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Abstract— It is well known that the Kripke model for the
modal logic system S5 can be interpreted as an approximation
space in rough set theory. In this paper, we generalize the
interpretation to relational granulation. We consider two multi-
modal logics for reasoning about relational granulation in open
world and closed world environments respectively. In an open
world environment, two objects are granulated into the same
equivalence classonly if they have the same relationship with
other objects, while in a closed world environment, two objects
are granulated into the same equivalence classif and only if they
have the same relationship with other objects. Such equivalence
relations are represented by derived modalities from modal
operators representing the relationships between objects.

I. I NTRODUCTION

Granular computing is a novel problem-solving methodol-
ogy deeply rooted in human thinking. Many daily “things”
have been granulated into “sub-things”. For example, the
human body can be granulated into the head, the neck, and
so forth, and geographic features can be granulated into
mountains, plains, etc. Although the notion is essentially
fuzzy, vague, and imprecise, mathematicians have idealized
it into partitions (equivalence relations) and developed a
fundamental problem-solving methodology based on it. The
notion has played a major role in solving many important
problems throughout the history of mathematics. In recent
years, rough set theory [1], [2] has introduced the idea to
computer science, and it has been successfully applied to data
analysis and uncertainty management. Nevertheless, the notion
of partitions, which does not permit any overlapping among
its granules (equivalence classes), is too restrictive for real
world applications. Even in the natural sciences, classifications
permit a small degree of overlapping. For example, there
are creatures that are the proper subjects of both zoology
and botany. A more general theory is thus needed. Granular
computing is a new, rapidly emerging paradigm designed to
meet this need [3]–[11].

In rough set theory, objects are partitioned into equivalence
classes based on their attribute values, which are essentially
functional information associated with the objects. A natu-
ral generalization is to consider granulation defined by the
relational information between objects. Such information is
defined by general binary relations, which are extensions
of the functional attributes of the objects. Geometrically,
such granulation is derived from the neighborhood system of

topological spaces [12], where each point/object is assigned
at most one neighborhood/granule. This kind of granulation is
called relational granulation, whereas granulation based only
on attribute values is calledfunctional granulation.

It is well known that the Kripke model for the modal logic
system S5 [13] can be interpreted as an approximation space
in rough set theory [14]. In this paper, we generalize this
interpretation to relational granulation. We consider two multi-
modal logics for reasoning about relational granulation in open
world and closed world environments respectively. In an open
world environment (OWE), two objects are granulated into the
same equivalence classonly if they have the same relationship
with other objects. In a closed world environment (CWE),
on the other hand, two objects are granulated into the same
equivalence classif and only if they have the same relationship
with other objects. Such equivalence relations are represented
by derived modalities from modal operators representing the
relationships between objects.

The remainder of this paper is organized as follows. In Sec-
tion II, we review rough set theory and relational granulation.
In Sections III and IV, we present modal logics for reasoning
about relational granulation in open world and closed world
environments respectively. Finally, in Section V, we present
our conclusions and indicate some future research directions.

II. ROUGH SET THEORY AND RELATIONAL GRANULATION

Rough set theory was originally defined with respect to
data tables. A data table1 is a pair S = (U,A), whereU
is a nonempty finite set, called the universe of objects;A is
a nonempty finite set of primitive attributes; and, for each
a ∈ A, a : U → Va is a total function, whereVa is the set
of values fora, called the domain ofa. Given any subset of
attributesB ⊆ A, we can derive an equivalence relation over
U , defined byInd(B) ⊆ U × U , as follows:

(x, y) ∈ Ind(B) ⇔ ∀a ∈ B, a(x) = a(y).

For any subset of objectsX ⊆ U , the lower and upper
approximations ofX with respect toB are defined as

BX = {x ∈ U | ∀(x, y) ∈ Ind(B), y ∈ X},

1Also called a knowledge representation system, information system, or
attribute-value system.



and

BX = {x ∈ U | ∃(x, y) ∈ Ind(B), y ∈ X}.

Since each attribute inA is considered as a total function
from the set of objects to the domain of values, the equivalence
relation is completely defined with respect to the functional
information associated with the objects. Thus, in rough set
theory, objects are granulated according to their functional at-
tributes. Sometimes, the relationships between objects provide
important information for data analysis. A notable example is
social network analysis, in which the principal types of data
are attribute data and relational data. According to [15],

Attribute data relates to the attitudes, opinions
and behavior of agents, in so far as these are re-
garded as the properties, qualities or characteristics
that belong to them as individuals or groups.. . . , . . .

Relational data, on the other hand, are the con-
tacts, ties and connections, the group attachments
and meetings, which relate one agent to another
and so cannot be reduced to the properties of the
individual agents themselves.

To model relational data, we employ relation algebra [16],
[17]. A proper relation algebrais a structure

R = (R,∪, ¯, ◦,` , i),

where

• R is a nonempty family of binary relations over a setU
such thatU × U ∈ R,

• (x, y) ∈ R ∪ S iff (x, y) ∈ R or (x, y) ∈ S,
• (x, y) ∈ R iff (x, y) 6∈ R,
• (x, y) ∈ R◦S iff there existsz ∈ U such that(x, z) ∈ R

and (z, y) ∈ S
• (x, y) ∈ R` iff (y, x) ∈ R, and
• i = {(x, x) | x ∈ U},

for anyR,S ∈ R andx, y ∈ U . The setU is called thefield
of the relation algebra. For any binary relationR ⊆ U × U
andx ∈ U , we defineR(x) = {y ∈ U | (x, y) ∈ R}.

A binary relation inR provides a kind of relational infor-
mation between objects, just as a subset of attributes yields
functional information about objects. Based on such relational
information, objects are granulated into equivalence classes,
as in rough set theory. Formally, for any binary relation
R,S ∈ R, S is said to be an indiscernibility relation based
on R if S is an equivalence relation andS ⊆ {(x, y) ∈
U × U | R(x) = R(y)}. We use'R to denote an arbitrary
indiscernibility relation based onR, and∼=R to denote the
least specific indiscernibility relation based onR, i.e., ∼=R=
{(x, y) ∈ U × U | R(x) = R(y)}.

For reasoning about relational granulation, we consider open
world environments (OWE) and closed world environments
(CWE). In OWE, it is assumed that, in addition to the rela-
tional information,R, other information may be available for
the granulation of objects. Thus, the indiscernibility relation
for granulating objects may be finer than∼=R, so that an
arbitrary indiscernibility relation based onR can serve the

purpose. On the other hand, in CWE, we assume thatR is
the only information available for the granulation of objects.
Thus, the least specific indiscernibility relation∼=R is used to
granulate objects.

Example 1:AssumeU is a set of agents who can receive
and provide information which may be confidential. For any
agentx, y ∈ U , we define three relationsR,S1, and S2 as
follows:

1) (x, y) ∈ R iff x would like to acquire information about
y,

2) (x, y) ∈ S1 iff there is a channel for sending information
from x to y,

3) and(x, y) ∈ S2 iff x andy have a conflict of interest.

Assume the agents with the same goal of information acqui-
sition might form an alliance. IfR is the only criterion for
formation of the alliance, then∼=R denotes the alliance relation
between the agents. If, in addition toR, other criteria, such
as personal preferences, affect formation of the alliance, then
we only know that the alliance relation is an indiscernibility
relation'R based onR. We can state a security requirement
as

S1◦ 'R⊆ S2

or
S1◦ ∼=R⊆ S2,

which means that an agent,x, can send information to another
agent,y, only when no agents in the same alliance asy have
a conflict of interest withx. This is related to the well-known
Chinese Wall security policy [18].

III. R EASONING ABOUT RELATIONAL GRANULATION IN

OPEN WORLD ENVIRONMENTS

To reason about relational granulation in OWE, we propose
a multi-modal logic, K'n . The alphabet of K'n contains the
following symbols:

1) a countable setP0 = {p, q, r, . . .} of atomic proposi-
tions,

2) the propositional constants⊥ (falsum or falsity constant)
and> (verum or truth constant),

3) the binary Boolean operator∨ (or), and the unary
Boolean operator¬ (not),

4) a setA0 = {a, b, . . .} of primitive modalities,
5) and the modal operator-forming symbols', [, and ]

The setΦ of well-formed formulas (wffs) is defined as the
smallest set containingP0∪{⊥,>} and closed under Boolean
and modal operators:

Φ := p | ⊥ | > | ¬ϕ | ϕ ∨ ψ | [a]ϕ | ['a]ϕ,

wherep ∈ P0, a ∈ A0, andϕ,ψ ∈ Φ.
Other classical Boolean connectives∧ (and),⊃ (implica-

tion), and≡ (equivalence) are defined as abbreviations, i.e.,
ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), ϕ ⊃ ψ = ¬ϕ ∨ ψ, and ϕ ≡ ψ =
(ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ). Also, we write 〈a〉ϕ (resp.〈'a〉ϕ) as
an abbreviation of¬[a]¬ϕ (resp.¬['a]¬ϕ). Furthermore, the



auxiliary symbols “(” and “)” (i.e. left and right parentheses)
are used to avoid ambiguity in wffs.

For the semantics, a possible world model for K'
n is the

structure
(U, (Ra,'Ra

)a∈A0 , V ),

where
• U is a set of possible worlds (the universe of objects),
• for eacha ∈ A0,

– Ra ⊆ U × U is a binary relation overU ,
– and'Ra

⊆ {(x, y) ∈ U × U | Ra(x) = Ra(y)} is
an equivalence relation overU ,

• and V : P0 → 2U is a truth assignment that maps
each atomic proposition to the set of worlds in which
the proposition is true.

Let M = (U, (Ra,'Ra
)a∈A0 , V ) be a model andΦ be the

set of wffs for K'n . The satisfaction relation|=M⊆ U ×Φ can
then be defined by the following inductive rules (we use the
infix notation for the relation and omit the subscriptM for
brevity):

1) for eachp ∈ P0, u |= p iff u ∈ V (p),
2) u 6|= ⊥ andu |= >,
3) u |= ¬ϕ iff u 6|= ϕ,
4) u |= ϕ ∨ ψ iff u |= ϕ or w |= ψ,
5) u |= [a]ϕ iff for all (u,w) ∈ Ra, w |= ϕ,
6) u |= ['a]ϕ iff for all (u,w) ∈'Ra , w |= ϕ.
A set of wffs,Σ, is satisfied in a world,w, written asw |= Σ,

if w |= ϕ for all ϕ ∈ Σ. We write Σ |=M ϕ if, for each
possible worldw in M,w |= Σ impliesw |= ϕ; andΣ |=K'n ϕ
if Σ |=M ϕ for each K'n model M. WhenΣ = ∅, it can be
omitted. We say that a wff,ϕ, is valid inM if |=M ϕ, andϕ is
valid if |=K'n ϕ. For brevity, the subscript is usually omitted.

Given the language and semantics, the valid wffs of K'
n are

captured by the axiomatic system shown in Figure 1. In this
presentation of the system, we use� to denote modalities[a]
or ['a].

The axiom K is the standard axiom for normal modal
operators, whereas axioms T, 4, and 5 are characterizations of
equivalence relations. The characteristic axioms Ch1 and Ch2
stipulate the connections betweenRa and 'Ra

. According
to the requirements of the semantics,(x, y) ∈'Ra

implies
Ra(x) = Ra(y). Thus, everyRa successor ofx must also be
anRa successor of any objects that are'Ra -equivalent tox.

A wff ϕ is derivable from the system K'n , or simply,ϕ is a
theoremof K'

n , if there is a finite sequenceϕ1, . . . , ϕm such
that ϕ = ϕm, and everyϕi is an instance of an axiomatic
schema or obtained from earlierϕj ’s by the application of
an inference rule. We writèK'n ϕ if ϕ is a theorem of K'n .
Let Σ ∪ {ϕ} be a subset of wffs, thenϕ is derivable from
Σ in the system K'n , written asΣ `K'n ϕ, if there is a finite
subsetΣ′ of Σ such that̀ K'n

∧
Σ′ ⊃ ϕ. We usually drop the

subscript if no confusion occurs. We then have the soundness
and completeness theorem for K'n .

Theorem 1:For any wff of K'n , |= ϕ iff ` ϕ.
Example 2:Continuing with Example 1, letA0 consist of

three primitive modalitiesa, b1, andb2 such that the intended

1) Axioms:

P: all tautologies of propositional calculus
K: (�ϕ ∧�(ϕ ⊃ ψ)) ⊃ �ψ
T: ['a]ϕ ⊃ ϕ
4: ['a]ϕ ⊃ ['a]['a]ϕ
5: ¬['a]ϕ ⊃ ['a]¬['a]ϕ
Ch1: [a]ϕ ⊃ ['a][a]ϕ
Ch2:¬[a]ϕ ⊃ ['a]¬[a]ϕ

2) Rules of Inference:

R1(Modus ponens, MP):

ϕ ϕ ⊃ ψ
ψ

R2(Generalization, Gen):

ϕ
�ϕ

Fig. 1. The axiomatic system for K'n

interpretation ofRa, Rb1 , andRb2 corresponds respectively
to R,S1, andS2 in Example 1. Then, the security policy in
Example 1 can be written as a proper axiom in K'

n as

[b2]ϕ ⊃ [b1]['a]ϕ.

IV. REASONING ABOUT RELATIONAL GRANULATION IN

CLOSED WORLD ENVIRONMENTS

To reason about relational granulation in CWE, we propose
an extension of Boolean modal logic B∼=n , which is closely
related to Boolean modal logic [19] and dynamic logic [20].
The alphabet of B∼=n is obtained from that of K'n by adding
the symbolst, ∼, ; , −, andι for compound modalities and
replacing the modal operator-forming symbol' with ∼=.

The set of modalities (Π) and the set of wffs (Φ) are defined
inductively as follows:

Π := a | ι | ∼ α | α− | α t β | α;β,

wherea ∈ A0 andα, β ∈ Π; and

Φ := p | ⊥ | > | ¬ϕ | ϕ ∨ ψ | [α]ϕ | [∼=α]ϕ,

where p ∈ P0, α ∈ Π, andϕ,ψ ∈ Φ. The abbreviation of
other logical connectives is defined as in the case of K'

n .
For the semantics, a possible world model for B∼=

n is a
structure(U, (Ra)a∈A0 , V ), whereU , Ra, andV are defined
as in K'n models. Given a B∼=n modelM = (U, (Ra)a∈A0 , V ),
we defineRM as the least relation algebra containingU ×U
and{Ra | a ∈ A0} with field U . The domain of the mapping
a 7→ Ra : A0 → RM is extended fromA0 to Π by the
following homomorphic constraints:

1) Rι = i
2) R∼α = Rα,
3) Rα− = R`

α ,
4) Rαtβ = Rα ∪Rβ ,



5) Rα;β = Rα ◦Rβ .
Furthermore, for eachα ∈ Π, we define

∼=Rα
= {(x, y) ∈ U × U | Rα(x) = Rα(y)}.

The satisfaction condition for Boolean connectives is the same
as in K'n models, but the clauses for the satisfaction of modal
formulas are modified as follows:

1) u |= [α]ϕ iff for all (u,w) ∈ Rα, w |= ϕ,
2) u |= [∼=α]ϕ iff for all (u,w) ∈∼=Rα

, w |= ϕ.
The definition of validity and logical consequence in B∼=

n is
the same as above.

Unfortunately, we can not find a complete axiomatization
for B∼=n . Instead, a sound axiomatic system can be obtained
by combining the axioms for Boolean modal logic [19] and
dynamic logic [20] as shown in Figure 2.

1) Axioms:

P: all tautologies of propositional calculus
K: ([α]ϕ ∧ [α](ϕ ⊃ ψ)) ⊃ [α]ψ
D1: [α t β]ϕ ≡ [α]ϕ ∧ [β]ϕ
D2: [α;β]ϕ ≡ [α][β]ϕ
D3 ϕ ⊃ [α]〈α−〉ϕ
D4 ϕ ⊃ [α−]〈α〉ϕ
B1: [ι]ϕ ≡ ϕ
B2 [∼∼ α]ϕ ≡ [α]ϕ
Ch: [∼=α]ϕ ≡ [∼ (α;∼ α−t ∼ α;α−)]ϕ

2) Rules of Inference:

R1(Modus ponens, MP):

ϕ ϕ ⊃ ψ
ψ

R2(Generalization, Gen):

ϕ
[α]ϕ

Fig. 2. An axiomatic system

D1-D4 are the axioms of propositional dynamic logic and
B1-B2 are the axioms for Boolean modal logic. The axiom
Ch characterizes the connection betweenRα and∼=Rα

. The
soundness of the axiom is justified by the corresponding
equation in relation algebra:

∼=Rα= Rα ◦R`
α ∪Rα ◦R`

α .

This equation follows easily from the definition of∼=Rα . The
definition of derivability and theoremhood is the same as
above. We then have the soundness theorem.

Theorem 2:For any wff of B∼=n , ` ϕ implies |= ϕ.
Example 3:Continuing with Example 1, letA0 consist of

three primitive modalitiesa, b1, andb2 such that the intended
interpretation ofRa, Rb1 , andRb2 corresponds respectively
to R,S1, andS2 in Example 1. Then, the security policy in
Example 1 can be written as a proper axiom in B∼=

n as

[∼ b2]ϕ ⊃ [b1;∼=a]ϕ.

V. CONCLUSION

In this paper, we present two modal logics for reasoning
about relational granulation. The first, called K'

n , is for reason-
ing in OWE, while the second, called B∼=n , is for reasoning in
CWE. To represent the indiscernibility relation in OWE, we do
not need full relation algebra on the modalities, so we propose
K'

n as a moderate extension of normal multi-modal logic.
On the other hand, to represent the indiscernibility relation
in CWE, we have to employ compound modalities based on
the operations of relation algebra. Consequently, we propose
B∼=n as an extended combination of dynamic logic and Boolean
modal logic. Obviously, the syntax of B∼=n is more expressive
than that of K'n . Nevertheless, we can not find a complete
axiomatization for the former, while the latter has one. Thus,
the next research problem is to investigate the possibility of
axiomatizing the validity in B∼=n .

In the definition above, we use the conditionR(x) = R(y)
to determine the indiscernibility ofx and y, based on the
relational informationR. This kind of flat definition is in
fact an approximation. More precisely, we should define≡R

recursively as

• (x, y) ∈≡R iff (or only if) there exists a bijectionσ :
R(x) → R(y) such that for allu ∈ R(x), (u, σ(u)) ∈≡R.

How to axiomatize a modality corresponding to≡R is another
problem that deserves further investigation.
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