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Abstract—It is well known that the Kripke model for the topological spaces [12], where each point/object is assigned
modal logic system S5 can be interpreted as an approximation at most one neighborhood/granule. This kind of granulation is
space in rough set theory. In this paper, we generalize the 464 relational granulation whereas granulation based only
interpretation to relational granulation. We consider two multi- . . - .
modal logics for reasoning about relational granulation in open on a_tt”bUte values is Calleﬁdm.ctlonal granulation .
world and closed world environments respectively. In an open It is well known that the Kripke model for the modal logic
world environment, two objects are granulated into the same system S5 [13] can be interpreted as an approximation space
equivalence classonly if they have the same relationship with jn rough set theory [14]. In this paper, we generalize this
other objects, while in a closed world environment, o ObJECts jiahratation to relational granulation. We consider two multi-
are granulated into the same equivalence claséand only if they . . . S
have the same relationship with other objects. Such equivalence modal logics for reasoning gbout relational grqnulatlon Inopen
relations are represented by derived modalities from modal World and closed world environments respectively. In an open
operators representing the relationships between objects. world environment (OWE), two objects are granulated into the
same equivalence classly if they have the same relationship
with other objects. In a closed world environment (CWE),

Granular computing is a novel problem-solving methodobn the other hand, two objects are granulated into the same
ogy deeply rooted in human thinking. Many daily “things’equivalence clas§and only if they have the same relationship
have been granulated into “sub-things”. For example, theéth other objects. Such equivalence relations are represented
human body can be granulated into the head, the neck, dydderived modalities from modal operators representing the
so forth, and geographic features can be granulated imtationships between objects.
mountains, plains, etc. Although the notion is essentially The remainder of this paper is organized as follows. In Sec-
fuzzy, vague, and imprecise, mathematicians have idealiz#ésh Il, we review rough set theory and relational granulation.
it into partitions (equivalence relations) and developed Ia Sections Il and 1V, we present modal logics for reasoning
fundamental problem-solving methodology based on it. Th#bout relational granulation in open world and closed world
notion has played a major role in solving many importagnvironments respectively. Finally, in Section V, we present
problems throughout the history of mathematics. In receatir conclusions and indicate some future research directions.
years, rough set theory [1], [2] has introduced the idea to
computer science, and it has been successfully applied to ddtaROUGH SET THEORY AND RELATIONAL GRANULATION

analysis and uncertainty management. Nevertheless, the nOtiORough set theory was originally defined with respect to
of partitions, which does not permit any overlapping amongqta tables. A data taBlds a pair S = (U, A), where U
its granules (equivalence classes), is too restrictive for real, nonempty finite set, called the universe of objectss
world applications. Even in the natural sciences, classificatiogqqonempty finite set of primitive attributes; and, for each
permit a small degree of overlapping. For example, thefe- A, a:U — V, is a total function, wherd/, is the set
are creatures that are the proper subjects of both zoolq@yya|yes fora, called the domain ofi. Given any subset of
and botany. A more general theory is thus needed. GranulgfihtesB C A, we can derive an equivalence relation over
computing is a new, rapidly emerging paradigm designed . defined byInd(B) C U x U, as follows:
meet this need [3]-[11]. -

In rough set theory, objects are partitioned into equivalence (z,y) € Ind(B) < Va € B, a(z) = a(y).

classes based on their attribute values, which are essentially .
functional information associated with the objects. A natf=0r @ny subset of objects’ C U, the lower and upper

ral generalization is to consider granulation defined by tffPProximations ofX' with respect toB are defined as
reIaﬁonaI information petween o.bjects. S_uch mformauoq is BX = {z € U |Y(z,y) € Ind(B), y € X},

defined by general binary relations, which are extensions

of the funCtlc_mal_ att”t_)Utes of the ObJ_eCtS' Geometrically, 1Also called a knowledge representation system, information system, or
such granulation is derived from the neighborhood system afribute-value system.

I. INTRODUCTION



and purpose. On the other hand, in CWE, we assume thas
— the only information available for the granulation of objects.
BX ={z€U|3(z,y) € Ind(B), y € X}. Thus, the least specific indiscernibility relatiesy, is used to
Since each attribute il is considered as a total functiongranulate objects.
from the set of objects to the domain of values, the equivalenceExample 1:AssumeU is a set of agents who can receive
relation is completely defined with respect to the function@nd provide information which may be confidential. For any
information associated with the objects. Thus, in rough segentz,y € U, we define three relation®, 51, and Sz as
theory, objects are granulated according to their functional &@llows:
tributes. Sometimes, the relationships between objects provida) (x,y) € R iff = would like to acquire information about
important information for data analysis. A notable example is g,
social network analysis, in which the principal types of data 2) (z,y) € S iff there is a channel for sending information
are attribute data and relational data. According to [15], from z to v,
Attribute data relates to the attitudes, opinions 3) and(z,y) € S, iff  andy have a conflict of interest.

and behavior of agents, in so far as these are re-  Assume the agents with the same goal of information acqui-
garded as the properties, qualities or characteristics  sition might form an alliance. IfR is the only criterion for
that belong to them as individuals or groups. , . .. formation of the alliance, the® ; denotes the alliance relation
Relational data, on the other hand, are the con-  between the agents. If, in addition @, other criteria, such
tacts, ties and connections, the group attachments as personal preferences, affect formation of the alliance, then
and meetings, which relate one agent to another we only know that the alliance relation is an indiscernibility
and so cannot be reduced to the properties of the relation~5 based onR. We can state a security requirement

individual agents themselves. as
To model relational data, we employ relation algebra [16], S10~pC Sy
[17]. A proper relation algebras a structure
or
m:(R,U77,O,V7|)7 Slo gRgSj,

where which means that an agent, can send information to another

+ R is a nonempty family of binary relations over a $ét agent,y, only when no agents in the same allianceydsave

such that/ x U € R, a conflict of interest withz. This is related to the well-known
o (z,y) € RUSIff (v,y) € Ror (z,y) €S, Chinese Wall security policy [18M
o (z,y) € RIff (z,y) € R,
e (z,y) € Ro S iff there existsz € U such that(z,z) € R Ill. REASONING ABOUT RELATIONAL GRANULATION IN
and(z,y) € S OPENWORLD ENVIRONMENTS
e (x,y) € R iff (y,x) € R, and

To reason about relational granulation in OWE, we propose

« i={(,2)|zeU}, a multi-modal logic, K. The alphabet of K contains the
forany R, S € R andxz,y € U. The setU is called thefield  following symbols:

of the relation algebra. For any binary relatiéghC U x U
andz € U, we defineR(z) = {y € U | (z,y) € R}.

A binary relation inR provides a kind of relational infor- )
mation between objects, just as a subset of attributes yields and T (verum or truth constant)
functional information about objects. Based on such relational3) the binary Boolean operatov ’(or) and the unary
information, objects are granulated into equivalence classes, Boolean operator: (not) '
as in rough set theory. Formally, for any binary relation 4) asetdy = {a,b,...} of F,Jrimitive modalities
R,S € R, S is said to be an indiscernibility relation based 5) and the modal ’operator—forming symbols [” and |

on R if S is an equivalence relation anfl C {(z,y) € . '
U x U | R(z) = R(y)}. We use~p to denote an arbitrary The set® of well-formed formulas (wffs) is defined as the

indiscernibility relation based o, and =~ to denote the Smallest set containingpU{.L, T} and closed under Boolean

least specific indiscernibility relation based @ i.e., = and modal operators:

oy €U XU | Blz) = Ry)). . . @:=p| LI T]-¢leve|le| e
For reasoning about relational granulation, we consider open

world environments (OWE) and closed world environmenigherep € Py, a € Ap, andy, v € O.

(CWE). In OWE, it is assumed that, in addition to the rela- Other classical Boolean connectives(and), > (implica-

tional information, R, other information may be available fortion), and= (equivalence) are defined as abbreviations, i.e.,

the granulation of objects. Thus, the indiscernibility relatiop A v = —=(—¢ V =), D ¢ = mp V¢, andp = ¢ =

for granulating objects may be finer thang, so that an (¢ D ) A (¥ D ¢). Also, we write (a)p (resp.(~,)y) as

arbitrary indiscernibility relation based oR can serve the an abbreviation of-[a]—¢ (resp.—[~,]—¢). Furthermore, the

1) a countable seP, = {p,q,r,...} of atomic proposi-
tions,
the propositional constants (falsum or falsity constant)



auxiliary symbols “(" and *)" (i.e. left and right parentheses) 1) AXIOms:

are used to avoid ambiguity in wifs. P: all tautologies of propositional calculus
For the semantics, a possible world model fof ks the K: (Op AD(e D v)) >0y
structure T: [~]p Do
(U, (Ra,~R, )acay; V), 4 [~alp O [~a][~a]e
h 5. a[~a]p D [~a][~a]e
where Chl:[a]¢ D [~d]lale
o U is a set of possible worlds (the universe of objects), Ch2: —[a)y D [~.]-[a]e
« for eacha € Ay, 2) Rules of Inference:
— R, CU x U is a binary relation ovet/, R1(Modus ponens, MP):
— and~p, C {(z,y) € U xU | Ro(z) = Ry(y)} Is ’ '
an equivalence relation ovér, Y DY
eandV : Py — 2V is a truth assignment that maps Y
each atomic proposition to the set of worlds in which R2(Generalization, Gen):

the proposition is true.

Let M = (U, (R4, =R, )aca,, V) be a model and be the
set of wffs for K. The satisfaction relatiop=9x C U x ® can
then be defined by the following inductive rules (we use the
infix notation for the relation and omit the subscript for

P
U

Fig. 1. The axiomatic system forK

brevity):
1) for eachp € Py, u |=p iff u € V(p), interpretation ofR,, R;,, and Ry, corresponds respectively
2) ulF L andu =T, to R, S;, and S, in Example 1. Then, the security policy in
3) u =y iff ul o, Example 1 can be written as a proper axiom ifi Ks
HuEpeVyiff ulEporwpE,
5) u |= [a]y iff for all (u,w) € Ry, w = ¢, [b2] O [b1][~a]e
6) u = [~y iff for all (u,w) e~g,, w = . -

A set of wffs, %, is satisfied in a worldy, written asw = %,
if w ¢ forall ¢ € . We write X |=gn ¢ if, for each  1V. REASONING ABOUT RELATIONAL GRANULATION IN

possible worldw in M, w |= ¥ impliesw = ¢; andy Er= ¢ CLOSED WORLD ENVIRONMENTS

if 3 f=am ¢ for each K model 2. WhenX = ), it can be o reason about relational granulation in CWE, we propose

omitted. We say that a wffp, is valid inM if =on ¢, andy is - an extension of Boolean modal logic=B which is closely

valid if = . For brevity, the subscript is usually omittedyg|ated to Boolean modal logic [19] and dynamic logic [20].
Given the language and semantics, the valid wifs gfd€e The alphabet of B is obtained from that of K by adding

captured _by the axiomatic system shown in Figure_ 1 In thige symbolsl, ~, ;, —, and: for compound modalities and
presentation of the system, we useto denote modalitiess]  yeplacing the modal operator-forming symbelwith =,
or [~,]. The set of modalitiesI{) and the set of wffs®) are defined

The axiom K is thg standard axiom for normall mf)d%ductively as follows:
operators, whereas axioms T, 4, and 5 are characterizations of
equivalence relations. The characteristic axioms Ch1 and Ch2 Di=al|t| ~a|la |aUf]| g,
stipulate the connections betweédd, and ~p_ . According
to the requirements of the semantids, y) €~pr, implies
R.(z) = Ru(y). Thus, ever)_/Ra successor of rr_1ust also be D:=p| L|T|-eleVe|lae][Zae,
an R, successor of any objects that arg, -equivalent toz. o

A wff ¢ is derivable from the system or simply,p is a Wherep € P, a € I, and ¢, ¢ € ®. The abbreviation of
theoremof K=, if there is a finite sequence,, ... , ¢, such other logical connectives is defined as in the casewﬁf K
that o = ¢,,, and everyyp; is an instance of an axiomatic For the semantics, a possible world model fof B a
schema or obtained from earlier;’s by the application of Structure(U, (Ra)aca,, V), whereU, R,, andV are defined
an inference rule. We write~ ¢ if o is a theorem of &. as in K¥ models. Given a B model9t = (U, (Ra)aca,, V),
Let X U {¢} be a subset of wffs, thep is derivable from We defineRyy, as the_ qust relation algebrg containiiigx u
S in the system K, written as¥. Fx= ¢, if there is a finite @Nd{fa | a € Ao} with field U. The domain of the mapping
subsety’ of ¥ such that-x~ A X' O ¢. We usually drop the @ — Ra : Ao — Rop is extended fromd, to II by the
subscript if no confusion occurs. We then have the soundnd@iowing homomorphic constraints:
and completeness theorem fof; K 1) R =i

Theorem 1:For any wff of K, = ¢ iff - . 2) Ruo = R,

Example 2: Continuing with Example 1, le};, consist of  3) R,- = R}/,
three primitive modalities;, b1, andb, such that the intended 4) Raug = Ro U Rg,

wherea € Ag anda, 8 € 1I; and



5) Ra;g = Ra ] Rﬁ.
Furthermore, for each € II, we define
“r.={(z,y) €U XU | Ro(z) = Ra(y)}-
The satisfaction condition for Boolean connectives is the sa

as in K> models, but the clauses for the satisfaction of modr&l

formulas are modified as follows:

1) u = o)y iff for all (u,w) € Ry, w [ ¢,

2) u k= [=,]p iff for all (u,w) €=g_, w = @.
The definition of validity and logical consequence iff Bs
the same as above.

Unfortunately, we can not find a complete axiomatizatio,

for BY. Instead, a sound axiomatic system can be obtain
by combining the axioms for Boolean modal logic [19
dynamic logic [20] as shown in Figure 2.

1) Axioms:

P: all tautologies of propositional calculus

K: ([a]e Ala](e D 9)) D [av

D1: [a U Bl = []p A [Ble

D2: [o; Bl = [a[B]p

D3 ¢ D [al{a™)p

D4 ¢ D [a [a)p

Bl: o=

B2 [~~ aJp = [ofe

Chi[Z]p=[~ (a5~ a"U~ajar)lp
2) Rules of Inference:

R1(Modus ponens, MP):

© pDY
(0

R2(Generalization, Gen):

~
—«

[a]e
Fig. 2. An axiomatic system

D1-D4 are the axioms of propositional dynamic logic an

B1-B2 are the axioms for Boolean modal logic. The axiom

Ch characterizes the connection betwden and =5_. The

soundness of the axiom is justified by the corresponding

equation in relation algebra:

~rp.= R, ofgquR;.
This equation follows easily from the definition &fz_. The

definition of derivability and theoremhood is the same as

above. We then have the soundness theorem.

Theorem 2:For any wff of B}, F ¢ implies = ¢.

Example 3:Continuing with Example 1, lefl, consist of
three primitive modalities, by, andbs such that the intended
interpretation ofR,, Rp,, and R, corresponds respectively
to R, S1, and Sy in Example 1. Then, the security policy in
Example 1 can be written as a proper axiom ifi Bs

[~ ba]p D [b1; =]
|

V. CONCLUSION

In this paper, we present two modal logics for reasoning
about relational granulation. The first, calle¢f Kis for reason-
ing in OWE, while the second, called B is for reasoning in
E. To represent the indiscernibility relation in OWE, we do
Aot need full relation algebra on the modalities, so we propose
K as a moderate extension of normal multi-modal logic.
On the other hand, to represent the indiscernibility relation
in CWE, we have to employ compound modalities based on
the operations of relation algebra. Consequently, we propose
B as an extended combination of dynamic logic and Boolean
fhodal logic. Obviously, the syntax of:Bis more expressive

n that of K’. Nevertheless, we can not find a complete

1 andyiomatization for the former, while the latter has one. Thus,

the next research problem is to investigate the possibility of
axiomatizing the validity in &.

In the definition above, we use the conditi®iz) = R(y)
to determine the indiscernibility of and y, based on the
relational informationR. This kind of flat definition is in
fact an approximation. More precisely, we should defing
recursively as

e (z,y) e=pg iff (or only if) there exists a bijectiorv :

R(z) — R(y) such that for alk: € R(x), (u,o(u)) €=g.
How to axiomatize a modality corresponding=tg; is another
problem that deserves further investigation.
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