A dynamic data integration approach to build scientific workflow systems

Arne Bachmann, Markus Kunde, Markus Litz, Andreas Schreiber

German Aerospace Center
Simulation and Software Technology

{Arne.Bachmann, Markus.Kunde, Markus.Litz, Andreas.Schreiber}@dlr.de

Abstract

The need for collaboration between individual scientific
fields increases with the wish for more global engineering
optimizations and assessment requirements. Since areas of
research become more and more fine-grained domains of
there own, it is still very desirable to cooperate with other
experts with more chance than ever to gain synergies when
science is scattered as today. But this exchange of knowl-
edge comes only into consideration if it can be used in a
simple way with at most an moderate initial effort. To this
end a framework is developed that lets scientists easily use
knowledge of others without the need to understand their
work and technology completely. Furthermore a generic
common data format based on XML technology is devel-
oped for exchanging and storing data between different
domain-specific applications. To support all implementers,
a twofold abstraction layer was introduced to encapsulate
their knowledge shielding it from the technical environment.

1 Introduction

In today’s scientific world there are a huge number of
highly specialized but incompatible data formats available
that prohibit researchers of different scientific fields to eas-
ily cooperate. At German Aerospace Center (DLR) the need
for a common data exchange format to ease the origination
of projects in aircraft predesign was identified and worked
on to enable information exchange and global problem solv-
ing by researchers crossing the department boundaries. In
their own self-contained knowledge domains all institutes
and departments at DLR developed highly optimized tools,
but for more global optimization tasks institutes need to co-
operate. While this is basically possible using custom data
converters and batch-scripts for simple tool chains, this ap-
proach is not powerful and flexible enough for today’s de-
mands on collaborative projects.

The goal of this paper is to describe a feasible solution

for scientific workflows that can be fit to solve problems in
many scientific domains without dropping existing work-
flows by imposing too restrictive constraints. This paper
describes the development from the original data exchange
problem up to the current scientific workflow system and
finishes with the presentation of future plans.

The paper is organized as follows: Section 2 gives a
deeper motivation for the work carried out. Section 3 gives
an in-depth overview of the data format. In sections 4 and 5
the path from data integration to a workflow system is lined
out. In sections 6 connected projects that use our approach
are presented and sections 7 and 8 draw a conclusion in-
cluding a brief evaluation of current outcomes and expected
future extensions.

2 Motivation

For a successful cooperation in computer-aided opti-
mization processes and evaluations, scientists and engineers
need proper data interfaces to communicate knowledge and
aggregated data. To do so, usually computer scientists help
in designing data structures and software architecture as
well as computer infrastructure to create systems for re-
searchers that ease their work.

In each research area there are very good tools for spe-
cific problem areas available, often more elaborated and
accurate than found in commercially available all-in-one
solutions. The problem with dynamic creation of inter-
department cooperations was well known at DLR and let
to the inception of the TIVA project in 2003 (Technology
Integration for the Virtual Aircraft).

The work carried out in the TIVA and TIVA-2 projects
started from the observation, that there is no suitable com-
mon data exchange format to describe aircraft configura-
tions. While the standardization process is not yet finished
and may continue while there are still new application areas
coming into use, the combination and connection of differ-
ent tools via this new data format became more and more
important, as described in the following sections.



3 Common data format and data exchange

Despite the fact that there are a lot of data storage and
transfer formats around in the scientific world (cf. CDF [1],
HDF [2], Step [4], XSIL/BFD [12]), there was communion
over the idea of creating a DLR-wide extensible standard
format, originally designed for aircraft predesign.

3.1 Centralized dataset

Data exchange between different technical disciplines
is very important for automated toolchains. This can be
achieved by a common central database that is accessed by
all applications for data loading and data sharing. This com-
mon database was formerly just one data set for one aircraft
configuration, stored in a single XML file, thus bearing the
general XML advantages of providing a well-known syntax
and structure to wrap data [9]. To describe one aircraft con-
figuration, the XML-based Common Parametric Aircraft
Configuration Standard CPACS [10] was developed. The
central data set contains one master file referenced from ev-
ery application. Additional files in various formats can be
linked to the main file via file paths. The ability to transpar-
ently create in-document references is also being worked
on.

A file written in CPACS format describes an airplane
configuration with all necessary data for the initial pre-
design phase. The CPACS format contains global data for
describing an airplane as well as geometries and abstract
data like cost factors or flight missions. The configuration is
defined by larger hierarchically ordered construction units,
e. g. wings and fuselages. The standard also defines how to
store missions or how the simulation tools can write their
results back to the central data set and into satellite files.

Application

TIXI

Reduced I/O-files

[I Mapping

CPACSAccess

CPACS

Figure 1. Overview of the data flow between
the central data set and the applications.

3.2 Supporting Tools and Software

A software suite was developed to enable connected sim-
ulation software to communicate with each other via a cen-
tral data set in CPACS format. CPACS is completely based
on an XML-schema [15] that describes the structure and
valid data containing aircraft configurations. To enable
standalone applications to access XML formatted files there
are two different approaches:

— Either the application reads and writes XML data by it-
self,

— or a filter program must be written that transforms the
incoming XML data to the native format of the applica-
tion as input, and the application’s result is transformed
by the same or another converter back to CPACS-conform
XML. This is especially useful when the software is known
to work for a long time, cannot be changed because of li-
cense reasons (is commercial and/or not open source), or
there is no expert for the source in the project any more.
This approach shields the application developer completely
from dealing with XML, because the converter programs
could be written independently from XML experts only
with knowledge of the native file format of the application.
As shown in Figure 1 there are two helper libraries for data
manipulation, namely TIXI and TIGL.

3.2.1 TIVA XML Interface (TIXI)

Many applications use input files based on quite simple data
structures. Often single floating point or integer numbers
are used, and their meaning depends on the exact position
of these numbers in the input or output file. More advanced
types of these files are name/value pairs or lists of numbers
to reflect vector or array data. Based on these requirements
it was decided to design an API that supports the developer
with access and archiving their data via a simple interface to
XML. On top of the full-fledged XML-library libXML2 [5],
the easy-to-use C-library TIXI was designed to shield the
developer from the complexity of 1ibXML2 and XML pro-
cessing in general when performing simple tasks like writ-
ing an integer or reading a matrix. In most cases only the
XPath and/or the corresponding value is required to read or
write data. Language interfaces for Fortran and Python are
also provided.

3.2.2 TIVA Geometry Library (TIGL)

Another library we developed is for easy processing of ge-
ometric data stored inside CPACS data sets, and is called
TIVA geometry library. With TIGL it is possible to directly
execute geometric functions on fuselage and wing geome-
tries, with plans to add functions for other aircraft parts (e. g.
engines).



TIGL is written in C++ and uses the TIXT library to ac-
cess CPACS data sets, while leveraging data manipulation
of all supported geometry types to e. g. build up a 3D-Model
of the contained aircraft in memory.

At the time being only wings and fuselages are sup-
ported, with more to come. The functional range of the li-
brary goes from the computation of surface points in Carte-
sian coordinates up to export of airplane geometry in differ-
ent file formats (e. g. IGES [3] and STL [7]).

Beside these computational functions, TIGL could be
used to obtain information about the geometric structure it-
self, for instance how many wings and fuselages the current
airplane configuration has. The library provides external in-
terfaces to C and Fortran and could be used to build up new
supporting programs or to extend existing applications with
TIGL-enabled functions.

3.2.3 CPACSAccess

To get the necessary data out of the central data set and
for storing application results back to it, a converter called
CPACSAccess was developed to manage this data exchange.
It is worth noting that import and export of data is con-
trolled via mapping files that build the second abstraction
layer around each tool: CPACSAccess generates the XML
input file with data from the central data set via execution of
rules specified in a mapping file. Thus the complete data set
is transformed in a stripped and more compact XML input
dataset, enabling existing applications to use their custom
XML format to continue being used. After running, ap-
plications have to write their result files back in any XML
schema they choose, which is then taken by CPACSAccess
again and merged into the central data set according to the
rules contained in the (output-) mapping file (see Figure 1).

4 Data and application integration

The collaboration projects were originally undertaken
via simple batch scripts calling tools and larger applications
in a predefined manner, thus leveraging repeated execution
of process chains. Naturally after some time the approach
was no longer sufficient when requirements became harder
with regards to flexibility of process definition and custom
user manipulation of the tool chains as well as data visu-
alization. This called for a data and software integration
framework which was finally decided about at the end of
the TIVA project.

4.1 Framework selection
The choice of a framework was made in 2006. An anal-

ysis [11] collected relevant requirements, defined evalua-
tion criteria and formulated test cases. As experience in

the field of this type of frameworks was already available
the analysis consists only of requirements specialized for
projects at DLR and their classification. A market analy-
sis inspected several frameworks, hence a pre-selection of
six frameworks was decided about. These candidates were
tested by individual groups for the test cases defined before.
The results were recorded in a result-matrix.
In the following an extract of the requirements and the re-
sults of the framework selection is given.

The functional requirements can be divided into five dif-
ferent categories that build the fundament for the defined
test cases:

e Buildup and functionality of process chains. Several
functional requirements which are essential for the
functionalities of the framework regarding a process
chain (e.g. automatic execution of process chains,
ability to store/reload them)

e Usability. The usability requirements regarding the
user-group (e. g. graphical user interface, parameters
should not be limited)

e Additional required functionality. Essential require-
ments that have no direct connection to process chains
(e. g. support of scripting languages, availability of op-
timization algorithms)

e Price and legal issues. E.g. floating user license or
fixed desktop licenses

e Documentation and support. Willingness of the pro-
viding company to put effort into support

The discovered test cases were evaluated within defined
evaluation criteria ranging in six levels from very unsatis-
factory up to very satisfactory .

Besides the functional requirements all technical needs
were to be considered. For this an information matrix was
assembled that shows the availability of each criterion for
all frameworks examined. As the final result the ModelCen-
ter framework from Phoenix Integration [6], version 6.0 at
that time, was the most appropriate framework.

4.2 Integration of the Central Data Base
into the Framework

In a first version, a Java plugin for ModelCenter was de-
veloped to manage XML storage in a central location. Each
application attained access to the same, global data set and
was called in a fixed order. XML processing was under-
taken by using the Apache Xalan/Xerces libraries [§].



4.3 Wrapping the applications

The main advantage of the concept described in this pa-
per is a huge flexibility regarding the integration of an ap-
plication. The interface between the framework and the
requested application consists of several abstraction lay-
ers and a separate configuration file. The concept itself is
hereby called "tool wrapping’. Wrapping a tool or applica-
tion is hereby a piece of software which encapsulates the
base application and hides it from the environment outside
of the tool wrapper. The primary advantage is to have an ab-
straction layer for the outside environment which again can
use the interface provided by the tool wrapper. In this im-
plementation type the tool wrapper needs to be customized
for the wrapped application. The approach described at this
point implements a two-sided abstraction layer. On one
hand there is the usual ’environment-to-toolwrapper’ ab-
straction, on the other hand the tool wrapper is implement-
ing a generic interface to the wrapped application. This is
done by a specific configuration approach, described below.
This two-side concept creates the positive situation, that an
already existing application does not need to be customized
much. Figure 2 shows the hierarchy of these layers and
the general sequence of processing. The CPACS data for-
mat represents the whole set of all exchange data and builds
the base for all operations. The processing inside the tool
wrappers can be described most suitably in a chronologi-
cal manner. Following is an abstract description of all steps
from the application’s start in the process chain to the end
of execution:

1. Reading of the input mapping file. For each tool there
is a mapping file stored on its server, containing an
arbitrary number of tool-specific transformation rules.
Each mapping rule will be performed on the source
CPACS data. The result is a new generated input data
file which is usually a subset of the CPACS data.

2. The wrapped program starts. The application wrapped
by the toolwrapper will be executed. It should read the
input-data-file created by the mapping file. The result
of the execution of the application will be written to an
output data file.

3. Reading of the output mapping file. Each mapping
rule will be performed on the output data and merged
into the original CPACS file. The result is an updated
CPACS data set.

A mapping definition file is a set of rules that is pro-
cessed on an XML data document to transform it into a
new document, not unlike XSLT stylesheet processing. The
main features used in this concept are source/target pairs
and loops as well as other options regarding the XSLT tech-
nology. In addition several modes are enclosed. On the one

hand an append mode that adds a further sibling element to
already existing elements in the data. On the other hand the
delete mode that replaces an existing element by the new
one; other useful modes are conceivable and in progress.

Below there is a simplified example of CPACS data, a
mapping file and the transferred result-file.

<configuration>
<global>
<pax>3</pax>
<span>5</span>
<range>7</range>
</global>
</configuration>

Listing 1. Reduced CPACS data

<map:mapping>
<map:source>
/configuration/global/pax
</map:source>
<map:target>
/toollnput/data/varl
</map:target>
</map:mapping>
<map:mapping>
<map:source>
/configuration/global/span
</map:source>
<map:target>
/toollnput/data/var2
</map:target>
</map:mapping>

Listing 2. Reduced Mapping file

<toollnput>
<data>
<varl>3</varl>
<var2>5</var2>
</data>
</toollnput>

Listing 3. Transferred result-file

The second abstraction layer is based on a central con-
figuration repository, realized as an XML file. The tool
wrapper is pre-configured by a client-side GUI with three
input parameters ’server’, 'tool’ and ’version’, and fetches
its actual tool configuration from the central configuration
repository as of these values. The tool configuration can
be addressed in different ways, e. g. its local configuration
repository can be specified by an environment variable or
put into any of several of standard path locations to be dis-
covered automatically. The main reason for a globally avail-
able configuration is a central administration and the trace-
ability of a single configuration as well as a way for process
chains to always use the same configuration.

As often in systems providing integration capabilities in
our project there was the requirement for the infrastructure
to spread over heterogenous computing systems, including
different operating systems, hardware architectures and a
variety of software configurations (for example software




Reduced I/O-files ; """"" I““'““'““"“"“""Sg'nle'r'g

g |
CPACS > | e
= . 3@
= :
GE) Server Server Al Server B
| Client 5
— 1 peesased i
L : SRR
_ : S e
o | seoecoes e
LFIITIITIIIIIIIIIIYE
b ) :....' 1 I .-;.
- . . . . .. —: — #r‘_—." Server
"""""" Representations

Figure 2. Overview of the data flow and the general architecture of the framework.

distributions and network/firewall configurations). Most of
these points were already settled by using ModelCenter.

5 Towards a scientific workflow system

Up to this point we came from a data integration ap-
proach to using an application integration framework. Mul-
tiple components of wrapped applications and tools could
be connected in ModelCenter and executed via standard
backward scheduling or custom script schedulers that de-
fined the process chain. At the time being it has come clear
that the approach with a central data set carrying the initial
data, all intermediate and the final computing results is no
longer a feasible option.

It became clear that a real workflow philosophy would be
much more appropriate for defining data flows and succes-
sive manipulations of the data transferred between the com-
ponents. In this paper, we refer to this by Scientific work-
flow system with dynamic data integration, as explained in
the following part.

5.1 Scientific workflow system

A scientific workflow differs from a ”’standard” business
workflow in several details: Scientific processes are carried
out on a trial-and-error basis and are often only partially de-
fined upon conception. They are build for knowledge gain

and reuse [16]. The main qualities of scientific workflow
(management) systems that we are interested in can be sum-
marized as follows:

e To enable collaboration and aggregation of large scien-
tific applications over locally and architecturally dis-
tributed systems via client/server architecture

o To enable some kind of basic provenance of workflow
processes for a larger number of people

e To increase the flexibility and availability of tools and
information in cross-department projects

e To create a component library that allows easier start-
ups of coming projects

e To unify data formats and help avoiding modal frag-
mentation

e Authentication, security and auditing

To enhance the chosen standard integration framework by
simple workflow management tasks and abilities, we cre-
ated several Java plugins and data handling routines to work
around the frameworks limitations.

5.2 Dynamics of data connections

One special requirement of our approach seldomly found
in other workflow systems is the ability of software compo-



nents in the workflow to arbitrarily change the number of
variable connections to other components based on com-
puted decisions during runtime. We had to implement this
feature on top of ModelCenter, since as an requirement we
had no fixed number of variables and component variable
links that would have had to be connected by the user a pri-
ori (before the process is started). There are at least two
reasons for this requirement:

e One component and therefore one wrapped scientific
application may have different working modes, deter-
mined by an input variable. This way two very differ-
ent output data sets may be created, based on a runtime
decision, that would need be connected completely dif-
ferent in a statically connected integration system, thus
impeding our approach. To always connect all vari-
ables for both modes would blur the actual meaning of
a data connection and would pose hard-to-find errors.

e The second reason for the necessity of a variable num-
ber of connecting variables — elsewhere defined as
channels [14] — is for instance an array of simple
data types or arrays of complex and again variable
data structures. One viable solution for static variable
connection systems would be to always connect all
potential interesting variables, thus bloating the pro-
cess chain (e.g. by always providing 100 connection
”slots” for changing number of variables).

The solution presented here is by means of XML files:
Each component offers only one string variable for input
and output transfer. This way an updated XML tree can
be send to the following components in the workflow. The
workflow designer doesn’t have to connect all variables one
by one as usual in ModelCenter, but simply connects one
complete XML string variable and is settled, the hard tasks
being performed by the software infrastructure.

To achieve this goal, the logic of the plugins we devel-
oped is as much framework-independent as possible. Main
tasks like input and output-mapping are done without the
use of framework functionality. Furthermore is it essential
that the framework knows about the data and changes made
to the data to resolve necessary computation loops inside
the workflow.

6 Examples from DLR projects

This section provides a glance at the projects using the
technology described in this paper. Even though each
project has different goals, the technology behind the scenes
is the same. The idea in these projects is to perform pre-
design in the aviation domain, but their approach is not al-
ways congruent with each other. However, there are even
more projects planned in the future to implement this con-
cept.

TIVA - Technology integration for the virtual aircraft. The
main goal of this project is to perform technology as-
sessment regarding collaborative predesign of civil air-
crafts. A proof for a working recomputation of an air-
craft configuration was mandatory in this project. The
first revision of the central data set structure that now
is the CPACS was made, and the desired framework
for software integration (ModelCenter) was chosen.

UCAV-2010 - Unmanned combat air vehicle. This project
simulates the development of a military aircraft op-
timized for stealth capabilities. Existing knowledge
gained in the TIVA project is taken into account. In this
project an adaption regarding the central data set, new
software libraries and an expert system were added.

EVITA - Evaluation of innovative turbine engines. The
technology and data used in this project is quite sim-
ilar to TIVA, but is much more focused on the experi-
mental predesign of engines than on the whole aircraft,
thus shifting the amount of data for turbines to a more
detailed level while compressing data for the aircraft
to only a few basic values. Therefore, the focus is set
on other details, but 77VA as well as EVITA can benefit
from each other in a technological way.

CATS - Climate optimized air transport system. The goal
of this project is to optimize aircrafts and aircraft mis-
sions regarding their climatic effects. In this project the
technology described in this paper is used in combina-
tion with another tool developed for climate assertions.

Although these projects differ in their domains strongly
from each other, however they use the same technology for
data and software integration into the framework. Besides
similar technologies used, the generality of our approach
can be shown by the CATS project, in which a wholly
new facet is included by optimizing an aircraft to a non-
predesign oriented technical aspect like climate impact. The
benefit by using an flexible data format like CPACS as an in-
ternal standard at DLR becomes clear when considering that
in the future the results of all projects can be used within
future projects with very low effort in integrating differ-
ent technology and knowledge domains. All projects pre-
sented here might have positive effects on current and future
projects. With this solution it is therefore not only possible
to share knowledge on a company-wide basis, but also to
encompass different fields in interdisciplinary projects.

7 Current and future work

Currently our concept is implemented and working as
described in this paper. However, there are a few points
which are planned to be improved:



At the moment the CPACS’ structure is being augmented
to have a more generic data format to address a diversified
intended audience. The ideal is to have a data format which
can be used company-wide or at minimum across similar-
aligned projects where data exchange is desired or neces-
sary. Therefore a data structure has to be developed where
all possible use cases should be considered and still leave
the structure as simple and generic as possible. A first meet-
ing with all current and future project partners took place
at the end of 2008. The main priority of an adjustment of
CPACS is to let it become usable by all partners and to keep
its functionality for data exchange in and across projects.

Besides the improvement of the data structure a work-
flow description standard for storing and processing work-
flow information will be decided upon. It is imaginable to
use an already existing standard like BPML (Business Pro-
cess Modeling Language) or to create a more appropriate
one. Additionally the existing integration framework Mod-
elCenter will be phased out during the next project phases
and replaced by the Reconfigurable Computing Environ-
ment RCE [14], but also integration into other frameworks
is possible. This again shows the versatility of our approach
and the advantage of this concept with the possibility of
easy adaption to other environments.

Here again the advantage is that RCE is an in-house
product where sufficient developer knowledge is available
and which can be customized close to the requirements re-
quested by project partners. In addition, RCE has just been
released as an open-source software. This means that inter-
ested parties can be involved into the work presented here
very quickly without a high initial expense regarding licens-
ing and pricing found in framework vendors.

Another interesting point yet to be discussed is data man-
agement and storage. Currently CPACS is used as a data
storage container format as well as a data transfer format.
Future analyses could work on integrating CPACS into an
XML database or on optimizing the runtime data streams.
Here the simplest approach might be to compress the trans-
fer data by standard compressing algorithms. The second
solution would be to develop a binary version of CPACS,
especially designed for quick and robust data transfer be-
tween components.

Data management as of the “management” part in (scien-
tific) workflow managements systems is one area currently
being put a lot of energy in. At DLR there are metadata so-
lutions for scientific data management available, too [13].
We are exploring the term of management a step further
by managing anonymous data of different servers that run
components at run time, because the amounts of data being
transferred is foreseeable to rise by several orders of mag-
nitude in future projects, thus calling for a better storage
solution.

8 Conclusion

The need for collaboration of individual scientific fields
increases step by step by the ongoing consideration of an
environment as a whole in a scientific view. As each part
of this co-operative process produces state of the art knowl-
edge but wants to use the knowledge of other domains as
well, the need for an easy-to-use approach and a common
data transfer and storage facility is high. Regarding this
evolution the framework developed boosts its right to ex-
ist with every usage. In this paper a first insight into the
possibilities of collaboration and knowledge exchange was
given. The motivation and technical decisions were pointed
out and the technology used was described. With respect to
other projects and future developments within the domain of
data integration into workflows, this paper presents a sim-
ple but powerful approach to dynamically connect data and
information from different knowledge domains to a collab-
orating workflow system.

References

[1] Common data format. http://cdf.gsfc.nasa.gov.
[Online; 2009-03-10].

[2] Hierarchical data format.
org. [Online; 2009-03-10].

[3] Initial graphics exchange specification. National Bureau of
Standards.

[4] Iso 10303-1: Industrial automation systems and integration—
product data representation- and exchange—part 1: Overview
and fundamental principles. 1. TC 184/SC4 ISO Standard.
1994.

[5] libxml2. http://www.xmlsoft.org. [Online; 2009-
03-10].

[6] Process integration & design optimization. http://www.
acel.co.uk/pdfs/designsimulation/. [Online;
2009-03-19].

[7] Stlfile format. 3D Systems. http://www.ennex.com/
~fabbers/StL.asp. [Online; 2009-03-10].

[8] Xalan and xerces. http://xalan.apache.org. [On-
line; 2009-03-10].

[9] Extensible markup language (xml). http://www.w3.
org/XML/, 2008. [Online 2009-03-10].

[10] DLR. Common parametric aircraft configuration standard.

[11] M. Hepperle and J. Agte. Framework test. unpublished.

[12] J. Myers and A. Chappell. Binary format description lan-
guage (bfd). http://collaboratory.emsl.pnl.
gov/sam/bfd/. [Online; 2009-03-10].

[13] T. Schlauch and A. Schreiber. Datafinder. a scientific data
management solution. In PV 2007, 10 2007.

[14] D. Seider. Rce homepage, 2008. [Online; 2009-01-09].

[15] E.vander Vlist. XML Schema: The W3C'’s Object-Oriented
Descriptions for XML. O’Reilly, illustrated edition, 2002.

[16] M. Weske, G. Vossen, and C. B. Medeiros. Scientific
workflow management: Wasa architecture and applications.
Technical report, University of Mnster and University of
Campinas, January 1996.

http://www.hdfgroup.



