
Asymptotic Zero-Transition Activity Encoding for Address Busses
in Low-Power Microprocessor-Based Systems

Luca Benini ' Giovanni De Micheli ' Enrico Macii * Donatella Sciuto t Cristina Silvan0 i+

Politecnico di Milano
Dip. di Elettronica e Informaslone

Milano, ITALY 20133

* Stanford University
Computer Systems Laboratory

Stanford, CA 94305

Abstract
In microprocessor-based systems, large power savings can be
achieved through reduction of the transition activity of the on-
and off-chip busses. This is because the total capacitance be-
ing switched when a voltage change occurs on a bus line i s
usually sensibly larger than the capacitive load that must be
charged/discharged when internal nodes toggle. I n this paper,
we propose an encoding scheme which is suitable for reducing
the switching activity on the lines of an address bus. The tech-
nique relies on the Observation that, i n a remarkable number
of cases, pa t t ems traveling onto address busses are consecutive.
Under this condition i t may therefore be possible, f o r the de-
vices located at the receiving end of the bus, to automatically
calculate the address t o be received at the next clock cycle; con-
sequently, the transmission of the new pattern can be avoided,
resulting i n an overall switching activity decrease. We present
analytical and experimental analyses showing the improved per-
formance of our encoding scheme when compared to both binary
and Gray addressing schemes, the latter being widely accepted
as the mos t ef ic ient method for address bus encoding. W e also
propose power and timing ef ic ient implementations of the en-
coding and the decoding logic, and we discuss the applicability
of the technique t o real microprocessor-based designs.

1 Introduction and Motivation
The switching activity on system-level busses is often responsi-
ble for a substantial fraction of the total power consumption for
large VLSI systems. Large loads are usually connected to off-
chip busses due to 1/0 pins, long external board wires, and
board-level connected devices. In order to drive these large
board-level capacitances, the sizes of the devices in the 1/0
pads need to be much larger than the average on-chip features,
increasing also the pads intrinsic parasitic capacitance. Mini-
mizing the switching activity on off-chip busses may thus have
a sizable impact on power dissipation.
In this work we focus on microprocessor-based systems. Data
and address busses are the core of the interface between a micro-
processor and the external world. The increasing gap between
the speed of the microprocessor and the speed of the system
interface has pushed CPU designers to increase the bandwidth
of the data transfers. Moreover, modem software applications
span a very large address space. As a result, both data and
address busses have become very wide: Existing CPUs such as
the DEC Alpha AXP have a 64-bit wide address space. With
very wide address and data busses the power dissipation on bus
interfaces is becoming a primary concern.

* Politecnico di Torino
Dip. di Automatica e Informatica

Torino, ITALY 10129

Universiti di Brescia
Dip. di Elettronica per I'Automazione

Brescia, ITALY 25123

Encoding techniques for limiting the number of signal transi-
tions on the bus lines have been the subject of recent investi-
gation. In [l], Stan and Burleson have proposed a bit encoding
approach for the reduction of the average number of switchings
occurring on a bus. The basic observation which has originated
their work is that using a transition-basedencoding instead of a
level encodingmay limit the number of transitions in the case of
non-equiprobable input lines. The technique of [l] first encodes
the data words in such a way that the probabilities of each bit
become as unbalanced as possible (using limited weight codes),
and then applies transition encoding at the bit level.
In a later work [2], Stan and Burleson have proposed the bus-
invert code. This scheme uses redundancy to save power. If
the Hamming distance between two successive patterns is larger
than N / 2 (where N is the bus width), the new pattern is trans-
mitted with inverted polarity, thereby achieving a maximum of
N / 2 signal transitions on the bus. An extra line I is needed to
signal to the receiving end of the bus which polarity is used for
the transmission of the incoming pattern. If the words trans-
mitted on the bus are independent and uniformly distributed,
the average number of transitions per clock cycle is also low-
ered by less than 25% of the original value, due to the binomial
distribution of the distance between consecutive patterns. The
drawback of this approach is that it requires an extra bus line.
The encoding methods discussed so far perform well when no
information about possible data correlation is available. In par-
ticular, they work fine when data patterns to be transmitted
are randomly distributed in time (e.g., data exchange between
a microprocessor and the data cache). Therefore, they seem to
be appropriate for encoding the information traveling on data
busses. This is because, except for some specific applications
such as arithmetic and DSP circuits, patterns being transmit-
ted over these busses usually have very limited correlation.
When the objective shifts to address bus encoding, a radically
different behavior is observed. The addresses generated by a
running microprocessor are often consecutive, since instructions
are stored in adjacent sections of the memory space, and struc-
tured data are stored in consecutive memory locations for better
locality. Clearly, there are exceptions to this behavior (control-
flow instructions cause interruptions in the sequence of consec-
utive addresses on the instruction flow, and data not stored in
arrays are often addressed without any regular pattern), and
techniques for determining a mapping of the data to the phys-
ical memory which reduces the total switching activity on the
address bus have been introduced by Panda and Dutt in [3]. In
any case, we have that sequential addressing usually dominates.

77
1066-1395197 $10.00 0 1997 IEEE

To exploit this unique property of address busses, Su et al. [4]
have proposed to reduce the switching activity on communi-
cation devices of this type by adopting the Gray code for ad-
dresser. Gray code is particularly attractive since it guarantees
single bit transitions when consecutive addresses are accessed.
The results reported in [4] show that the number of bit switches
is reduced by 37%, on average, on several benchmark programs
when standard binary encoding is replaced by Gray encoding.
Although Gray code is suitable for reducing the switching ac-
tivity, we need to consider the power overhead caused by the
presence of additional circuitry for encoding and decoding. It is
unrealistic to assume that the address computation units, the
data-path, the memory decoders and even the compiler could be
modifiedto generate Gray code addresses. Therefore, a Gray en-
coder must be placed at the transmitting end of the bus, and a
Gray decoder is required at all receiving ends. In [4] the subtle
trade-off between cost of encoding/decoding and the savings on
the address busses is not discussed. Moreover, as it will shown
later in the paper, Gray code does not achieve the minimum
switching activity. In [5], some architectural solutions are pro-
posed for the realization of the Gray addressing circuitry, and
their performance are compared to the pure binary addressing
in the case of a 16-bit address bus. In addition, the issue of
modifying the Gray code so as to preserve the one-transition
property for consecutive addresses of byte-addressable machines
is extensively discussed.
In view of the discussion above, in this paper, we focus on the
problem of reducing the switching activity on address busses
through application of a dedicated encoding scheme. The mech-
anism we propose is somewhat related to the bus-invert method
of [2], in the sense that both approaches rely on the addition of
a redundant line to reduce the total number of transitions that
may happen when streams of patterns are transmitted over the
bus.
The main idea exploited by our encoding scheme, called in the
sequel the TO code, is that of avoiding the transfer of consec-
utive addresses on the bus by using a redundant line, INC, to
transfer to the receiving sub-system the information on the se-
quentiality of the addresses. When two addresses in the stream
to be transmitted are consecutive, the INC line is set to 1, the
address bus lines are frozen (to avoid unnecessary switchings),
and the new address is computed directly by the receiver. On
the other hand, when two addresses are not consecutive, the
INC line is driven to 0 and the bus lines operate normally.
With the hypothesis of infinite streams of consecutive addresses,
the T O code enjoys the property of zero transitions occurring on
the bus. Therefore, it outperforms the Gray code since, under
the same assumption, Gray addressing requires one line switch-
ing per each pair of patterns. Moreover, as it will be shown in
the paper, the TO code performs better than the Gray code even
in the more realistic case of streams of consecutive addresses of
limited lengths.
The increments between consecutive patterns can be paramet-
ric, reflecting the addressability scheme adopted in the given
architecture. In this respect, our code has the same capabilities
of the Gray scheme [5].
Although the TO encoder and decoder are more area demand-
ing than the Gray ones, the TO bus interface t u r n s out to be
faster (the critical delay of a Gray decoder grows linearly with
the number of bus lines to be decoded, while in the TO decoder
we propose the critical delay has logarithmic behavior). Per-
formance of the coding-decoding scheme is essential, since in
modern microprocessor-based systems bus width and clock rate
are both constantly increasing.

In spite of the fact that the TO encoding and decoding logic is
more expensive, in terms of area, than the Gray one, the power
savings achieved by bus encoding are not offset by the energy
consumed by the additional circuitry. To support this claim,
we present detailed circuit-level implementations of such addi-
tional devices, and we report power dissipation results obtained
through simulation of a large set of properly selected input pat-
terns.
In summary, in this work we address the problem of reducing
the total switching activity on address busses in microprocessor-
based systems. More specifically, we propose a novel encoding
scheme with improved performance compared to the Gray code,
and we study in detail the trade-off between coding cost and
savings. We discuss the design of the encoder and the decoder
and we accurately estimate their cost in terms of power, area,
and timing.

2 Asymptotic Zero-Transition Encoding
Let us consider the ideal case of an infinite stream of consecutive
instructions. On such stream, Gray code achieves its asymptotic
best performanceof 1 transitionper emitted address. It appears
that Gray code is the best possible for reducing the switching
activity, because one bit difference is the minimum needed to
distinguish two binary numbers. The key observation that al-
lows us to improve upon this result is realizing that Gray code
is optimum only for irredundant codes, that is, codes that em-
ploy exactly N-bit patterns to encode a maximum of 2N data
words. If we add redundancy to the code, we can achieve better
performance.
Let us provide an additiondredundant line, INC. to the address
bus. Its purpose is to signal with value one that a consecutive
stream of addresses is output on the bus. If INC is high, all
other lines on the bus are frozen. When the redundant line is
driven to zero, the remaining bus lines are used as standard
binary codes for the new addresses. Obviously this redundant
code outperforms the Gray code on the ideal stream of consec-
utive addresses. Since all addresses of the ideal stream are con-
secutive, the INC line is always high, and the bus lines never
transition. As a consequence, the asymptotic performance of
our code is zero transitions per emitted consecutive address.
More formally, our encoding scheme can be described as follows:

where B(t) is the value on the encoded bus lines at time t ,
I N d t) is the additional bus line, b(t) is the address value at
time t and S is a constant power of 2, that we call s t r ide .
The corresponding decoding scheme can be formally defined as
follows:

(2)
(b('-') .+ S) if INC = 1 A t > 0

if INC = 0

Notice that the TO code retains its zero-transition property even
if the addresses are incremented by a constant stride equal to a
power of two (as it is often the case for practical machines which
are byte addressable, but that are able to access data or instruc-
tions aligned at word boundaries). Obviously, the stride does
not correspond to the memory granularity, but to the memory
word length or to the cache block size. Usually, the size of a
cache block is a multiple of the word length, and typical values
range from 4 to 32 bytes for first level caches, and from 2 to 256
bytes for second-level caches.

78

2.1
We evaluate the performance of the TO code in terms of the
average number of switchings required by the transmission over
the bus of different sequences of patterns. Since the code is
designed specifically for patterns that satisfy, in a large number
of cases, the sequentiality hypothesis, we study its behavior by
encoding artificially generated streams in which out-of-sequence
addresses are inserted with controlled probability.
For the experiment, streams of 100000 addresses have been gen-
erated with percentage of sequential addresses ranging from 0
to 100. The diagram of Figure 1 summarizes the results of our
analysis. In particular, it clearly shows that the average number
of transitions per bus line is smaller for the case of TO addressing
than for the pure binary encoding. As expected, the advantage
of the TO code becomes more remarkable as the percentage of in-
sequence addresses contained into the address streams increases.

Performance of the TO Code Bench

gsip

0.5 I I

Bua Stream Seq No. of Transitions Sav

, I 118743 60 231923 140209 40
96519 2 7 D 34326 62 130019

M 153069 16 17717.9 7.91711h 1 9

Length % Binary TO %

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

- , ,, .
I I I I

O 20 40 60 80 100
Percantage a1 In-Sequence Addresses

Figure 1: Performance for Artificially Generated Addresses.

The simulation of address streams generated ad-hoc substanti-
ates the theoretical performance of the TO code. However, in
order to prove its applicability to real cases, sequences of ad-
dresses produced by real-life commercial microprocessors run-
ning complete programs must be considered.
In Table 1, we report the total number of transitions that occur
on the 32-bit address bus of the MIPS microprocessor when
different benchmarks are executed. We consider three cases:

Transitions on the instruction address bus (I);

Transitions on the data address bus (D);

Transitions on a multiplexed address bus (H).
As expected, substantial reductions in the switching activities
are observed on the instruction address streams: The probabil-
ity of sequential addresses in such streams is very high across the
benchmark set, and the TO code is very effective in exploiting
this property. Quite surprisingly, consecutive addresses occur
with very low probability on the data address streams. This be-
havior is due to the fact that references to automatic variables
such as loop counters destroy the sequentiality of the address
streams even if array data structures are accessed sequentially.
Since the probability of sequential addressing is very low, in
this case the TO encoding provides only a marginal advantage
with respect to the binary encoding. The multiplexed bus has
an intermediate behavior. Although the sequentiality of the ad-
dresses on the bus is somewhat reduced by the time multiplexing
and by the inherent randomness of the data addresses, still the
TO encoding reduces the bus activity by a sizable amount.

Table 1: Performance for Real Addresses.

2.2 Comparison to the Gray Code
To accurately analyze the relative performance of the TO code
with respect to the Gray code, we have developed a probabilis-
tic model of the transition activity on the bus lines. We call
p the probability of having two consecutive addresses on the
bus in two successive clock cycles. Moreover, we assume that
when two non-consecutive addresses are issued on the bus, on
average N j 2 bus lines make a transition. This hypothesis is
somewhat pessimistic, because it is equivalent to assuming that
non-consecutive addresses are uniformly distributed over the full
address space. In real computer systems, jumps and branches
have usually some locality (for example, they have destinations
within segment boundaries), and the number of transitions on
the bus will be, on average, K 5 N / 2 . However, the exact value
of K is irrelevant to our analysis, and we assume K = N / 2 in
the following discussion.
The average number of transitions, N F , produced by the
Gray code for assigned values of p and N is given by the following
equation:

N z a y (q , N) = (1 - 9)- N t q
(3)

This is because there are N/2 transitions (on average) occurring
when the addresses are non-consecutive, and only one transition
taking place when the addresses are consecutive.
The model for the TO code is slightly more complex. We can
describe the behavior of the code through the two-state Markov
chain shown in Figure 2.

Figure 2: Markov Chain for the TO Code.

In the following discussion, the reader is assumed to be familiar
with the basic theory of Markov chains. Extensive background
material can be found in [6]. State H of the chain represents the
conditions for which INC is high (i.e., two consecutive addresses
are sent over the bus), while state L represents the opposite case.

79

From the definition of the TO code (Equation l), state L is
assumed to be the initial state. The conditionalstate transition
probability from state L to state H is q , while it is 1 - q if the
self-loop of state L is taken. Similarly, the conditional state
transition probability from state H to state L is 1 - q , while it
is q if the self-loop of state H is traversed. All the conditional
state transition probabilities are tht: edge labels of the Markov
chain of Figure 2. To f h d the average number of transitions for
the TO code we need to compute the stationary state occupation
probabilities of H and L.
The Markov chain of Figure 2 is irreducible and aperiodic [6];
therefore, we can compute the state probabilities by finding a
left eigenvector of the unit eigenvalue for the transition proba-
bility matrix, P, associated to the chain:

The eigenvector can be computed by solving the Chapman-
Kolmogorov equations [6], here expressed in matrix form:

and by imposing the normality condition:

PH PL = 3

The unknowns in the system of equations are the state probabil-
ities: PH and PL. By solving the system we obtain PL = 1 - q
and PH = q. Once the state probabilities are known, we can
compute the total transition probabilities as follows:

PLL = PL ' P L L = (1 - q) 2
PLH = P L ' P L H = (1 - 4 1 4
PHL = P H ' P H L = d l - q)

PHH = P H . P H H = q2

The last step in our derivationis to obtain the averagenumber of
bus signal switchings for each arc in the Markov chain. For the
LL arc we have, on average, N/2 transitions. For the LHarc we
have one transition (the INCline goes high and all bus lines do
not change value). For the HL arc we have N / 2 + 1 transitions
(N / 2 , on average, for the bus lines plus the falling transition
for INC). Finally, no transitions are made in the HH arc. The
average number of transitions for the TO code is therefore:

In Figure 3 we plot NEo and N F as a function of the prob-
ability q for a given value of N .

tNtr

0

Figure 3: Comparison for the Theoretical Case.

To compare the performance of the two codes it is useful to
obtain the value of q for which the two curves intersect. This
can be done by solving the equation:

N:'(N, 9) = N ~ (N , 4)

We obtain q = 112. This is an interesting result for two reasons.
First, the intersectionpoint doesnot dependon N, hence the rel-
ative performance of the two codes is independent from the bus
width. Second, the TO code outperforms the Gray code when
the probability of having two consecutive addresses is larger
than 112. As a consequence, the TO code is convenient even if
we have very short bursts of consecutive addresses. Although
the performance difference is larger when q = 1, most address
streams have q > 112.
Note that, if the worst case is considered, that is instead of N/2
transitions we substitute N transitions in equations 4 and 3, the
same intersection on the two curves is obtained, i.e., q = 1/2,
still independent of the bus width.
Experimental evidence supports the theoretical result presented
above. The diagram of Figure 4 compares the average number
of bus line transitions for the two encoding schemes when the
address streams used to study the performance of the TO code
(see Figure 1) are supplied as input patterns.

0 20 40 60 80
Percentage d InSequenca Addresses

100

Figure 4: Comparison for Artificially Generated Addresses.

In Table 2 , we compare the T O code to the Gray code in the
case of address streams produced by the MIPS microprocessor
when the same benchmarks of Table 1 are used.
The data in the table show that the TO code performs better
than the Gray code for both the instruction address streams and
the multiplexed address streams. For the data address streams,
the two codes have similar performance, with a slight advantage
of the Gray code. This result is encouraging, because it confirms
the key conclusion we have drawn from our theoretical analysis:
The T O code outperforms the Gray code for those cases (i.e.,
streams with high values of q) when a sizable improvement is
possible over the pure binary code. When the address streams
are not sequential, T O , Gray and binary codes have similar per-
formance; in this cases, the binary code is thus the right choice,
since it does not require any encoding and decoding circuitry.
As a final remark, it should be noticed that for the data in
the table the cross-over point of NEo and N Y is actually a
little below the value of 0.5 computed analytically, thus implying
an even wider range of applications in which TO addressing is
preferable to Gray encoding.

80

Bench Bus Stream Scq No. of Tronsition. s OV

Length % Gray TO %
gsip I i i m 3 BO 202236 140209 31

D 34326 62 120246 96619 21
M 163069 46 912634

Table 2: Comparison for Real Addresses.

3 TO Encoder and Decoder
To fully evaluate the effectiveness of the TO code, we need to
measure the cost of encoding/decoding binary addresses. In this
section, we first propose architectures for the TO encoder and
decoder. Then, we discuss their implementations. Finally, we
provide details about possible extensions to the case of variable
strides and multiplexed busses.

3.1 Architecture
At a given clock cycle, t , the encoder computes the incremented
address of cycle t - 1 and compares it to the address generated
at cycle t . If the incrementedold (t - 1) address and the new (t)
address are equal, the INC line is raised, and the old address is
left on the bus. The encoder architecture is shown on the left of
Figure 5. The incrementer can be programmable, to be able to
flexibly define the constant increment S. The encoder inserts one
cycle delay between the arrival of the address b and the output
of the encoded bus B. We do not consider this delay an overhead
of the encoding. Even if binary code is used (i.e., no encoding),
the FFs on the output B would be needed because the address
b is generated by complex logic which produces glitches and
misaligned transitions. The FFs filter out glitches and align
the transitions on B to the clock edge. Glitches on B must
be avoided because B is connected to large output buffers that
should always be driven by clean and fast edges, to eliminate
excessive power dissipation and signal quality deterioration.
The decoder architecture is even simpler. At any given clock
cycle, the last cycle's address is incremented. If the INC line is
high, the old incremented value is used for addressing; otherwise,
the value coming from the bus lines is selected. The decoder is
depicted on the right of Figure 5.

INC

Figure 5: Block Diagrams of the TO Code Encoder and Decoder.

The encoder/decoder implementationis optimized for minimum
delay. If the speed constraints are not tight, low-power imple-
mentations should be considered. For example, it is possible to
disable the incrementer in the decoder when INC = 0. In this
case, however, the incrementer delay would be added to the criti-
cal path (startingfrom the late arrivingsignal INC) , and perfor-
mance would be penalized. We consider delay constraints, the
most critical ones in high-performance microprocessors. Since
the bus input b is produced by the complex address computa-
tion logic, it is expected to have a late arrival time. Thus, the
critical path will be in the encoder from b through the compara-
tor EQ and the control-to-output delay of the multiplexer (the
setup time of the register controlling the bus B must be added
to the critical path as well).
If the arrival time of b is not critical, the next critical path is
through the incrementer, the comparator and the multiplexer.
It is unlikely that this relatively simple logic will ever become the
critical path of a complex microprocessor design, where much
more complex tasks are usually performedin a single clock cycle.
Consequently, we will discuss the possibility that the encoder
could constrain the critical path because of the delay from the
late arriving b to the output of the multiplexer (going through
the comparator).
Fortunately, the combination of the TO encoder and decoder is
very fast on the critical path: The comparator can be imple-
mented with an XOR tree structure (which has a logarithmic
delay Dcmg = K , , , l o g (N)) and the delay through a multi-
plexer is weakly dependent on the width of the bus. The de-
pendence is due to the load on the control input which increases
linearly with the width of the bus. If we drive the control in-
put (SEL) with a tapered buffer, the delay has a logarithmic
dependence on the bus width: D,,, = K,, ,Eog(N). In the
formulas for Dcmp and D,,, the constants Kcmp and K,,,
are technology dependent. The incrementers in the encoder and
decoder are not strongly timing constrained, thus we can imple-
ment them in a power-efficient fashion, as long as their delays
do not become critical.
Compared to the Gray encoder and decoder [5], our architec-
tures are more area and power consuming. However, the per-
formance of the Gray scheme is limited by the decoder (im-
plemented as a chain of EXOR gates [5]) , which has a delay
Dgcay = K, , , ,N . For wide busses in performance-constrained
systems, the delay penalty of Gray addressing may be simply
unacceptable, leaving the TO code as the only alternative to
standard binary encoding. For purely power-constrained sys-
tems, the designer's choice will be based on the trade-off be-
tween the additional power savings on the bus provided by
the TO code and the reduced power dissipation of the Gray
encoder/decoder. Gray code would probably be the preferred
choice for area-constrained systems where power dissipation is
a secondary concern.

3.2 Implementation
The encoder and decoder architectures describedin the previous
section have been specified in Verilog HDL at the RT level,
simulated for functional verification and a prototype has been
synthesizedusing Synopsys Design Compiler with the Motorola
M5C library designed for operation at 3.3V.
The path from input b to the output of the multiplexer has
been found to have a delay of 2.8ns. If we assume a clock cycle
of 10ns, the decoder uses less than 30% of the clock cycle. The
critical path for the decoder is much shorter than the one of the
encoder, since it reduces to the delay through the control input
of the multiplexer.

81

The small number of gate delays on the critical and the logarith-
mic dependence of the delay from the bus width indicate that the
decoder-decoder achieve good performance. However, to com-
plete our analysis we need to evaluate the power dissipation of
the encoder and the decoder. We have obtained an estimate of
the power dissipation of the gate-level implementation of the en-
coding/decoding circuitry by simulsting the synthesized blocks
with the streams of addresses used to plot the diagrams of Fig-
ures 1 and 4, and by collecting data on the switching activities.
We used Synopsys Design Power to correlate such switching ac-
tivities to power dissipation.
Although we obtained absolute power dissipation estimates for
encoder and decoder, these values are are not what we are look-
ing for, because we are interested in the relative power of the
additional interface circuitry versus the power saved on the bus
by the encoding scheme. Since our final purpose is to reduce the
total power dissipation, the power consumedin the encoder and
the decoder must be smaller than the power saved by adopting
the TO code on the bus.

400 I

Power (uW -

350 - ..,
s

300

200

0 2 0 4 0 6 08
q

Figure 6: Practical Applicability of the TO Code.

The trade-off between power dissipation of the encoder/decoder
and the power savings on the bus lines is illustrated in Figure 6.
On the abscissa of the graph we have plotted the probability
of having sequential addresses on the bus (4). The ordinate
is Pty:nN, the minimum power dissipation per bus transition,
for which the power gain due to the reduced switching activity
of TO code overcomes the power dissipation of the TO encoder
and decoder. can be computed with the simple formula
ptZLN = (p e n , -t Pdec) /Ntpc , where P e n c + Pdee is the power
dissipation of encoder/decoder and Nt,, is the average num-
ber of transitions saved per clock cycle when TO code is used
(compared to binary code).
The actual minimum power values are technology dependent,
therefore subject to drastic changes. However, the characteristic
shape of the trade-off curve confirms the basic intuition: The
TO code is convenient only when the probability q of sequen-
tial addresses appearing on the bus is higher than a minimum
technology-dependent threshold. The experiments in Sections
2.1 and 2.2 show that for both the instruction address streams
and the multiplexed streams of real-life programs the value of
q is well within the flat region of the trade-off curve; therefore,
it may be convenient to use the TO code. The data address
streams are in the steep region of the curve, hence TO encod-
ing would not represent an attractive alternative to pure binary
addressing.

The choice of using the TO code for the multiplexed and instruc-
tion address streams strongly depends on the bus load and on
the Cleverness of the implementation of the encoder/decoder.
When the circuitry is designed for maximum performance using
standard cells and automatic synthesis (as it has been done for
our prototypes), the TO code becomes of interest for high loads,
typical of off-chip busses. If a custom-designed optimized ver-
sion of the encoding/decoding circuitry is available, the TO code
may become a viable alternative even for on-chip busses. Notice
that power-efficient implementations of encoder/decoder trans-
late the curve of Figure 6 toward lower values of Pty:ze but
do not alter significantly its shape. We are currently investigat-
ing custom designed low-power implementations of encoder and
decoder that would make TO code attractive even for on-chip
address busses.

4 Conclusions and Future Work
In this paper we have proposed a new encoding scheme, called
TO code, which targets the minimization of the switching ac-
tivity on address busses when the transmission of sequential
addresses dominates.
The TO code achieves zero-transition behavior in the theoreti-
cal case of infinite streams of in-sequence addresses. However, it
provides more efficient performance than the Gray code also for
short streams, under the assumption of a probability of consec-
utive addresses happening in successive clock cycles larger than
0.5. This conclusion has been discussed theoretically and con-
k e d by measurements on real address streams of programs
running on a MIPS microprocessor.
The TO code is a redundant code, since it requires an addi-
tional bus line among the communicating units to enable the
data words decoding. However, the overhead is negligible if
we consider the address bus width (32 or 64 bits) in current
microprocessor-based systems.
For the purpose of carefully evaluating the power performance of
the proposed encoding scheme, we have implemented encoding
and decoding circuits, and we have analyzed their power con-
sumption. This has allowedus to come up with some indications
on whether the TO encodingcan be used throughoff-chip encod-
ing/decoding interfaces. In spite of the fact that the obtained
power savings were noticeable, it seems clear that the appro-
priate way of proceeding is to integrate the implementation of
the encoding and decoding circuitry within the microprocessor
and the memory controller, respectively. This may give fur-
ther advantages since it may be possible to come up with more
sophisticated encoders and decoders which exploit, at least in
part, the existing logic already present on these chips. In par-
ticular, encoding information can be extracted directly from the
microprocessor control unit, while decoding can sometimes be
completely eliminated when the memory controller is driving
special memory architectures, such as nibble-mode DRAMS.

References
M. R. Stan, W. P . Burleaon, "Limited-Weight Codca for Low-Powcr,"
IWLPD-94, pp. 209-214, Napa Valley, CA, April 1994.
M. R. Stan, W. P. Burleson, "Bus-Invert Coding for Low-Power
I / O , " IEEE Trans. on VLSI Systems, Vol. 3 , No. 1 , pp. 49-68,
March 1996.
P. R. Panda, N. D. Dutt , "Reducing Address Bus Transitions for
Low Power Memory Mappping," EDTC-96, pp. 63-67, Paris, France,
March 1996.
C. L. Su, C. Y. Tsui, A. M. Despain, "Saving Power in the Con-
trol Path of Embedded Procesaora," IEEE Design and Test , Vol. 11,
No. 4 , pp. 24-30, Winter 1994.
H. Mehta, R. M. Owens, M. J . Irwin, "Some Issues in Gray Code
Addressing," GLS-VLSI-96, pp. 178-180, Ames, IA, March 1996.
K. S . Trivedi, Probability and Statistics with Reliability, Queueing,
and Computer Science Applications, Prcntice-Hall, 1982.

82

