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Abstract— In this article, a formalism for a specific temporal
data mining task (the discovery of rules, inferred from databases
of events having a temporal dimension), is defined. The proposed
theoretical framework, based on first-order temporal logic, allows
the definition of the main notions (event, temporal rule, constraint)
in a formal way. This formalism is then extended to include the
notion of temporal granularity and a detailed study is made to
investigate the formal relationships between semantics for the
same event in linear time structures with different granularities.

I. INTRODUCTION

The domain of temporal data mining focuses on the dis-
covery of causal relationships among events that are ordered
in time and may be causally related. The contributions in
this domain encompass the discovery of temporal rule, of
sequences and of patterns. However, in many respects this
is just a terminological heterogeneity among researchers that
are, nevertheless, addressing the same problem, albeit from
different starting points and domains.

Although there is a rich bibliography concerning formalism
for temporal databases, there are very few articles on this
topic for temporal data mining. In [1]–[3] general frameworks
for temporal mining are proposed, but usually the researches
on causal and temporal rules are more concentrated on the
methodological/algorithmic aspect, and less on the theoretical
aspect. Based on a methodology for temporal rule extraction,
described in [4], we proposed in [5] an innovative formalism
based on first-order temporal logic, which permits an abstract
view on temporal rules. The formalism is developed around
a time model for which the events are those that describe
system evolution (event-based temporal logics). Each formula
expresses what the system does at each event, events are
referring to other events, and so on: this results in specifying
relationships of precedence and cause-effect among events.
But the real systems are systems whose components (events)
have dynamic behavior regulated by very different (even
by orders of magnitude) time granularities. Analyzing such
systems (hereinafter granular systems) means to approach
theories, methodologies, techniques and tools that make use
of granules (or groups, classes, clusters of a universe) in the
process of problem solving. Granular computing (the label
which covers these approaches) is essential to human problem
solving, and hence has a very significant impact on the design
and implementation of intelligent systems. By focusing on
different levels of granularities, one can obtain various levels

of knowledge, as well as inherent knowledge structure [6]–[9].
Despite the widespread recognition of its relevance in the

fields of formal specifications, knowledge representation and
temporal databases, there is a lack of a systematic framework
for time granularity. Hobbs [10] proposed a formal charac-
terization of the general notion of granularity, but gives no
special attention to time granularity. Clifford et al. [11] provide
a set-theoretic formalization of time granularity, but they do
not attempt to relate the truth value of assertions to time
granularity. Extensions to existing languages for formal spec-
ifications, knowledge representation and temporal databases
that do support a limited concept of time granularity are
proposed in [12]–[14]. Finally, Bettini et al. [15], [16] provide
a formal framework for expressing data mining tasks involving
time granularities, investigate the formal relationships among
event structures that have temporal constraints, define the
pattern-discovery problem with these structures and study
effective algorithms to solve it.

The purpose of this paper is to extend our formalism to
include the concept of time granularity. We define the process
for which a given structure of time granules µ (called temporal
type) induces a first-order linear time structure Mµ on the
basic (or absolute) linear time structure M . The major change
for the temporal logic based on Mµ is at the semantic level:
for a formula p, the interpretation do not assign a meaning
of truth (one of the values {true, false}), but a degree of
truth (a real value from [0, 1]). Consequently, we can give an
answer to the following question: if the temporal type µ is
finer than temporal type ν, what is the relationship between
the interpretations of the same formula p in the linear time
structures Mµ and Mν . We also study the variation process
for the set of satisfiable events (degree of truth equal one)
during the transition between two time structures with different
granularity. By an extension at the syntactic and semantic level
we define a mechanism of aggregation for events, that reflects
the following intuitive phenomenon: in a coarser world, not
all events inherited from a finer world are satisfied, but in
exchange there are new events which become satisfiable.

The rest of the paper is structured as follows. In the next
section, the first-order temporal logic formalism is extensively
described (the main terms and concepts). The definitions and
theorems concerning the extension of the formalism towards a
temporal granular logic are presented in Section 3. Finally, the
last section summarizes our work and the appendix contains
the proofs of the theorems in the paper.



II. THE FORMALISM OF TEMPORAL RULES

Time is ubiquitous in information systems, but the mode of
representation/perception varies in function of the purpose of
the analysis [17], [18]. Firstly, there is a choice of a temporal
ontology, which can be based either on time points (instants)
or on intervals (periods). Secondly, time may have a discrete
or a continuous structure. Finally, there is a choice of linear
vs. nonlinear time (e.g. acyclic graph). Our selection, imposed
by the discrete representation of all databases, is a temporal
domain represented by linearly ordered discrete instants.

Databases being first-order structures, the first-order logic
represents a natural formalism for their description. Conse-
quently, the first-order temporal logic expresses the formalism
of temporal databases. For the purpose of our approach we
consider a restricted first-order temporal language L which
contains only constant symbols {c, d, ..}, n-ary (n ≥ 1) func-
tion symbols {f, g, ..}, variable symbols {y1, y2, ...}, n-ary
predicate symbols (n ≥ 1, so no proposition symbols), the set
of relational symbols {=, <,≤, >,≥}, the logical connective
{∧} and a temporal connective of the form Xk, k ∈ Z,
where k strictly positive means after k time instants, k strictly
negative means before k time instant and k = 0 means now.

The syntax of L defines terms, atomic formulae and com-
pound formulae. A Horn clause is a formula of the form
B1 ∧ · · · ∧ Bm → Bm+1 where each Bi is a positive (non-
negated) atom. Syntactically, we cannot express Horn clauses
in our language L because the logical connective → is not
defined. However, to allow the description of rules, which
formally look like a Horn clause, we introduce a new logical
connective, 7→, which practically will represent a rewrite of the
connective ∧. Therefore, a formula in L of the form p 7→ q is
syntactically equivalent to the formula p∧ q. When and under
what conditions we may use the new connective, is explained
in the following definitions.

DEFINITION 1 An event (or temporal atom) is an atom formed
by the predicate symbol E followed by a bracketed n-tuple of
terms (n ≥ 1) E(t1, t2, . . . , tn). The first term of the tuple,
t1, is a constant symbol representing the name of the event
and all others terms are expressed according to the rule ti =
f(ti1, . . . , tiki). A short temporal atom (or the event’s head)
is the atom E(t1).

DEFINITION 2 A constraint formula for the event
E(t1, t2, . . . tn) is a conjunctive compound formula,
E(t1, t2, . . . tn) ∧ C1 ∧ C2 ∧ · · · ∧ Ck. Each Cj is a
relational atom tρ c, where the first term t is one of the terms
ti, i = 1 . . . n, ρ is a relational symbol and the second term
is a constant symbol.

For a short temporal atom E(t1), the only constraint formula
that is permitted is E(t1)∧(t1 = c). We denote such constraint
formula as short constraint formula.

DEFINITION 3 A temporal rule is a formula of the form H1∧
· · ·∧Hm 7→ Hm+1, where Hm+1 is a short constraint formula

and Hi, i = 1..m are constraint formulae, prefixed by the
temporal connectives X−k, k ≥ 0. The maximum value of the
index k is called the time window of the temporal rule.

Remark. The reason for which we did not permit the
expression of the implication connective in our language is
related to the truth table for a formula p → q: even if p is
false, the formula is still true, which is unacceptable for a
temporal rationing of the form cause→ effect.

If we change in Definition 1 the conditions imposed on the
terms ti, i = 1...n to ”each term ti is a variable symbol”,
we obtain the definition of a temporal atom template. We
denote such a template as E(y1, . . . , yn). Following the same
rationing, a constraint formula template for E(y1, . . . , yn) is a
conjunctive compound formula, C1∧C2∧· · ·∧Ck, where the
first term of each relational atom Cj is one of the variables
yi, i = 1 . . . n. Consequently, a short constraint formula
template is the relational atom y1 = c. Finally, by replacing in
Definition 3 the notion ”constraint formula” with ”constraint
formula template” we obtain the definition of a temporal rule
template. Practically, the only formulae constructed in L are
temporal atoms, constraint formulae, temporal rules and the
corresponding templates.

The semantics of L is provided by an interpretation I over
a domain D (in our formalism, D is always a linearly ordered
domain). The interpretation assigns an appropriate meaning
over D to the (non-logical) symbols of L. Usually, the domain
D is imposed during the discretisation phase, which is a
pre-processing phase used in almost all knowledge extraction
methodologies. Based on Definition 2, an event can be seen as
a labelled (constant symbol t1) sequence of points extracted
from raw data and characterized by a finite set of features
(terms t2, · · · , tn). Consequently, the domain D is the union
De ∪ Df , where the set De contains all the strings used as
event names and the set Df represents the union of all domains
corresponding to chosen features.

EXAMPLE 1 Consider a database containing daily price vari-
ations of a given stock. After the application of the discreti-
sation phase we obtain an ordered sequence of events. Each
event has the form (name, v1, v2), where the name is one of
the strings from De = {peak, flat, valley} and the features
v1, v2 represents the mean, respectively, the standard error. The
statistics are calculated using daily prices, supposed to be sub-
sequences of length w = 12. Consequently, a temporal atom
in L is defined as E(di, f(cj1 , . . . , cj12), g(ck1 , . . . , ck12)),
where di ∈ De, ci ∈ Df = < and the meaning of symbol
function f (respectively g) is given by the statistical function
x (respectively se(x)).

To define a first-order linear temporal logic based on L,
we need a structure having a temporal dimension and capable
to capture the relationship between a time moment and the
interpretation I at this moment.

DEFINITION 4 Given L and a domain D, a (first order) linear
time structure is a triple M = (S, x, I), where S is a set



of states, x : N → S is an infinite sequence of states
(s1, s2, . . . , sn, . . .) and I is a function that associates with
each state s an interpretation Is of all symbols from L.

In the framework of linear temporal logic, the set of symbols
is divided into two classes, the class of global symbols and
the class of local symbols. Intuitively, a global symbol w has
the same interpretation in each state, i.e. Is(w) = Is′(w) =
I(w), for all s, s′ ∈ S; the interpretation of a local symbol
may vary, depending on the state at which is evaluated. The
formalism of temporal rules assumes that all function symbols
(including constants) and all relational symbols are global,
whereas the predicate symbols and variable symbols are local.
Consequently, as the temporal atoms, constraint formulae,
temporal rules and the corresponding templates are expressed
using the predicate symbol E or the variable symbols yi, the
meaning of truth for these formulae depend on the state at
which they are evaluated. Given a first order time structure M
and a formula p, we denote the instant i (or equivalently, the
state si) for which Isi(p) = true by i |= p, i.e. at time instant
i the formula p is true. Therefore, i |= E(t1, . . . , tn) means
that at time i an event with the name I(t1) and characterized
by the global features I(t2), . . . , I(tn) occurs. Concerning
the event template E(y1, . . . , yn), the interpretation of the
variable symbols yj at the state si, Isi(yj), is chosen such
that i |= E(y1, . . . , yn) for all time moment i. Because

• i |= p ∧ q if and only if i |= q and i |= q, and
• i |= Xkp if and only if i+ k |= p,

a constraint formula (template) is true at time i if and only if
all relational atoms are true at time i and i |= E(t1, . . . , tn),
whereas a temporal rule (template) is true at time i if and only
if i |= Hm+1 and i |= (H1 ∧ · · · ∧Hm).

Now suppose that the following assumptions are true:

A) For each formula p in L, there is an algorithm that
calculates the value of the interpretation Is(p), for each
state s, in a finite number of steps.

B) There are states (called incomplete states) that do not
contain enough information to calculate the interpreta-
tion for all formulae defined at these states.

C) It is possible to establish a measure, (called general
interpretation) about the degree of truth of a com-
pound formula along the entire sequence of states
(s0, s1, . . . , sn, . . .).

The first assumption express the calculability of the in-
terpretation I. The second assumption express the situation
when only the body of a temporal rule can be evaluated at
a time moment i, but not the head of the rule. Therefore,
for the state si, we cannot calculate the interpretation of the
temporal rule and the only solution is to estimate it using
a general interpretation. This solution is expressed by the
third assumption. (Remark: The second assumption violates
the condition about the existence of an interpretation in each
state si, as defined in Definition 4. But it is well known that
in data mining sometimes data is incomplete or is missing.
Therefore, we must modify this condition as ”I is a function

that associates with almost each state s an interpretation Is
of all symbols from L”).

However, to ensure that this general interpretation is well
defined, the linear time structure must present some property
of consistency. Practically, this means that if we take any
sufficiently large subset of time instants, the conclusions we
may infer from this subset are sufficiently close from those
inferred from the entire set of time instants. Therefore,

DEFINITION 5 Given L and a linear time structure M, we
say that M is a consistent time structure for L if, for every
formula p, the limit supp(p) = lim

n→∞
n−1#A exists, where #

means ”cardinality” and A = {i = 1..n | i |= p}. The notation
supp(p) denotes the support (of truth) of p.

Now we define the general interpretation for an n-ary predicate
symbol P as:

DEFINITION 6 Given L and a consistent linear time structure
M for L, the general interpretation IG for an n-ary predicate
P is a function Dn → [0, 1], such that, for each n-tuple of
terms {t1, . . . , tn}, IG(P (t1, . . . , tn)) = supp(P (t1, . . . , tn).

The general interpretation is naturally extended to constraint
formulae, temporal rules and the corresponding templates.
There is another useful measure, called confidence, but avail-
able only for temporal rules (templates). This measure is
calculated as a limit ratio between the number of certain
applications (time instants where both the body and the head
of the rule are true) and the number of potential applications
(time instants where only the body of the rule is true). The
reason for this choice is related to the presence of incomplete
states, where the interpretation for the implicated clause cannot
be calculated.

DEFINITION 7 The confidence of a temporal rule (template)
H1∧ · · ·∧Hm 7→ Hm+1 is the limit lim

n→∞
(#B)−1#A, where

A = {i = 1 . . . n | i |= H1 ∧ · · · ∧ Hm ∧ Hm+1} and B =
{i = 1 . . . n|i |= H1 ∧ · · · ∧Hm}.

For different reasons, (the user has not access to the
entire sequence of states, or the states he has access to are
incomplete), the general interpretation cannot be calculated. A
solution is to estimate IG using a finite linear time structure,
i.e. a model.

DEFINITION 8 Given L and a consistent time structure M =
(S, x, I), a model for M is a structure M̃ = (T̃ , x̃) where T̃
is a finite temporal domain {i1, . . . , in}, x̃ is the subsequence
of states {xi1 , . . . , xin} (the restriction of x to the temporal
domain T̃ ) and for each ij , j = 1, . . . , n, the state xij is a
complete state.

For a given model M̃ , the local support for a formula p
(denoted supp(p, M̃)) is defined as the ratio #A

#T̃
, where

A = {i ∈ T̃ | i |= p}. Now we may define the estimator
for a general interpretation:



DEFINITION 9 Given L and a model M̃ for M, an estimator of
the general interpretation for an n-ary predicate P, IG(M̃)(P ),
is a function Dn → [0, 1], assigning to each formula p =
P (t1, . . . , tn) the value supp(p, M̃).

Similarly, the estimation of the confidence for a temporal rule
(template) is defined as:

DEFINITION 10 Given a model M̃ = (T̃ , x̃) for M, the
estimation of the confidence for the temporal rule (template)
H1 ∧ · · · ∧ Hm 7→ Hm+1 is the ratio (#B)−1#A, where
A = {i ∈ T̃ | i |= H1 ∧ · · · ∧ Hm ∧ Hm+1} and B = {i ∈
T̃ | i |= H1 ∧ · · · ∧Hm}.

EXAMPLE 2 If M is a consistent linear time structure for
the temporal language L defined in Example 1, consider the
model M̃ given by the sequence of states {s1, . . . , s100}. Let
be X−3(y1 = peak) ∧X−3(y2 < 11) ∧X−1(y1 = peak) 7→
X0(y1 = valley) a temporal rule template. If the local support
for the rule is 0.6 and the local support for the body of the
rule is 0.8 then the estimated confidence for the rule, based
on model M̃ , is 0.6/0.8 = 0.75.

III. THE GRANULARITY MODEL

We start with the concept of a temporal type to formalize
the notion of time granularities, as described in [19].

DEFINITION 11 Let (T , <) (index) be a linearly ordered
temporal domain isomorphic to a subset of the integers with
the usual order relation, and let (A, <) (absolute time) be a
linearly ordered set. Then, a temporal type on (T ,A) is a
mapping µ from T to 2A such that

1) µ(i) 6= ∅ and µ(j) 6= ∅, where i < j, imply that each
element in µ(i) is less than all the elements in µ(j), and

2) for all i < j, if µ(i) 6= ∅ and µ(j) 6= ∅, then ∀k , i <
k < j implies µ(k) 6= ∅.

Each set µ(i), if non-empty, is called a granule of µ.
Property (1) says that granules do not overlap and that the
order on indices follows the order on the corresponding
granules. Property (2) disallows an empty set to be the value
of a mapping for a certain index value if a lower index and
a higher index are mapped to non-empty sets. Two temporal
types µ1 and µ2 are said to be shifting equivalent (denoted
µ1 
 µ2) if there is a bijection function h : T → T such that
µ1(i) = µ2(h(i)), for all i ∈ T . In the following we disallow
multiple types that are equivalent with respect to shifting of
their indices, i.e.

µ1 
 µ2 ⇒ µ1 = µ2. (1)

DEFINITION 12 Let µ and ν be temporal types on (T ,A).
• Finer-than: µ is said to be finer than ν, denoted µ 4 ν, if

for each i ∈ T , there exists j ∈ T such that µ(i) ⊆ ν(j).
• Groups-into: µ is said to group into ν, denoted µ E ν,

if for each non-empty granule ν(j), there is a subset S
of T such that ν(j) =

⋃
i∈S µ(i).

When a temporal type µ is finer than a temporal type ν, we
also say that ν is coarser than µ. The finer-than relationship
formalizes the notion of finer partitions of the absolute time.
By definition, this relation is reflexive, i.e. µ 4 µ for
each temporal type µ. Furthermore, the finer-than relation is
obviously transitive and antisymmetric (a consequence of (1))
and, hence, it is a partial order. Therefore, there exists a unique
least upper bound of the set of all temporal types, denoted by
µ>, and a unique greatest lower bound, denoted by µ⊥. These
top and bottom elements are defined as follows: µ>(i) = A
for some i ∈ T and µ>(j) = ∅ for each j 6= i, and µ⊥(i) = ∅
for each i ∈ T . We formalize this result in the following
theorem [19]:

THEOREM 1 Any temporal type system having an infinite
index, and satisfying (1), is a lattice with respect to the finer-
than relationship.

Concerning the groups-into relationship, it also satisfies
the properties of a partial order (reflexivity, transitivity and
antisymmetry), but generally µ 4 ν not imply µ E ν or
viceversa.

Consider now A = T = N. If we impose to any temporal
type µ the condition

0 < #µ(i) <∞, for all i ∈ N (2)

then it can be proven (see Appendix) that the condition (1) is
a consequence of the condition (2). Therefore, for the set of
temporal types satisfying (2) and the following restriction

∀i ∈ N, µ−1(i) 6= ∅ (3)

it can be shown that there exists a unique greatest lower bound,
µ⊥(i) = i, ∀i ∈ N, but no least upper bound µ>. Furthermore,
the condition (3) is a sufficient condition for the equivalence
of the relationships finer-than and groups-into, according to
the following lemma:

LEMMA 1 If µ and ν are temporal types on (N,N) which
satisfy the conditions (2) and (3) (shortly, are of type G1),
then µ 4 ν ⇐⇒ µ E ν.

If M = (S, x, I) is a first-order linear time structure, then let
the absolute time A be given by the sequence x, by identifying
the time moment i with the state si (on the ith position in the
sequence). If µ is a temporal type from G1, then the temporal
granule µ(i) may be identified with the set {sj ∈ S | j ∈ µ(i)}.
Therefore, the temporal type µ induces a new sequence, xµ,
defined as xµ : N → 2S , xµ(i) = µ(i). (Remark: In the
following the set µ(i) will be considered, depending of the
context, either as a set of natural numbers, or as a set of
states).

Consider now the linear time structure derived from M ,
Mµ = (2S , xµ, Iµ). To be well defined, we must precise the
interpretation Iµµ(i), for each i ∈ N. Because for a fixed i

the set µ(i) is a finite sequence of states, it defines (if all the
states are complete states) a model M̃µ(i) for M . Therefore the



estimated general interpretation IG(M̃µ(i))
is well defined and

we consider, by definition, that for all temporal free1 formula
p in L,

Iµµ(i)(p) = IG(M̃µ(i))
(p) = supp(p, M̃µ(i)) (4)

This interpretation is extended to any temporal formula in L
according to the rule:

Iµµ(i)(Xk1p1 ∧ . . . ∧Xknpn) =
1
n

n∑
j=1

Iµµ(i+kj)
(pj) (5)

where pi are temporal free formulae and ki ∈ Z, i = 1 . . . n.

DEFINITION 13 If M = (S, x, I) is a first-order linear time
structure and µ is a temporal type from G1, then the temporal
time structure induced by µ on M is the triple Mµ =
(2S , xµ, Iµ), where xµ : N → 2S , xµ(i) = µ(i) and Iµ is
a function that associates with almost each set of states µ(i)
an interpretation Iµµ(i) according to the rules (4) and (5).

Of a particular interest is the linear time structure induces
by the greatest lower bond temporal type µ⊥(i) = i. In this
case, Mµ⊥ = (S, x, Iµ⊥), where the only difference from the
initial time structure M is at the interpretation level: for p =
P (t1, . . . , tn) a formula in L, if the interpretation Is(p) is a
function defined on Dn with values in {true, false} – giving
so the meaning of truth – the interpretation Iµ⊥s (p) is a function
defined on Dn with values in [0, 1] – giving so the degree of
truth. The relation linking the two interpretations is given by
Is(p) = true iff Iµ⊥s (p) = 1. Indeed, supposing the state si
is a complete state, it defines the model M̃i = (i, si) and we
have, for p a temporal free formula,

Iµ⊥µ⊥(i)(p) = supp(p, M̃i) =

{
1, if Is(p) = true,

0, if Is(p) = false
(6)

For a formula π = Xk1p1 ∧ . . . ∧Xknpn, we have Isi(π) =
true iff ∀j ∈ {1 . . . n}, i+ kj |= pj , which is equivalent with

supp(p1, M̃i+k1) = . . . = supp(pn, M̃i+kn) = 1⇔

⇔ 1
n

n∑
j=1

Iµ⊥µ⊥(i+kj)
(pj) = Iµ⊥µ⊥(i)(π) = 1.

Consequently, the linear time structure Mµ⊥ can be seen as
an extension, at the interpretation level, of the classical linear
time structure M . Furthermore, all the time structures induced
by a temporal type have in common interpretations which
take values in [0, 1] if are applied on predicate symbols in
L. This observation allows us to establish the relation linking
the interpretations Iµ and Iν , from two linear time structures
induced by µ and ν, when exists a relationship finer-than
between these two temporal types. According to the lemma
1, for each i ∈ N there is a subset Ni ⊂ N such that
ν(i) =

⋃
j∈Ni µ(j). If p is a temporal free formula in L,

1A formula p in L is called temporal free formula if it don’t contain the
temporal connective Xk .

then the interpretation Iν for p at ν(i) is the weighted sum of
the interpretations Iµµ(j)(p), where j ∈ Ni. We formalize this
result in the following theorem:

THEOREM 2 If µ, ν are temporal types from G1, such that
µ 4 ν, and Iµ, Iν are the interpretations from the induced
linear time structures Mµ and Mν on M , then for each i ∈ N,

Iνν(i)(p) =
1

#ν(i)

∑
j∈Ni

#µ(j)Iµµ(j)(p), (7)

where Ni is the subset of N which satisfies ν(i) =
⋃
j∈Ni µ(j)

and p is a temporal free formula in L.

If we consider µ = µ⊥ then #µ(j) = 1, for all j ∈ N and
Iµµ(j)(p) = supp(p, M̃j) (see (6)). Therefore,

Iνν(i)(p) =
1

#ν(i)

∑
j∈ν(i)

supp(p, M̃j)

=
1

#ν(i)
#{j ∈ ν(i) | j |= p}

= supp(p, M̃ν(i)) = IG(M̃ν(i))
(p)

result which is consistent with the definition 13. But the
significance of the theorem 2 is revealed in a particular context.
Firstly, let G2 be the subset of G1, obtained when the condition
(2) is replaced by the stronger condition (2’), #µ(i) = cµ,
where cµ ∈ N. If µ, ν ∈ G2 and µ 4 ν, it can be shown that
#Ni = cν

cµ
,∀i ∈ N and so the relation (7) becomes

Iνν(i)(p) =
1

#Ni

∑
j∈Ni

Iµµ(j)(p). (8)

Generally speaking, consider three worlds, W1,W2 and W3

– defined as sets of granules of information – where W1

is finer than W2 which is finer than W3. Suppose also that
the conversion between granules from two different worlds
is given by a constant factor. If the independent part of
information in each granule is transferred from W1 to W2 and
then the world W1 is ”lost”, the theorem 2 in the form (8)
affirm that is possible to transfer the independent information
from W2 to W3 and to obtain the same result as for the transfer
from W1 to W3.

EXAMPLE 3 : Consider a linear time structure M (here, the
world W1) and a temporal free formula p such that, for the
first six time moments, we have i |= p for i ∈ {1, 3, 5, 6}
– the concept of independence, in this example, means that
the interpretation of p depends only on the state i. Let be
µ, ν ∈ G2, µ 4 ν, with µ(i) = {2i − 1, 2i} and ν(i) =
{6i − 5, . . . , 6i}. Therefore, ν(1) = µ(1) ∪ µ(2) ∪ µ(3).
According to the definition 13, Iµµ(1)(p) = 0.5, Iµµ(2)(p) = 0.5,
Iµµ(3)(p) = 1, whereas Iνν(1)(p) = 0.66. If the linear time
structure M is ”lost”, the temporal types µ and ν are ”lost”
too (we don’t know the absolute time A given by M ). But if
we know the induced time structure Mµ (world W2) and the
relation between µ and ν, we can deduce the time structure



Mν (world W3) completely. As example, according to (8),
Iνν(1)(p) = 1

3

∑3
i=1 Iµµ(i)(p) = 0.66.

The theorem 2 is not effective for temporal formulae (which
can be seen as the dependent part of the information from
a temporal granule). In this case we will show that the
interpretation, in the coarser world, of a temporal formula
with a given time window is linked with the interpretation,
in the finer world, of a similar formula but having a larger
time window.

THEOREM 3 If µ and ν are temporal types from G2 such that
µ 4 ν and Iµ, Iν are the interpretations from the induced
linear time structures Mµ and Mν on M , then for each i ∈ N,

Iνν(i)(p ∧Xq) =
1
k

∑
j∈Ni

Iµµ(j)(p ∧Xkq) (9)

where k = cν/cµ, ν(i) =
⋃
j∈Ni µ(j) and p, q are temporal

free formulae in L.

According to this theorem, if we know the confidence of a
temporal rule (template) in the world W1, we can say nothing
about the confidence of the same rule in the world W2, coarser
than W1. If we define the operator

zoomk(Xk1q1 ∧ . . . ∧Xknqn) = Xk·k1q1 ∧ . . . ∧Xk·knqn

then the confidence of a temporal rule H in W2 depends
only on the confidence of the temporal rule zoomk(H) in
W1, where k is the coefficient of conversion between the two
worlds.

All the deduction process made until now was conducted
to obtain an answer to the following question: how the degree
of truth of a formula p is changing if we pass from a linear
time structure with a given granularity to a coarser one. And
we proved that we can give a well-defined method if we
impose some restrictions on the temporal types which induce
these time structures. But there is another phenomenon which
follows the process of transition between two real worlds with
different time granularities: new kinds of events appear, some
kinds of events disappear.

DEFINITION 14 An event type (denoted E[t]) is the set of all
temporal atoms from L having the same name (or head).

All the temporal atoms of a given type E[t] are constructed
using the same symbol predicate and we denote by N [t]
the arity of this symbol. Consider E(t, t2, . . . , tn) ∈ E[t]
(where n = N [t]). According to the definition 1, a term
ti, i ∈ {2, .., n} has the form ti = f(ti1, . . . , tiki). Suppose
now that for each index i the function symbol f from the
expression of ti belongs to a family of function symbols with
different arities, denoted Fi[t] (so different sets for different
event types E[t] and different index i). This family has the
property that the interpretation for each of its member is given
by a real functions which
• is applied on a variable number of arguments, and

• is invariant in the order of the arguments.
A good example of a such real function is a statistical function,
e.g. mean(x1, . . . , xn). Based on the set Fi[t] we construct
the set of terms expressed as fk(c1, . . . , ck), where fk is a
k−ary function symbol from Fi[t] and ci, i = 1..k are constant
symbols. We denote such a set as Ti[t]. Consider now the
operator ⊕ defined on Ti[t]× Ti[t]→ Ti[t] such that

fn(c1, .., cn)⊕ fm(d1, .., dm) = fn+m(c1, .., cn, d1, .., dm)

Of course, because the interpretation of any function symbol
from Fi[t] is invariant in the order of arguments, we have

fn(c1, . . . , cn)⊕ fm(d1, . . . , dm) =
= fn(cσ(1), . . . , cσ(n))⊕ fm(dϕ(1), . . . , cϕ(n))

where σ (respectively ϕ) is a permutation of the set {1, . . . , n}
(respectively {1, . . . ,m}). Furthermore, it is evidently that the
operator ⊕ is commutative and associative.

We introduce now a new operator (denoted �) defined on
E[t]× E[t]→ E[t], such that, for E(t, t2, .., ti, .., tn) ∈ E[t],
E(t, t′2, .., t

′
i, .., t

′
n) ∈ E[t] we have:

E(t, t2, . . . , ti, . . . , tn)� E(t, t′2, . . . , t
′
i, . . . , t

′
n) =

= E(t, t1 ⊕ t′1, . . . , ti ⊕ t′i, . . . , tn ⊕ t′n) (10)

Once again, it is evidently that the operator � is commutative
and associative. Therefore, we can apply this operator on a
subset E of temporal atoms from E[t] and we denote the result
as �

ei∈E
ei.

If M = (S, x, I) is a linear time structure, for each event
type E[t] we define the subset E[t]M satisfying the condition:

E[t]M = {e ∈ E[t] | ∃si ∈ x such that Isi(e) = true} (11)

In a similar manner we define E[t]M̃ , where M̃ = (T̃ , x̃) is a
model for M :

E[t]M̃ = {e ∈ E[t] | ∃si ∈ x̃ such that Isi(e) = true} (12)

In other words, E[t]M is the set of all temporal events of type
E[t] which are satisfied by M , whereas E[t]M̃ ⊆ E[t]M is the
set of events from E[t] satisfied by M̃ . If we consider now Mµ,
the linear time structure induced by temporal type µ on M , the
definition of E[t]Mµ

is derived from (11) only by changing the
condition Isi(e) = true in Iµµ(i)(e) = 1. Of course, only for
µ = µ⊥ we have E[t]M = E[t]Mµ

(we proved that Isi(p) =
true ⇔ Iµ⊥µ⊥(i)(p) = 1). Generally E[t]M ⊃ E[t]Mµ , which
is a consequence of the fact that a coarser world satisfies less
temporal events than a finer one.

EXAMPLE 4 : If M is a linear time structure such that for the
event e ∈ E[t] we have i |= e iff i odd, and µ is a temporal
type given by µ(i) = {2i − 1, 2i}, then it is obviously that
e ∈ E[t]M but e ∈/E[t]Mµ

.

In the same time a coarser world may satisfies new events,
representing a king of aggregation of local, ”finer” events.



DEFINITION 15 If µ is a temporal type from G1, we call the
aggregate event of type t induced by the granule µ(i) (denoted
e[t]µ(i)) the event obtained by applying the operator � on the
set of events of type t which are satisfy by the model M̃µ(i),
i.e.

e[t]µ(i) = �
ei∈E[t]M̃µ(i)

ei (13)

If an event e ∈ E[t] is not satisfied by M (or e ∈/E[t]M ),
it is obviously that according to (4) Iµµ(i)(e) = 0, for all µ
and all i ∈ N. Therefore, the relation (4) is not appropriate
to give the degree of truth for e[t]µ(i). Before to give the rule
expressing the interpretation for an aggregate temporal atom,
we impose to M the following restriction: there is a one-to-
one relationship between the set of events satisfied by M and
the set of states, or

∃h :
⋃
t

E[t]M → S, h(e) = s where Is(e) = true (14)

We define the interpretation of the aggregate event induced by
µ(i0), evaluated at µ(i), as:

Iµµ(i)(e[t]µ(i0)) =
∑
ej∈E

Iµµ(i)(ej) (15)

where E = E[t]M̃µ(i0)
. The restriction (14) is sufficient to

assure that Iµµ(i)(e[t]µ(i0)) ≤ 1, for all i, i0 ∈ N. Furthermore,
e[t]µ(i0) ∈ E[t]Mµ iff there is i ∈ N such that h−1(µ(i)) =
E , where h−1 is the inverse of the function defined in (14).
Practically, this means that an aggregate event of type t is
satisfiable if there is a granule µ(i) such that j ∈ µ(i), j |= e
implies e ∈ E[t].

EXAMPLE 5 Let be M a linear time structure, e1, e2 ∈ E[t]
such that i |= e1 for i ∈ {1, 4} and i |= e2 for i ∈ {3, 5, 6}.
(Remark: restriction (14) means that s1 = s4 and s3 = s5 =
s6). If µ(1) = {1, 2, 3} and µ(2) = {4, 5, 6} then

e[t]µ(1) = e[t]µ(2) = e1 � e2
Iµµ(1)(e[t]µ(1)) = Iµµ(1)(e[t]µ(2)) = 2/3

Iµµ(2)(e[t]µ(1)) = Iµµ(2)(e[t]µ(2)) = 1

IV. CONCLUSIONS

In this article we developed a formalism for a specific
temporal data mining task: the discovery of knowledge, rep-
resented in the form of general Horn clauses, inferred from
databases with a temporal dimension. The theoretical frame-
work we proposed, based on first-order temporal logic, permits
to define the main notions (event, temporal rule, constraint) in
a formal way. The concept of a consistent linear time structure
allows us to introduce the notions of general interpretation,
of support and of confidence, the lasts two measure being the
expression of the two similar concepts used in data mining.

Starting from the inherent behavior of temporal systems
– the events and their interactions are determined, mainly,
by the temporal scale – we extended the capability of our
formalism to ”capture” the concept of time granularity. To

keep an unitary viewpoint of the meaning of the same formula
at different scales of time, we changed the usual definition of
the interpretation Iµ for a predicate symbol in the frame of a
temporal granular logic: it return the degree of truth (a real
value between zero and one) and not only the meaning of truth
(true or false).

The consequence of the definition for Iµ is formalized
in theorem 2: only the independent information (here, the
temporal free formulae) may be transferred without lost
between worlds with different granularities. Concerning the
temporal rules (scale dependent information), we proved that
the confidence of a rule in a coarser world is linked with
the confidence of a similar rule in a finer world, obtained by
applying the operator zoomk on the initial temporal rule.

We defined also a mechanism to aggregate events of the
same type, that reflects the following intuitive phenomenon: in
a coarser world, not all events inherited from a finer world are
satisfied, but in exchange there are new events which become
satisfiable. To achieve this we extended the syntax and the
semantics of L by allowing ”family” of function symbols and
by adding two new operators.

In our opinion, the logical next step in our work consists
in adding a probabilistic dimension to the formalism. Pre-
liminary results confirm that this approach allows a unified
framework for the initial formalism and its granular extension,
framework in which many of the concept definitions become
consequences of a fundamental stochastic structure.

V. APPENDIX. PROOFS

In the following, if S1, S2 are two non-empty sets, the
notation S1 � S2 is equivalent with (∀x ∈ S1∀y ∈ S2)x < y.
The set of natural numbers, N, do not contains zero.

PROPOSITION If µ1, µ2 are temporal types on (N,N) sat-
isfying 0 < #µk(i) < ∞, k = 1, 2 and i ∈ N, then
µ1 
 µ2 ⇒ µ1 = µ2.

PROOF: µ1 
 µ2 is equivalent with the existence of a
bijection function h : N → N such that µ1(i) = µ2(h(i)),
for all i. We will prove by induction that h(i) = i, which is
equivalent with µ1 = µ2.
• i = 1: suppose that h(1) > 1. If a = min(µ1(1)), then
µ1(1) = µ2(h(1)) ⇒ a ∈ µ2(h(1)). Because 1 < h(1)
we have µ2(1) � µ2(h(1)) (see def. 11) and so there
is b ∈ µ2(1) such that b < a. The inequality 1 < h(1)
implies h−1(1) > 1, and so µ2(1) = µ1(h−1(1)) �
µ1(1). But the last inequality (�) is contradicted by the
existence of b ∈ µ1(h−1(1)) which is smaller than a ∈
µ1(1). In conclusion, h(1) = 1.

• i = n+ 1: suppose that h(n+ 1) > n+ 1. The rationing
is similar to the previous case (it’s sufficient to replace 1
with n+1) because h(i) = i,∀i ≤ n and h(n+1) > n+1
implies also h−1(n + 1) > n + 1. The contradiction of
the hypothesis, in this case, means that h(n+1) = n+1
and, by induction, that h(i) = i,∀i ∈ N. �

Proofs of lemma 1
PROOF: Let be µ ∈ G1, ν ∈ G1.



• µ 4 ν : let j ∈ N. The condition (3) means that for
all k ∈ ν(j), µ−1(k) 6= ∅ and so S = {µ−1(k) ∈
N | k ∈ ν(j)} 6= ∅. Because µ 4 ν we have µ(i) ⊂
ν(j),∀i ∈ S, which implies

⋃
i∈S µ(i) ⊂ ν(j) (a). In the

same time, ∀k ∈ ν(j) we have k ∈ µ
(
µ−1(k)

)
which

implies ν(j) ⊆
⋃
i∈S µ(i) (b). From (a) and (b) we have

ν(j) =
⋃
i∈S µ(i), which implies µ E ν.

• µ E ν: let i0 ∈ N and let k ∈ µ(i0). According to
(3), there exists j = ν−1(k). Because µ E ν there is
a set S such that ν(j) =

⋃
i∈S µ(i). Because the sets

µ(i), i ∈ S are disjunct and k ∈ ν(j) ∩ µ(i0) we have
i0 ∈ S. Therefore, for each i0 there is j ∈ N such that
µ(i0) ⊆ ν(j), which implies µ 4 ν. �

Proofs of theorem 2
PROOF: According to the definition 13, we have

Iνν(i)(p) = supp(p, M̃ν(i)) =
#{j ∈ ν(i) | j |= p}

#ν(i)
(a)

On the other hand, because ν(i) =
⋃
j∈Ni µ(j), we have also

1
#ν(i)

∑
j∈Ni

#µ(j)Iµµ(j)(p)

=
1

#ν(i)

∑
j∈Ni

#µ(j)supp(p, M̃µ(j))

=
1

#ν(i)

∑
j∈Ni

#{k ∈ µ(j) | k |= p}

=
#{j ∈ ν(i) | j |= p}

#ν(i)
(b)

From (a) and (b) we obtain (7). �

Proofs of theorem 3
PROOF: If µ, ν ∈ G2 such that #µ(i) = cµ and #ν(i) = cν ,

for all i ∈ N, it is easy to show that the sets Ni satisfying
ν(i) =

⋃
j∈Ni µ(j) have all the same cardinality, #Ni =

cν/cµ = k and contain successive natural numbers, Ni =
{ji, ji + 1, . . . , ji + k− 1}. From the relations (5) and (8) we
have:

Iνν(i)(p ∧Xq) =
1
2

(
Iνν(i)(p) + Iνν(i+1)(q)

)
=

=
1
2

 1
#Ni

∑
j∈Ni

Iµµ(j)(p) +
1

#Ni+1

∑
j∈Ni+1

Iµµ(j)(q)

 =

=
1
2

1
k

ji+k−1∑
j=ji

Iµµ(j)(p) +
1
k

ji+2k−1∑
j=ji+k

Iµµ(j)(q)

 =

=
1
2k

ji+k−1∑
j=ji

(
Iµµ(j)(p) + Iµµ(j+k)(q)

) =

=
1
2k

ji+k−1∑
j=ji

2Iµµ(j)(p ∧Xkq)

 =

=
1
k

∑
j∈Ni

Iµµ(j)(p ∧Xkq) �.
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