
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/14 8 1 2/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Lan g b ein, F r a nk Cu r d , M a r s h all, Andr e w David a n d M a r tin, R alp h Rob e r t 2 0 0 2.

N u m e ric al m e t ho ds for b e a u tifica tion of r eve r s e e n gin e e r e d g eo m e t ric m o d els.

P r e s e n t e d a t : Geo m e t ric Mo d eling a n d P roc es sing, Wako, S ai t a m a, Jap a n, 1 0-1 2 July

2 0 0 2. P roce e dings of Geo m e t ric Mod eling a n d P roc e ssin g. IEEE, p p. 1 5 9-1 6 8.

1 0.1 1 0 9/GMAP.200 2.10 2 7 5 0 7

P u blish e r s p a g e:

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Numerical Methods for Beautification of Reverse Engineered Geometric Models

F. C. Langbein A. D. Marshall R. R. Martin

Department of Computer Science, Cardiff University

PO Box 916, 5 The Parade, Cardiff, CF24 3XF, UK

{F.C.Langbein,A.D.Marshall,R.R.Martin}@cs.cf.ac.uk

Abstract

Boundary representation models reconstructed from 3D

range data suffer from various inaccuracies caused by noise

in the data and the model building software. The quality of

such models can be improved in a beautification step, which

finds geometric regularities approximately present in the

model and tries to impose a consistent subset of these reg-

ularities on the model. A framework for beautification and

numerical methods to select and solve a consistent set of

constraints deduced from a set of regularities are presented.

For the initial selection of consistent regularities likely to

be part of the model’s ideal design priorities, and rules in-

dicating simple inconsistencies between the regularities are

employed. By adding regularities consecutively to an equa-

tion system and trying to solve it using quasi-Newton op-

timization methods, inconsistencies and redundancies are

detected. The results of experiments are encouraging and

show potential for an expansion of the methods based on

degree of freedom analysis.

Keywords: Reverse Engineering; Beautification; Geomet-

ric Constraints; Numerical Constraint Solver.

1. Introduction

Reverse engineering a physical object is the extraction of

information from the object that is sufficient for a particu-

lar purpose like reproduction or redesign. For an overview

see [18]. Our aim is to reconstruct a boundary representa-

tion (B-rep) model of an engineering part from 3D range

data, which has the desired geometric properties present

in the original, ideal design. Our ultimate goal is an au-

tomated, intelligent 3D scanning system suitable for naive

users and non-engineering applications as well as engineers.

In this paper we consider engineering parts with only

planar, spherical, cylindrical, conical and toroidal surfaces

that either intersect at sharp edges or are connected by fixed

radius rolling ball blends. The blends are treated separately,

and are ignored in the rest of this paper. Valid B-rep mod-

els approximating these objects, referred to as initial mod-

els, can be generated by current reverse engineering sys-

tems [2]. However, the generated models suffer from var-

ious inaccuracies created by sensing errors arising in the

data acquisition phase as well as approximation and nu-

merical errors in the reconstruction process. Improving the

precision of the sensing techniques and the reconstruction

methods may reduce the errors, but some errors will always

remain. As our intention is to create an ideal model for a

physical object, we also have to consider additional errors

introduced by possible wear of the object and the particu-

lar manufacturing method used to make it. To ensure that

certain intended geometric regularities, like aligned cylin-

der axes or orthogonal planes, are present, they have to be

enforced at some stage of the reverse engineering process.

Previous approaches augment the surface fitting step by

constraint solving methods [1, 19] such that, for instance,

two planes are fitted simultaneously under the constraint

that they are orthogonal. Another approach is to identify

features like slots and pockets whose approximate location

and type are provided by a human and use these to drive the

segmentation and surface fitting phase [17].

We propose to improve the initial model in a separate

post-processing step which we call beautification. Improv-

ing the model without further reference to the point data

avoids the computational expense of constrained fitting.

In [8, 9, 10] we presented various methods to find regulari-

ties approximately present in the initial model. This meth-

ods create a large set of potential regularities, which are not

all likely to be consistent with each other. Ideally we wish

to enforce a consistent subset of these regularities on the

initial model which describes the ideal design of the model.

Numerical methods to select and solve a set of consistent

geometric constraints to rebuild an improved B-rep model

are presented. We start by summarizing the regularities con-

sidered and how they are expressed as constraints. For a

general overview of geometric constraint topics see [4]. The

regularities are prioritized according to the likelihood of the

presence of the specific regularity types and the accuracy to

which they are already satisfied in the initial model. The

priority is used to decide which regularities should be re-

moved in case of inconsistencies. Furthermore, we detect

simple inconsistencies between the constraints to determine

selection rules, and select an initial set of regularities which

satisfies these rules to reduce the number of inconsistencies.

To detect inconsistencies we add the regularities one at

a time to the system according to the priority and also con-

sider dependencies on other regularities. We solve the sys-

tem by minimizing the error of the constraints for the reg-

ularities in a least-squares sense employing quasi-Newton

optimization methods. If the system cannot be solved the

newly added regularity is rejected together with any regu-

larities dependent on it. Note that if there are rules indicat-

ing inconsistencies involving the rejected regularity we may

be able to consider previously deselected regularities.

The presented approach is our general framework for

beautification. Experiments show that the methods succeed

in selecting and solving a constraint system suitable for im-

proving models with simple inconsistencies and little inter-

action between major regularities. While these results are

encouraging the algorithm is rather slow due to the large

number of regularities involved. To address this and derive

a practical method for beautification we propose modifica-

tions of the presented methods to improve the speed of the

algorithm and handle more complex cases.

2. Regularities and geometric constraints

We describe the structure of the model and the potential

regularities detected in the initial model in terms of geomet-

ric constraints. As a single regularity usually requires multi-

ple geometric constraints we create a constraint set for each

regularity. The sets can only be added or rejected as a whole

in the selection process and we identify them with the reg-

ularities in the following. We also have required constraints

describing dependencies and the topology of the model. As

we do not consider topological changes they always have to

be part of the constraint system.

The constraints are handled as relations between geomet-

ric objects. The objects are described by a type and a set of

appropriate directional, positional, length and angular fea-

tures represented as scalars and 3D vectors. There are basic

features required to describe the object and extended fea-

tures dependent on other features for additional properties

as listed in Table 1. Root points for planes are created by

taking the average of polygonal edge loops of planar faces.

Furthermore, auxiliary objects (planes, cylinders, lines, di-

rections, positions, lengths, angles) are used to express cer-

tain regularities with simple constraints.

The geometric constraints are represented as equations

listed in Table 2. We require all direction vectors to be nor-

malized. Distance and angle constraints use either a con-

stant value, or a variable length or angle feature. They in-

Geometric Object Basic Features;

Extended Features

Plane Position, direction;

Polygonal loop root points

Sphere Position, radius

Cone Position, direction, semi-angle

Cylinder Position, direction, radius

Torus Position, direction, major radius,

minor radius;

Radii sum, radii difference

Straight Position, direction;

Length

Circle Position, direction, radius;

Circle segment angle

Ellipse Position, direction, major direc-

tion, major radius, minor radius

Vertex Position

Auxiliary line Position, direction

Auxiliary plane Position, direction

Auxiliary cylinder Position, direction, radius

Auxiliary position Position

Auxiliary direction Direction

Auxiliary angle Angle

Auxiliary length Length

Table 1.Geometric objects and their features.

clude equality, parallelism and orthogonality. The linear re-

lations between angles or lengths also include equality.

To enforce necessary dependencies between the base and

extended features, and the topology of the model, we create

various required constraints which must always be part of

the constraint system. Feature dependencies include con-

straints setting the loop root points to be the average of the

vertices in the loop, the length of a straight line to be the

distance between the end-points, the circle segment angle

to be the angle described by the centre and two vertices on

the circle (which can be expressed as the angle between two

auxiliary lines defined by the two position pairs), the major

direction of an ellipse to be orthogonal to the ellipse plane

normal, and appropriate constraints for the radii sum and

difference of tori. Furthermore, for each direction we add a

constraint normalizing its 3D vector.

For the topology of the model we add constraints requir-

ing each vertex to lie on appropriate edges and faces. This

does not fully specify the relation between adjacent faces.

These relations are determined exactly by the regularities,

e.g. constraining a cylinder axis to be parallel to a plane

normal. As the regularity detection phase considers all pos-

sible relations between face features, and suggests multiple

options for special relations, the relations between adjacent

faces are part of the regularities. Furthermore, in order to

solve the constraint system we consider the edges in the

dtd = 1 Normalize direction d.

d1
td2 = cos(α) Angle between normalized directions

d1, d2 is constant or variable angle α.

‖p1 − p2‖ = λ Distance between positions p1, p2 is

constant length λ.

‖p1 − p2‖ = νl Distance between positions p1, p2 is

constant multiple ν of length l.

p = 1/n

n
∑

k=1

pk p is average position of n positions

p1, . . . , pn.
∑

k αksk = 0 Linear relation between lengths or an-

gles sk with constants αk.

s = α Constant value α for length or an-

gle s.

p ∈ O Position p on geometric object O.

Table 2. Geometric constraints.

model as independent of the intersection between adjacent

faces. They become auxiliary objects used to express cer-

tain regularities. When rebuilding the model all intersec-

tions are recomputed. Note that it is possible to add ad-

ditional positions to describe the topology, especially for

cases where there are no natural vertices. In the following

we assume that constraints for the necessary relations be-

tween the features and the topology are always included in

the constraint system.

In [9, 10] we presented various methods to detect local

regularities of reverse engineered geometric models. These

regularities are defined in terms of similarities between fea-

tures derived from the B-rep model elements, and special

values for these features. Besides directional, positional,

length and angle features, we also use derived features such

as axes (a position, direction pair). Similarities between fea-

tures are expressed as cluster hierarchies where each cluster

represents a regularity. Using the clusters we seek regular

arrangements of the features. Instead of setting maximum

tolerances we only use two tolerances setting the minimum

value when two angles or lengths should be considered as

potentially different [8]. For instance, we look for approx-

imately equal lengths by creating a cluster hierarchy, and

also try to find possible special values, like an integer, close

to the average length in each cluster. The hierarchies are

truncated by detecting a large jump in the tolerance values

between the clusters.

The regularities with the priorities (see Section 3) are

listed in Table 3. Each regularity is described by a constraint

set. For the hierarchies the regularities are arranged in a

tree, where a regularity can only be added to the constraint

system if its children are also present. Furthermore, we add

dependencies requiring other regularities to be present be-

fore we can add a particular one, e.g. requiring a parallel

direction regularity to be present before a corresponding

aligned axes regularity is added.

We have separate regularity hierarchies for parallel di-

rections, equal positions, and equal length and angle pa-

rameters. For each cluster of similar features we create a

corresponding auxiliary object and constrain the features in

the set to be equal to this object. To handle the hierarchies

we constrain the auxiliary object of the children to be equal

to the auxiliary object of the parent.

In order to handle regularities for axes of planes (created

by the plane normal and loop root points), cones, cylinders,

tori, circles and ellipses we create auxiliary lines. These are

required to be parallel to the direction of the object and the

corresponding position of the object has to lie on the line.

Aligned axes are also represented as clusters describing

the distances between the axes with respect to a suitable

parallel direction cluster. For each cluster we create an aux-

iliary line and require that the positions of the axes in the

cluster lie on this line. To represent the hierarchy we add an

equal-position and a parallel-direction constraint per child

requiring that the auxiliary line of the child is equal to the

auxiliary line of its parent. The regularities are also marked

as dependent on the parallel direction regularity.

For each cluster of axis intersections we create an auxil-

iary position and constrain it to lie on all axes in the cluster.

For the hierarchy we constrain the auxiliary positions of the

children to be equal to the parent’s auxiliary position.

Furthermore, we have cluster hierarchies of equal po-

sitions when projected onto special planes (2D partially

equal) and lines (1D partially equal). The special plane and

lines are derived from major directions in the model such

as main axes and orthogonal systems. Positions which are

equal when projected on a plane lie on the same line. Hence,

we create an auxiliary line for each cluster and constrain the

positions in the cluster to lie on this line. To express the hi-

erarchy we require the lines of the children to be incident

to the lines of the parent. Positions equal when projected

on a line lie in the same plane. Thus, we create a similar

structure using auxiliary planes. Both types of regularities

are marked as dependent on the parallel direction regularity

for the projection direction.

We also consider regular arrangements of parallel axes

on grids, equidistant arrangements on lines and (partially)

symmetrical arrangements on cylinders. We mark each of

these non-hierarchical regularities as dependent on the reg-

ularity requiring the axes to be parallel. For a symmetrical

arrangement on a cylinder we create an auxiliary cylinder

and require that the positions of the axes lie on that cylin-

der and their directions are parallel to the cylinder direc-

tion. For each of the symmetrically arranged axis locations

on the cylinder we create an auxiliary plane with a normal

constrained to be orthogonal to the cylinder axis. The an-

gles between these planes are set to an appropriate integer

multiple of 2π/n. To enforce the symmetrical arrangement,

the positions of the axes are constrained to lie on one of

these planes. For each of the special value regularity for the

cylinder radius we create a separate special value constraint.

For axes equally spaced along a line we create an aux-

iliary line, a plane p0 with a normal orthogonal to this line

and the direction of the parallel axes, and auxiliary planes

qk orthogonal to this line where the distances between them

are integer multiples of some variable length feature. The

axes are constrained to lie on p0 and an appropriate ql. For

axes arranged on a grid we create a second auxiliary line

and replace the single plane p0 by planes pk arranged in the

same way as the qk on the first line. Each axis is required to

lie on a plane pair ql, pk. Similarly to the auxiliary cylinder

radii we have separate regularities each specifying a spe-

cial value for the length feature indicating the base distance

between the planes along the line.

We distinguish planar and conical cases of symmetri-

cally arranged directions. In the first case we have a set

of directions orthogonal to a direction d0 and the angles be-

tween the directions are integer multiples of π/n for n ∈ N.

In the second case the angle to the direction d0 has some

other value and the angles between the directions projected

on the plane defined by d0 are integer multiples of 2π/n.

To create the constraints for the planar case we create two

orthogonal auxiliary directions d0, d1. For each direction

in the set we add a constraint requiring it to be orthogonal

to d0 and with angle to d1 being a suitable integer multiple

of π/n. In the conical case we have a list of possible spe-

cial values for the angle between the directions and d0. For

each of the special values we create a regularity specifying

the angles between the directions and d0 and d1. Note that

an orthogonal system is a special case of the conical case.

Furthermore, we also have lists of special values for an-

gles between individual directions. For each special value

and direction pair we create a separate constraint.

Finally there are regularities specifying special ratios be-

tween pairs of angle or length features and special values for

these features. We create appropriate linear relations and

constant value constraints.

3. Prioritizing regularities

As we expect to have inconsistent regularities, a mecha-

nism is required to select regularities which are more likely

part of the model’s ideal design. We base the selection on a

priority induced by a merit function. Note that the decision

about which regularities to choose is non-trivial and often

there is more than one choice.

To compute the priority w(r) of a regularity r we take a

weighted average of a measure we(r) of the numerical ac-

curacy to which the regularity’s constraints are satisfied in

the initial model, a merit wq(r) for the quality or desirabil-

ity of the regularity depending on specific arrangements and

constants involved, and a constant wb(r) describing a min-

imum desirability for each regularity type. This average is

weighted by a constant wc(r) indicating how common the

regularity is. We get

w(r) = wc(r) (cewe(r) + cqwq(r) + cbwb(r)) (1)

where all constants and functions are in [0, 1] and cq + ce +
cb = 1, e.g. ce = 3/6, cq = 2/6, cb = 1/6. The maximum

of w(r) is wc(r) and the minimum is wc(r)wb(r)cb.

For we(r) we combine the average angular error er in

radians and the average length error el of the regularity’s

constraints. we should be close to 1 for small errors and

drop quickly towards 0 when the errors become too large.

By converting the angular error to length units using the

maximum length Lm in the model we have

we(r) =
1

1 + cl(Lm sin(er) + el)
(2)

where cl is a user-defined constant indicating the base

length unit for the model, e.g. cl = 1.

wq(r) describes the desirability or quality of the regu-

larity if it could be enforced exactly on the model by con-

sidering the regularity type and geometric objects, their ar-

rangement and special values involved. We first define some

quality factors used to compute wq(r).
All the special values involved in the regularities have

the form v = ±(n/m)1/(r+1)b with integers n, m, and r
and some base value b like π or 1. We evaluate the quality

of special values using the function

wsv(m, r, b) =
3q(b)

3 + c0l + c1

(

m
MK − 1

)

+ c2r
(3)

where q(b) is a constant in [0, 1] evaluating the desirabil-

ity of the base value b (e.g. q(π) = 1, q(π/180) = 0.8,

q(1) = 1, . . .), M is the base used to represent m (usu-

ally 10), l is one less than the number of digits required to

represent m in the base M , and K is the number of consec-

utive zeros in the representation of m in the base M starting

with the lowest valued digit. c0 is a constant indicating the

importance of the length of the representation of m, c1 is a

constant indicating the importance of the non-zero part of m
and c2 indicates the importance of the root r, e.g. c0 = 0.01,

c2 = 0.005, c3 = 0.7. wsv favours special values with a

small non-zero part m/MK , small roots r and short repre-

sentations in the base M .

Another quality factor is the number n(X) in a set X of

B-rep model elements involved in the regularity which have

a common boundary element. It is computed as

wa(X, p) = exp (−(cw(p|X| − n(X)))cp) (4)

with user-defined constants cw and cp (e.g. cw = 0.11,

cp = 4) where the parameter p indicates the most desir-

able number of adjacent objects. We get high priorities for

Regularity r wc(r) wb(r) wq(r)
Parallel directions 1.00 1.00 0.8wsv(0, 1, π) + 0.2wt(O)
Symmetric directions (planar) 1.00 1.00 0.2wsv(2, 1, π) + 0.3wa(F, 1) + 0.1wt(O) + 0.4wra(r)
Symmetric directions (conical) 0.90 0.70 0.3wsv(m, r, b) + 0.3wa(F, 1) + 0.1wt(O) + 0.3wra(r)
Orthogonal system 1.00 1.00 0.6 + 0.3wa(F, 1) + 0.1wt(O)
Special angle between directions 0.90 0.60 0.8wsv(m, r, 1) + 0.2wa(0, 0.5)
Equal positions 0.80 0.55 wt(O)
2D partially equal positions 0.85 0.65 0.5wa(V, 0.5) + 0.5wt(O)
1D partially equal positions 0.83 0.60 0.5wa(V, 0.5) + 0.5wt(O)
Aligned axes 0.97 0.85 wt(O)
Axis intersections 0.90 0.80 0.1wa(F, 1) + 0.9wt(O)
Axes regularly on grid 0.90 0.85 0.3wt(O) + 0.7wra(r)
Axes equispaced on line 0.88 0.75 0.2wt(O) + 0.8wra(r)
Axes symmetrically on cylinder 0.95 0.90 0.3wt(O) + 0.7wra(r)
Equal lengths/angles 0.90 0.75 wt(O)
Special ratio between lengths/angles 0.80 0.55 wsv(m, r, 1)
Special values for lengths/angles 0.85 0.70 wsv(m, r, b)

Table 3. Regularity priorities.

adjacent arrangements close to the desirable arrangement

indicated by p. We can set X to the set of faces F which

should share common edges, the set of vertices V which

should be connected by edges or all geometric elements O
which should have a common boundary element. p is 1 if

we desire arrangements of the elements in loops and 0.5 if

we desire adjacent pairs.

For regular arrangements of directions or axes we have

a base distance which is a special value (n/m)b. For sym-

metrically arranged directions and axes on a cylinder with

base angle π/m we have 2m different positions and for

axes on a line we count the number of positions between

the first and the last occupied position. We prefer arrange-

ments for which most of the possible positions are occu-

pied. If all consecutive positions are occupied the quality

factor wra(r) for this arrangement is wsv(m, 1, b). Oth-

erwise we have a list of smallest integers k for which all

positions (starting with an arbitrary position) with the dis-

tance k(n/m)b between them are occupied. For each k we

add m/(kn)wsv(m/ gcd(m, kn), 1, b) to wra. For axes ar-

ranged regularly on a grid we have two orthogonal direc-

tions. For each of the directions we can project the occupied

positions in the grid on a line and handle the line like equi-

spaced axes along a line. The sum of the quality for both

lines gives the quality of the grid arrangement.

We also count the number c(t) of geometric objects of

the same type t involved in a regularity for the geometric

objects O and compute the quality

wt(O) =
1

|O|

∑

t∈ObjectTypes

c(t) exp
(

−(tw(|O| − c(t)))tp
)

(5)

with constants tw and tp, e.g. tw = 0.05, tp = 2.

Depending on the regularity type we select appropri-

ate quality factors and compute their weighted average.

E.g. for parallel directions we mainly consider the quality

wsv(0, 1, π) of the parallel angle, but also prefer regular-

ities with objects of the same geometric type. For planar

symmetrically arranged directions, we put the main empha-

sis on the number of occupied positions and faces arranged

in a loop as computed by wra(r) and wa(F, 1), but also

consider the special angle value for the planar arrangement

and the geometric types involved.

Table 3 lists the constants for wc and wb, and the way

wq is computed for the regularity types. wq, wc and wb

were derived from a part survey estimating the frequency

of regularities in simple mechanical components [15]. The

constants were in addition refined by the authors to adjust

the priority order of regularities in various example models.

Users may adjust these values depending on a particular ap-

plication or personal preference.

While the ordering can be adjusted by changing the con-

stants, the rather large number of constants makes it hard to

predict the effect of the changes for a user who is not aware

of the internal relations. A method which could choose the

priority depending on a few multiple-choice questions pre-

sented to a user might improve this. Alternatively we might

use neural networks to compute the priorities or use a belief

network to make a decision about which of the inconsistent

regularities to include.

4. Initial constraint selection and rules

The first stage of constraint processing attempts to re-

solve certain simple inconsistencies between the regulari-

ties. There are obvious inconsistencies between sets of reg-

ularities of the same type involving the same geometric ob-

jects but with different special values. These and similar in-

consistencies can easily be detected and eliminated before

we attempt to solve the system. Note that not all inconsis-

tencies can be removed in this way as there are more com-

plicated dependencies induced by multiple regularities be-

tween different geometric objects. As our regularities often

specify multiple potential relations between the same ge-

ometric objects, eliminating simple inconsistencies reduces

the number of constraint systems we have to check for solv-

ability and thus speeds up the algorithm.

By traversing the list of constraints from all regularities

we detect sets of constraints between the same geometric

objects. We first note constraints between the same geomet-

ric objects with the same constants involved to avoid adding

the same constraints more than once to the system. Further

we detect regularities associated with constraints between

the same objects with different constants as these cannot be

added at the same time. For this we create a rule indicating

that only one of the contradictory regularities can be added

at the same time.

Further inconsistencies arise from incidence constraints.

We expand the inconsistency check by considering these in-

cidences when checking if the constraints involve the same

geometric objects. This creates rules with a condition that

the rule only applies if the incidence constraints are present.

We get conditional rules of the form that if certain regu-

larities are part of the constraint system then other combi-

nations of regularities cannot be part of it. In the current

implementation we only consider incidences described by a

single regularity.

Regularities which are part of the currently selected con-

straint system are marked active, and the others are marked

inactive. The rules from the inconsistency detection stage

can in general be expressed as selection rules which involve

two sets of regularities R1, R2 and two non-negative inte-

gers n1, n2. A rule is violated if more than nl elements of

Rl are active for all l = 1, 2 for which Rl 6= ∅. One in-

terpretation of this is, that if at least n1 + 1 elements of R1

are active, then at most n2 elements of R2 are allowed to

be active. In this form R1 and n1 represent the condition,

which is derived from the incidence constraints, and R2 and

n2 represent the regularities creating the inconsistency un-

der this condition. Note that if R1 = ∅ and n1 = 0 we have

an unconditional rule.

Initially all regularities are marked as active. The rules

are enforced one at a time by calling Algorithm 1. The

method is called for each rule r with D = ∅. The algorithm

adjusts the selection status of the regularities such that in

addition to the already enforced rules the new rule is also

satisfied and the regularities with the highest priorities are

active. For this we have to consider deactivating regulari-

ties in R1 or R2 to enforce the new rule r (step I). In case

Method enforce (r,D): Enforce rule r with the regular-

ity sets R1, R2 and integers n1, n2 on the constraint system

without activating any of the regularities in the set D.

I. Deactivate regularities in Rl to satisfy r, if there are

more than nl active regularities in Rl for all l = 1, 2
for which Rl 6= ∅ and note the deactivated regularities

in d:

1. For l = 1, 2 find all active sets Al in Rl and re-

move the nl elements with the highest priority.

2. Find the set Al0 with the smallest largest priority.

3. Call deactivate(c, d) for all c ∈ Al0 .

II. Find a set X of regularities which may be activated due

to the deactivations by checking for each c ∈ d and for

each previously enforced rule e:

1. If before step I for e there were at least n1 + 1
active elements in R1 and now there are less or

R1 is empty and there were n2 active elements in

R2 and now there are less, add all inactive regu-

larities from R2 to X .

2. If before step I for e there were at least n2 + 1
active elements in R2 and now there are less or

R2 is empty and there were n1 active elements in

R1 and now there are less, add all inactive regu-

larities from R1 to X .

III. D = D ∪ d.

IV. Try to activate all regularities in X:

1. Recursively add all inactive children and depen-

dent regularities of the elements in X to X and

remove those which are in D (including those

which depend on them).

2. In order of priority call active(c,X) for each

element c of X .

V. Call enforce(r,D) for all already enforced rules r
which may be affected by the activations in IV.

Algorithm 1. Enforce a selection rule.

of a violation of a rule we have to deactivate elements in

one of the Rl such that at most nl elements are still active.

Let Al be the set of elements we would have to deactivate

in Rl to satisfy the rule and wl be the largest priority in Al.

Then we choose to deactivate the set with the smallest wl.

This way we keep regularities with larger priorities active

rather then trying to maximize the priority sum of all active

regularities. Note that the priorities have been designed to

compare regularities in case of an inconsistency, but not for

a global desirability. Alternative selections are possible, but

also make it harder to influence the selection by adjusting

the constants for the priorities.

The deactivations may allow the activation of other reg-

ularities as it may reduce the number of active elements in

an Rl set of another, already enforced rule (step II and IV).

If we activated any other regularity we have to check al-

ready enforced rules involving these regularities (step IV).

To avoid activating and deactivating regularities over and

over again in the recursive calls of enforce we keep a set

of deactivated regularities and do not allow any of them to

become active again during the recursion. Note that this set

is reset to ∅ for each initial call of enforce for each rule.

The function deactivate(c, d) used in enforce de-

activates a regularity c and adds it to the set d. It also deac-

tivates any regularities depending on it recursively (its par-

ents in the hierarchy and those explicitly marked as depen-

dent) and adds them to d.

The function activate(c,X) tries to activate a regu-

larity c with the option that the regularities in the set X may

also be activated. It first checks if the regularities on which

c depends are active. If one is inactive and in X , it removes

it from X and tries to activate it calling activate recur-

sively. If not all dependencies are active or can be activated,

c cannot be activated. Furthermore, for all already enforced

rules involving c we check if c can be activated. Assume c
is an element of R2 and more than n1 elements of R1 are

active or R1 is empty. In order of highest to lowest priority,

the inactive regularities in R2 which are in X are removed

from X and we try to activate them recursively as long as

less than n2 elements of R2 are active or c is next in the

order (which means the rule allows the activation of c). We

handle the case where c is an element of R1 similarly. If all

the rules involved allow the activation of c, c is activated.

Any previously enforced rule for which the activation of c
caused exactly nl + 1 elements of Rl to be active for either

l = 1 or l = 2 is added to the set of rules which have to be

checked in step V of Algorithm 1.

For instance, assume that we have four regularities A, B,

C, D which are all marked active and for which w(A) <
w(B) < w(C) < w(D). First we add a rule with R1 = ∅,

n1 = 0, R2 = {A,B}, n2 = 1, i.e. either A or B, not both,

can be active. enforce deactivates A due to the lower

priority. We add a second rule with R1 = {B}, n1 = 0,

R2 = {C,D}, n2 = 1, i.e. if B is active, then either C or

D, not both, can be active. We deactivate B in this case.

This influences the selection for the first rule and we can

activate A again. Finally we enforce a third rule with R1 =
{B,D}, n1 = 0, R2 = {A,C}, n2 = 1, i.e. if either B
or D is active, then either A or C, not both, can be active.

We deactivate A to satisfy the rule, leaving only C and D
active. Considering the first rule we have to check if B
can be activated due to the deactivation of A. Activate

initially succeeds in this, but the recursive check deactivates

B again due to the second rule.

5. Numerical constraint solver

We employ numerical optimization methods to solve the

constraint system [5]. After the initial regularity selection

we solve the system using quasi-Newton methods minimiz-

ing the least-squares error of the constraints from Table 2.

The main problem is to resolve all inconsistencies to get

a solution satisfying the selected regularities exactly and

eliminate redundancies to avoid numerical problems.

For quasi-Newton methods [3, 14, 16] we have a choice

for the linear search method and for the approximation

method for the Hessian matrix of the second partial deriva-

tives. For the line-search method we considered Goldstein-

Armijo and PWS [16]. While both methods perform well,

PWS is more stable and more suitable for the BFGS quasi-

Newton update. For the Hessian the BFGS update is a

widely used and suitable method. Instead of the simple

BFGS iteration formula we use a formula based on the

Cholesky decomposition of the Hessian matrix with a con-

dition guard initiating restarts of the iteration [16]. Further

improvements to numerical stability, especially for incon-

sistent cases, were achieved by using a damped version of

the BFGS method [11]. Using a hybrid method switching

between BFGS and a Gauss-Newton step improved the con-

vergence rates and still performed reasonably well with re-

spect to numerical stability [14].

A very simple approach to solving the constraint system

would be to find the minimum of the least-squares error.

If the selected constraints do not contain any inconsisten-

cies this performs well. However, when inconsistencies are

present the solution does not exactly satisfy any constraints

dependent on the inconsistencies, and sometimes the new

model is worse than the initial model, as the optimization

distributes the error over the constraints. One improvement

is to use a weighted least-squares error function where the

weights are the priorities of regularities. In order for the

weights to work well, the errors of all constraints must be

in the same error units. This approach causes the constraint

equations to become more complicated which slows down

the optimization method and also reduces the numerical sta-

bility. While the results are biased towards constraints with

larger weights, the constraints are still not satisfied exactly

as there is still some disturbance from inconsistent con-

straints with smaller weights. In order to satisfy the con-

straints exactly the inconsistencies have to be eliminated.

5.1. Detecting numerical inconsistencies

To detect numerical inconsistencies we add the regular-

ities to the system one at a time in order of priority, and

check if the optimization method still finds a solution. If

so, the regularity did not introduce a (numerical) incon-

sistency and remains active. Otherwise, we permanently

deactivate the regularity (and all regularities depending on

it) and check if we can activate additional regularities due

to the deactivation. Note that the required constraints dis-

cussed in Section 2 are always part of the constraint system.

Method solve(C, x0, R): Find a solvable subset of the

regularities in C and solve the constraint system it de-

scribes. x0 is the vector of feature values derived from the

initial model. R is a set of the required constraints and rules

indicating when to use them.

I. Add the topological constraints in R to the set of ac-

cepted constraints S and set vector x to the values of

features used by the constraints in S.

II. While C contains active regularities:

1. Remove the active element c from C with the

highest priority for which all constraints it de-

pends on are in S.

2. S1 = S ∪ {c} ∪ R(c), where R(c) are the con-

straints from R required by c and set x1 to the

values in x and expand it if new features are

added using the values from x0.

3. Solve x1 = arg minz f(z) with the initial value

x1 and the least-squares error function f for C1

also considering redundancies.

4. If f(x1) ≈ 0, set S to S1 and x to x1.

5. Otherwise, mark c and its dependants as per-

manently removed and check if we can activate

other regularities in C.

Algorithm 2. Select a consistent constraint
system and solve it.

When adding the regularities one at a time we have to

consider the dependencies between them in addition to the

priorities. We add the regularity with the highest priority for

which all dependencies are already part of the system. This

can be implemented efficiently using a priority queue.

Algorithm 2 is the consistent constraint selection and

solving method. It is called with all regularities C marked

as active or inactive according to the initial selection. The

vector x0 contains the values for all features involved in the

constraint system based on the values in the initial model.

When creating the constraint system only some of these val-

ues are actually part of it and we choose an appropriate sub-

set of them to form the vector x. In addition we have a set of

required constraints R. Most of these constraints describe

the topology of the initial model and are always present in

the selected constraint system S (step I). Some required

constraints are only added if certain features or auxiliary

objects are in S, e.g. we only normalize a direction if it is

involved in some other constraint as well.

In step II.3, when consecutively testing regularities, we

also check for redundant constraints which could make the

system numerically unstable. A redundant constraint is one

which can be added to the constraint system without chang-

ing the set of solutions. To identify numerical redundancies

we use the method described in [13]. When a new constraint

in {c} ∪ R(c) is already exactly satisfied by the current so-

lution the constraint may be redundant. In this case we dis-

turb the constant values involved in the constraint and try to

solve the system with the modified values. If the system re-

mains solvable, the constraint is not redundant. Otherwise,

the constraint is redundant and is not added to the constraint

system, but remains active. We first check for redundancy

and then try to solve the system with the original constants

adding all new, non-redundant constraints.

The test if additional regularities can be activated in case

a constraint was permanently disabled in step II.5 is similar

to steps II – V of Algorithm 1 where d consists only of a

single element.

Algorithm 2 selects a numerically consistent constraint

system. Only inconsistencies which cause an overall least-

squares error larger than the tolerance used in step II.4 for

the convergence test are detected. With appropriate param-

eters for the optimization method such that it always con-

verges, no consistent regularities are removed.

6. Examples

We have tested the methods above using various reverse

engineered models with the priority constants given in Sec-

tion 3. In the following we summarize the results using the

models shown in Figure 1 which also lists the number of

regularities (including all clusters and special values) and

the derived constraints in total detected in the initial model,

and those initially selected and accepted for the final sys-

tem.

The parallel and orthogonal relations between the planes

of the cube (model (a)) were favoured by the priorities com-

pared to all other angles only close to 0 or π/2. Hence,

they were added first to the constraint system. Other poten-

tial regularities of (a) relate to equal edge lengths and spe-

cial values for these lengths. As the priority mixed equal-

length and special values the resulting object had only ap-

proximately equal edge lengths. By adjusting the priori-

ties in favour of equal-lengths and wq rather than we all the

equal-length regularities were accepted. The selected spe-

cial value for the edge length was correctly set to 2.0. But

note that if the desired value were only close to 2.0, it is

still likely that the improved model would have an exact

edge length of 2.0.

Model (b) has two symmetrically arranged, planar direc-

tion sets based on the angle π/4. Together with the orthogo-

nal relation between the symmetrically arranged planes and

the blue planes these regularities have the highest priority

and were hence imposed exactly on the model. For the edge

lengths there were similar problems as for the cube. Even

by adjusting the priorities, only the group of short edges

could be forced to have the same length. The values in the

other two groups of lengths were close to each other, but dif-

ferent special values were favoured. Special ratios between

(a) (b) (c)

Reg. Cons. Reg. Cons. Reg. Cons.

Total 89 261 382 1808 216 1263
Initial Selection 34 156 263 1384 156 910

Final System 23 132 117 712 93 586

Figure 1. Example models with number of regularities/constraints at different stages.

these values also supported undesired values. The redun-

dancy and inconsistency checks correctly determined that

only one angle between the groups of red and blue planes

can be set. Choosing its value resulted in problems similar

to the special length values.

In model (c) the green planes are arranged symmetrically

in a plane and the red cylinders are arranged symmetrically

on a cone. Due to the high priorities of these regularities

they were imposed first together with the orthogonality re-

lations. The edge lengths and the angle for the conical ar-

rangement had the same problems as for models (a) and

(b). In addition in this case we had no regularity specify-

ing a direct relation between the group of cylinders and the

planes. Hence, there was a small angle between the cylin-

der directions and the plane normals when projected in the

same plane. The edge length regularities and the topological

constraints avoided that this relation changed the topology

or even broke the model, however.

The tests show that major regularities, independent of

other major regularities, are easily identified and imposed

on the model. Yet specific instances of each model relat-

ing to special values for lengths and angles cannot be guar-

anteed. In general there is always a choice between high

quality regularities and relations close to those in the initial

model. For a more consistent choice the decision method

would have to consider the global structure of the model.

Furthermore, there may be hidden relations in the model

which are broken if they are not detected explicitly as a reg-

ularity.

A major problem is the running time of the algorithm.

On a single AMD Athlon MP 1200MHz with 512MB run-

ning GNU/Linux the algorithm took about 2 hours for ob-

ject (a), 25 hours for object (b) and 23 hours for object (c).

This is due to the large number of redundant and inconsis-

tent constraints caused either by ambiguities or by larger

errors, especially for objects (b) and (c). For each of these

regularities the algorithm tries to solve the complete system

even if no further regularities can be added. At about half

the running time only redundant and inconsistent regulari-

ties were left.

To reduce the number of regularities which have to be

checked we filtered the regularities by setting lower lim-

its for the priorities and the constraint errors in the initial

model. This reduced the time for object (a) to about 10 min-

utes and about 10 hours were required for object (b) and (c).

More detailed interactive selection of constraints could re-

duce the time further. This, however, requires a lot of user

interaction and specific interactive selection of constraints,

which is already quite complex for objects (b) and (c) and

also not our goal as we aim for minimal high-level user in-

teraction.

Most of the time the algorithm requires is spent on solv-

ing the constraint system. As most of the regularities are ap-

proximately present in the model they only cause relatively

small errors. For the optimization methods this means we

have to use a strict convergence test and take a relatively

small step in each iteration to avoid accepting or rejecting

regularities due to numerical instabilities. This combined

with the large number of constraint systems which have to

be checked is the main cause for the long time required.

7. Structural inconsistencies

To improve the algorithm we require a fast solvabil-

ity test when adding a new regularity. We seek a method

which could indicate inconsistencies without solving the

system. Furthermore, we would like to identify solvable

sub-systems, which once a solution for the sub-system has

been found can be replaced by a single rigid object such that

the remaining constraint system becomes simpler. Degree-

of-freedom (dof) analysis methods as, for instance, de-

scribed in [6, 7, 12] address this problem. They detect struc-

tural inconsistencies and redundancies in a constraint graph

derived from the constraint system without solving the sys-

tem. They also identify solvable sub-systems which can be

solved numerically.

Ways to include these methods are currently under in-

vestigation by the authors. We intend to replace step II.3 in

Algorithm 2 by a dof analysis which only calls the numeri-

cal solver if a solvable sub-system has been found. As not

all inconsistencies can be detected by a dof analysis a nu-

merical solvability test is still required, but it is not required

to call it for each regularity.

8. Conclusions

We have presented a method using some simple geo-

metric reasoning and a numerical constraint solver to se-

lect a consistent constraint system from a large set of auto-

matically generated constraints describing desired geomet-

ric regularities of a reverse engineered geometric model.

Weakly related major regularities of simple models can be

identified and imposed correctly on the model. However,

the large number of possible combinations of regularities

is the cause for slow performance of the method. The pre-

sented approach is our general framework for beautification.

For a practical system more sophisticated selection methods

and faster solvability tests are required.

In future work we will investigate methods to detect

structural inconsistencies in the constraint system and com-

bine this with the numerical methods. Furthermore, we will

consider topological changes to the model and alternative

methods for selecting the regularities in the presence of in-

consistencies.

Acknowledgements

This project is supported by the UK EPSRC Grant

GR/M78267. We would like to thank T. Várady and

P. Benkő from the Hungarian Academy of Sciences and

CADMUS Consulting and Development Ltd. for providing

reverse engineering software and helpful discussions.

References

[1] P. Benkő, G. Kós, T. Várady, L. Andor, R. R. Martin. Con-

strained fitting in reverse engineering. Computer–Aided Ge-

ometric Design, 19(3):173–205, 2002.

[2] P. Benkő, R. R. Martin, T. Várady. Algorithms for reverse

engineering boundary representation models. Computer-

Aided Design, 33(11):839–851, 2001.

[3] Å. Björk. Numerical Methods for Least Squares Problems.

SIAM, Philadelphia, 1996.

[4] B. Brüderlin, D. Roller. Geometric Constraint Solving and

Applications. Springer, Heidelberg, New York, 1998.

[5] J.-X. Ge, S.-C. Chou, X.-S. Gao. Geometric constraint sat-

isfaction using optimization methods. Computer–Aided De-

sign, 31:867–879, 1999.

[6] C. M. Hoffmann, A. Lomonosov, M. Sitharam. Decompo-

sition plans for geometric constraint systems, part I: per-

formance measures for CAD. J. Symbolic Computation,

31(4):367–408, 2001.

[7] C. M. Hoffmann, A. Lomonosov, M. Sitharam. Decompo-

sition plans for geometric constraint systems, part II: new

algorithms. J. Symbolic Computation, 31(4):409–427, 2001.

[8] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Martin.

Approximate geometric regularities. Int. J. Shape Modeling,

7(2):129–162, 2001.

[9] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Mar-

tin. Finding approximate shape regularities in reverse en-

gineered solid models bounded by simple surfaces. In

D. C. Anderson, K. Lee (eds.), Proc. 6th ACM Symp. Solid

Modelling and Applications, pp. 206–215. ACM Press, New

York, 2001.

[10] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Mar-

tin. Recognizing geometric patterns for beautification of

reconstructed solid models. In Proc. Int. Conf. Shape Mod-

elling and Applications, Genova, Italy, 7–11 May, pp. 10–

19. IEEE Computer Society Press, Los Alamitos, CA, 2001.

[11] D.-H. Li, M. Fukushima. A modified BFGS method and its

global convergence in nonconvex minimization. J. Compu-

tational and Applied Mathematics, 129(1–2):15–35, 2001.

[12] Y.-T. Li, S.-M. Hu, J. G. Sun. A constructive approach to

solving 3D geometric constraint systems using dependence

analysis. Computer-Aided Design, 34(2):97–108, 2002.

[13] Y.-T. Li, S.-M. Hu, J.-G. Sun. On the numerical redun-

dancies of geometric constraint systems. In Proc. Pacific

Graphics, pp. 118–123. IEEE Computer Society Press, Los

Alamitos, CA, 2001.

[14] L. Luksan, E. Spedicato. Variable metric methods for uncon-

strained optimization and nonlinear least squares. J. Com-

putational and Applied Mathematics, 124:61–95, 2000.

[15] B. I. Mills, F. C. Langbein, A. D. Marshall, R. R. Mar-

tin. Estimate of frequencies of geometric regularities for

use in reverse engineering of simple mechanical compo-

nents. Technical Report GVG 2001–1, Geometry and Vi-

sion Group, Dept. of Computer Science, Cardiff Univer-

sity, 2001. <uri: http://ralph.cs.cf.ac.uk/

papers/Geometry/survey.pdf>.

[16] P. Spellucci. Numerische Verfahren der nichtlinearen Opti-

mierung. Birkhäuser, Basel, Boston, Berlin, 1993.

[17] W. B. Thompson, J. C. Owen, J. de St. Germain, S. R. Stark,

T. C. Henderson. Feature–based reverse engineering of

mechanical parts. IEEE Trans. Robotics and Automation,

15(1):57–66, 1999.

[18] T. Várady, R. R. Martin, J. Cox. Reverse engineering of ge-

ometric models – an introduction. Computer–Aided Design,

29(4):255–268, 1997.

[19] N. Werghi, R. Fisher, C. Robertson, A. Ashbrook. Ob-

ject reconstruction by incorporating geometric constraints in

reverse engineering. Computer–Aided Design, 31(6):363–

399, 1999.

