuring distances from a
source; Device count accumulates the count of devices along
a spanning tree in a sink, and then broadcasts the result to
every node in the network. Finally, we replaced the default
CodePath class of Protelis, optimized for simulations, with
a new version, featuring a smaller footprint.

4https://github.com/EsotericSoftware/kryo/
5https://github.com/jankotek/elsa

C. Results and discussion

Table I summarizes the results. Plain Java serialization is
consistently worse than alternatives. Ripping unnecessary data
off code paths is always beneficial, however, for very small
payloads, using JSON provides the best results. Compression
can greatly reduce the size, but it should only get applied if
payloads are larger than, approximately, 140 bytes. Below this
threshold, compression (at least LZMA) spoils results.

Implementation of code paths is critical to produce smaller
payloads, and the existing implementations are not focused
on the issue: we suggest further development to be devoted
to reduce such size, in order for aggregate computing to
become a viable programming alternative for networks of
LoRa devices. Possibly, an analysis of the aggregate program
could be performed in advance, allowing for enumeration
of possible code paths, and great reduction in packet size.
However, this is likely to interfere with some key features that
depend on dynamicity, such as higher-order, code mobility, and
meta algorithms. Another critical aspect is that every message
is always sent in its entirety, regardless the differences with
the previous ones. In many cases, the message is similar to its
predecessor: deltas could lead to noteworthy improvements.

The current implementation uses three bytes for segmenta-
tion (used, respectively, as packet identifier, segment number,
and total segments expected). This limits the maximum worst
case payload to 12240 bytes; complex programs, however, are
likely to exceed such threshold. A more sophisticated mech-
anism for segmentation should be devised to allow choosing
between different segmentation mechanisms depending on the
payload size, in order to save space for application data.

Finally, the limitations imposed by LoRa in terms of time-
on-air and bandwidth call for better decoupling between
round computation and network communication, which could
execute concurrently, with the latter possibly at a frequency.

VI. CONCLUSION

In this paper, we presented the first attempt at executing
aggregate computing programs on actual long range, low
power communication networks. Our contribution includes
a software architecture for executing aggregate programs on
LoRa networks, as well as an open source prototype imple-
mentation. The prototype was exercised in order to better
understand where to focus the efforts in order to improve the
efficiency of aggregate programming in resource-constrained
systems. Aggregate computing could be a viable programming
paradigm in resource-constrained situations, however, the ex-
isting implementations should get improved by including i) a
more size-efficient way of computing code paths, and ii) the
possibility of using differences in place of whole messages.

REFERENCES

[1] S. Grant, “3GPP low power wide area technologies,” GSMA White
Paper, 2016.

[2] A. Giorgetti, M. Lucchi, E. Tavelli, M. Barla, G. Gigli, N. Casagli,
M. Chiani, and D. Dardari, “A robust wireless sensor network for
landslide risk analysis: System design, deployment, and field testing,”
IEEE Sensors J., vol. 16, no. 16, pp. 6374–6386, Aug. 2016.

[3] A. Giorgetti, M. Lucchi, M. Chiani, and M. Z. Win, “Throughput per
pass for data aggregation from a wireless sensor network via a UAV,”
IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 4, pp. 2610–2626, Oct.
2011.

[4] H. Sherazi, G. Piro, L. Grieco, and G. Boggia, “When renewable energy
meets LoRa: A feasibility analysis on cable-less deployments,” IEEE
Internet Things J., pp. 1–12, May 2018.

[5] F. Wu, J. Redout, and M. R. Yuce, “We-safe: A self-powered wearable
IoT sensor network for safety applications based on LoRa,” IEEE
Access, vol. 6, pp. 40 846–40 853, 2018.

[6] W. Zhao, S. Lin, J. Han, R. Xu, and L. Hou, “Design and implementation
of smart irrigation system based on LoRa,” in IEEE Globecom Workshop
(GC Wkshps), Singapore, Singapore, Dec 2017, pp. 1–6.

[7] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.

[8] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,
“From field-based coordination to aggregate computing,” in COORDI-
NATION 2018, Proceedings, 2018, pp. 252–279.

[9] D. Pianini, M. Viroli, and J. Beal, “Protelis: practical aggregate pro-
gramming,” in ACM Symposium on Applied Computing, 2015, pp. 1846–
1853.

[10] R. Casadei and M. Viroli, “Towards aggregate programming in Scala,” in
Proc. First Workshop on Program. Models and Lang. for Distr. Comput.
ACM, 2016, pp. 1–5.

[11] S. Clark, J. Beal, and P. Pal, “Distributed recovery for enterprise
services,” in Proc. IEEE 9th Inter.l Conf. on Self-Adaptive and Self-
Organizing Sys. IEEE, Sep 2015.

[12] D. Pianini, S. Dobson, and M. Viroli, “Self-stabilising target counting
in wireless sensor networks using Euler integration,” in Proc. 11th IEEE
Inter. Conf. on Self-Adap. and Self-Organiz. Syst., SASO , Tucson, USA,
Sept. 2017, pp. 11–20.

[13] M. Viroli, R. Casadei, and D. Pianini, “On execution platforms for large-
scale aggregate computing,” in Proc. of the ACM Inter. Joint Conf. on
Pervasive and Ubiquitous Computing, Sept. 2016, pp. 1321–1326.

[14] R. Casadei and M. Viroli, “Programming actor-based collective adaptive
systems,” in Programming with Actors, 2018, pp. 94–122.

[15] W. Hirt and S. Pasupathy, “Continuous phase chirp (CPC) signals for
binary data communication-part I: Coherent detection,” IEEE Trans.
Commun., vol. 29, no. 6, pp. 836–847, Jun 1981.

[16] O. Seller and N. Sornin, “Low power long range transmitter,” Feb. 2016,
U.S. Patent 9,252,834.

[17] H. Wang and A. O. Fapojuwo, “A survey of enabling technologies of
low power and long range machine-to-machine communications,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2621–2639, June 2017.

[18] AN1200.22 - LoRa Modulation Basics, Semtech, 2015.
[19] N. Sornin et al., LoRaWAN 1.1 Regional Specification, Semtech, 2017.
[20] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-

Segui, and T. Watteyne, “Understanding the limits of LoRaWAN,” IEEE
Commun. Mag., vol. 55, no. 9, pp. 34–40, Sept. 2017.

[21] F. Damiani, M. Viroli, D. Pianini, and J. Beal, “Code mobility meets
self-organisation: A higher-order calculus of computational fields,” in
Proc. Inter. Conf. Formal Techn, for Distrib. Objects, Compon., and
Syst. FORTE , Grenoble, France, June 2015, pp. 113–128.

[22] D. Pianini, J. Beal, and M. Viroli, “Improving Gossip dynamics through
overlapping replicates,” in Proc. Inter. Conf. on Coordination Models
and Languages, Greece, June 2016, pp. 192–207.

[23] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343,
May 1977.

