Efficient Indirect Association Discovery Using
Compact Transaction Databases

Qian Wan and Aijun An

Abstract— An indirect association is a special type of negative
association that relates two items via a mediator. The two
items in an indirect association are rarely present together, but
each of them occurs frequently together with the mediator. In
this paper, we propose HI-mine*, an innovative optimization of
the previously developed HI-mine algorithm for fast extracting
indirect associations. This optimization is based on a novel
strategy for compressing a transaction database into a Super
Compact Transaction Database, which dramatically reduces not
only the number of transactions in the database, but also the
memory requirement for storing frequent-item projections in
mining indirect associations. Our experimental results show that
the HI-mine* algorithm is effective and efficient, and improves
the performance of indirect association mining significantly.

Index Terms— Data mining, association rule, indirect associa-
tion, algorithm.

I. INTRODUCTION

N association rule is an implication of the form X = Y,

which indicates that if itemset X occurs in a transaction,
then itemset Y will likely also occur in the same transaction.
The problem of association rule mining has been studied
extensively. A number of algorithms have been proposed to
improve the running time for generating association rules and
frequent itemsets [1], [2], [3], [5], [12].

The importance of extending the current association rule
framework to include negative associations was first pointed
out in [2]. Ever since, many techniques for mining negative
associations have been developed [6], [8], [12]. This problem
was addressed in [6] by combining previously discovered
positive associations with domain knowledge to constrain the
search space such that fewer but more interesting negative
rules are mined. A general framework for mining both positive
and negative association rules of interest was presented in [12],
in which no domain knowledge was required, and the negative
association rules were given in more concrete expressions to
indicate actual relationships between different itemsets.

In [8], a new class of patterns called indirect associations
was proposed and its utilities were examined in various appli-
cation domains. Indirect associations provide an effective way
to detect interesting negative associations by discovering only
“infrequent itempairs that are highly expected to be frequent”
without using negative items or domain knowledge. Consider
a pair of items, x and y, that are rarely present together in
the same transaction. If each item highly depends on the

Manuscript received December 30, 2005; revised February 2, 2006.

Qian Wan and Aijun An are with the Department of Computer Science and
Engineering, York University, Toronto, Ontario, M3J 1P3, Canada (phone:
416-736-2100x44298; fax: 416-736-5872; e-mail: {qwan, aan} @cs.yorku.ca)

presence of an itemset M, the pair (x, y) is said to be indirectly
associated via M.

An Apriori-like algorithm, called INDIRECT, for mining
indirect associations between pairs of items was given in [7],
[8]. Similar to Apriori [1], it uses two join steps to generate
frequent itemset candidates and indirect association candi-
dates. Both candidate generation steps can be quite expen-
sive, because each of them involves a great number of join
operations. The join step for generating indirect association
candidates is even more expensive than the one used in Apriori
for generating frequent itemset candidates.

In order to reduce the cost in indirect association mining, we
proposed the HI-mine algorithm in [10], [9], which is based
on a novel data structure, HI-struct. With HI-struct, we do
not need to do any join operation for candidate generation.
Instead, we generate two new sets, indirect itempair set and
mediator support set, by recursively building the HI-struct
for the database. Then indirect associations are discovered
from these two sets directly and efficiently. In [10], [9], we
demonstrated that the HI-mine algorithm is significantly faster
than the INDIRECT algorithm.

In this paper we present the HI-mine* algorithm, a novel,
effective and efficient optimization of the HI-mine algorithm.
This optimization is based on a new strategy for compress-
ing a transaction database into a Super Compact Transac-
tion Database that is an extension of Compact Transaction
Database [11]. We show that this strategy drastically cuts
down the size of memory required to store HI-struct and
also significantly improves the running time of HI-mine by
allowing one database scan, identical transaction merging, ana-
logical transaction combining, direct frequent item projecting
and dynamic infrequent item pruning.

The rest of this paper is organized as follows. Section
2 gives the formal definition of indirect associations. The
generation of super compact transaction databases is described
in Section 3. Then, we present HI-mine* algorithm in Section
4. Our empirical results are reported in Section 5. Finally, we
conclude the paper in Section 6.

II. PRELIMINARIES

Let I = {i1, i2,..., im } be a set of m items. A subset X C [
is called an itemset. A k-itemset is an itemset that contains k
items. A transaction database D = {11, T,..., Tn } is a set of
N transactions, where each transaction T, (n € {1, 2, ..., N})
is a set of items such that 7, C I. A transaction T contains
an itemset X if and only if X C 7. An example transaction
database TDB is shown in Table 1. In TDB, I = {A, B, C, D}
and N = 10.

TABLE I

AN EXAMPLE TRANSACTION DATABASE
TID | List of itemIDs
001 A, B,C,D
002 A, B, C
003 A, B, D
004 B,C,D
005 ,

006 A, B, C
007 A, B, C
008 s
009 B,C,D
010 s

The support of an itemset X is the percentage of transactions
in D containing X: supX)=||{t | 1 € D, X C t}|| / |{¢t | ¢
€ D}, where ||S|| is the cardinality of set S. An itemset X
in a transaction database D is called as a frequent itemset if
sup(X) is not less than a user-specified minimum support,
min_sup. Accordingly, an infrequent itemset is an itemset that
does not satisfy the min_sup.

Definition 2.1 (Indirect Association [8]): An itempair {X,
y} is indirectly associated via a mediator M, if the following
conditions hold:

1. sup({x, y}) < t,

2. There exists a non-empty itemset M such that:

(a) sup({x} UM) > tr, sup({y} UM) > ty;

(b) dep({x}, M) > t4, dep({y}, M) > tq, where dep(P, Q)
is a measure of the dependence between itemsets P and Q.

The thresholds above are called itempair support threshold
(ts), mediator support threshold (ty), and mediator depen-
dence threshold (t4), respectively. In practice, it is reasonably
to set £y > ts. In this paper, notation (x, y | M) is used to
represent the indirect association between x and y via M, and
the IS measure [8] is used as the dependence measure for
Condition 2(b).

Given a transaction database D and three thresholds: ¢, ¢y
and t4, the Indirect Itempair Set and Mediator Support Set are
defined as follows.

Definition 2.2 (Indirect Itempair Set): Let L, be the set of
1-itemset of D. We define the indirect itempair set (/IS) of D
as:

sy = {(z,y)|{z} € L1 A {y} € L1 A sup({z}) >
ty A sup({y}) > ty A sup({z,y}) <t}

Definition 2.3 (Mediator Support Set): Let L be the set of
itemsets of D, and L; be the set of 1-itemset of D. The
mediator support set (MSS) of item x is defined as:

MSS(x) = {M|M € L A sup(M U {z}) > t; A
dep(M,{z}) > td}

Given a transaction database D, our previous HI-mine algo-
rithm scans D twice to build an initial HI-struct, dynamically
mines the HI-struct to compute /IS(D) and all the MSS(x)s, and
then generates the complete set of indirect associations from
1IS(D) and MSS(x)s. In the next sections, we will first describe
how to compress the database D into a Super Compact
Transaction Database. Then we will describe the HI-mine*
algorithm that builds and mines a compressed version of HI-
struct from the super compact transaction database to mine
the complete set of indirect associations.

III. SUPER COMPACT TRANSACTION DATABASE

Our motivation for building a compact transaction database
is based on the following observations. First, a number of

TABLE II
THE COMPACT TRANSACTION DATABASE
ea.

Item [C[B[DTJA
Count [9[8[65
ody
Count [List of itemIDs
3 C,B, A
I C,.B, DA
1 B,D, A
I . B
2 C,B,D

2 C,

transactions in a transaction database may contain the same
set of items. For example, as shown in Table I, transaction
{A, B, C} occurs three times, and transactions {B, C, D} and
{C, D} both occur two times in the same database. Therefore,
if the transactions that have the same set of items can be stored
in a single transaction with their number of occurrences, it is
possible to avoid repeatedly scanning the same transaction in
the original database. Moreover, if the frequency count of each
item in the given transaction database can be acquired when
constructing the compact database before mining takes place,
it is possible to avoid the first scan of the database to identify
the set of frequent items as most approaches to efficient mining
of frequent patterns do.

The compact transaction database (CTDB) of the example
transaction database TDB is shown in Table II. It contains
two parts: head and body. The head lists all the four items
in TDB with their frequency counts, ordered in frequency-
descending order, {C:9, B:8, D:6, A:5}. The body consists
of 6 unique transactions with their frequency counts, instead
of 10 transactions in 7DB. The items in each transaction are
ordered in frequency-descending order as well. In [11], we
presented an efficient algorithm that converts a transaction
database into its compact transaction database. The algorithm
uses a data structure called CT-tree and scans the transaction
database once.

The use of a CTDB can not only save storage space, but also
greatly reduce the I/O time required by database scans during
mining association rules or indirect associations. In fact, we
can improve the performance even further by grouping the
same set of items in a number of transactions into a single
transaction, which leads to a new Super Compact Transaction
Database (STDB).

In STDB, analogical transactions, in which only the last one
item is different, are combined into a new transaction with two
parts: the front part that contains the same set of items and the
back part that contains the list of all different items with their
count values. The STDB for the example CTDB in Table II
is shown in Table III. The head parts of the two databases
are exactly the same, while the body part of STDB consists
of only 4 transactions. For instance, the second transaction in
STDB records two analogical transactions in CTDB, the first
one and the fifth one. Its front contains the same set of items:
{C, B} and its back contains a list: {2:D, 3:A}.

Having introduced the concept of STDB, we now present an
algorithm for building an STDB from a CTDB. The algorithm
consists of two steps. In the first step, a CT-tree (first proposed
in [11] to generate a CTDB from the original transaction
database) is built from the CTDB, and in the second step an

TABLE III
THE STDB OF TDB

ea
Item | C B | D [A
Count |9 8 [6 [5
ody
front back
items count [item | count | item
C 1 B 2 D
C,B 2 D 3 A
C,B,D 1 A
B, D I A
ROOT
)
B:1 D:2 [%]
1 D$:2 (A3)

Fig. 1. CT-tree for CTDB in Table II.

STDB is generated from the CT-tree. A CT-tree represents a
transaction database. It can be generated by scanning either
the original transaction database or its CTDB. Fig 1 shows the
CT-tree constructed by scanning the body of CTDB in Table II.

In a CT-tree, every tree node V (except the root of the tree,
which is labelled as “ROOT”) is a 2-tuple (V; : V), where V;
is an item id and V. is the count value of a unique transaction
consisting of all the items in the branch of the tree from the
root to node V. The process for generating the CT-tree in Fig 1
from the CTDB in Table II is briefly illustrated as follows.

The scan of the first three records in CTDB leads to the
construction of three new branches of the tree: CBA, CBDA
and BDA. The count value of each record is stored in the
last node of each path, while all other nodes remain 0. The
next two records change the count value of node B and D of
the leftmost path into 1 and 2, respectively. Finally, for the
last record, a new path CD is created, and node D stores the
count of this record. Note that a CT-tree built from a CTDB
has the property that each branch of the tree lists its items
from high to low levels in frequency-descending order. Such
a CT-tree can also be generated from the original transaction
database by first sorting all the items in each transaction in
frequency-descending order and then inserting them into the
CT-tree.

Having the CT-tree, an STDB can be generated as follows.
For each node N in the tree, if there exists a child node (C;:
C.) of N where C. > 0, then a new transaction is generated
in STDB of which the front part records all the items in the
branch from the root to node N and the back part records the
list of all the child nodes whose count value is greater than 0.

The algorithm for generating an STDB from a CTDB using
the CT-tree data structure is described as follows.

1: head of STDB < head of CTDB
2: root[CTtree] +— “ROOT”

3: for each transaction T, in the body of C'I'DB do
4: insert(Ty,, CTtree)

5: end for

6: if CTtree is not empty then

7 write(root, STDB)

8: end if

procedure insert(I', CTtree)

1: thisNode < root[CTtree]

2: for each item ¢ in transaction 7" do
3: nextNode < child[thisNode]

4: while nextNode # null and item[nextNode] # ¢ do
5: nextNode «— sibling[nextNode]

6: end while

7: if nextNode = null then

8: item[newNode] «— 1

9: if 7 is the last item in 7" then

10: count[newNode] < count|[T']

11: else

12: count[newNode] < 0

13: end if

14: parent[newNode] < thisNode

15: sibling[newNode] < child[thisNode]
16: child[newNode] < null

17: child[thisNode] «— newNode

18: thisNode < newNode

19: else

20: if item 7 is the last item in 7" then
21: count[thisNode] = count[thisNode] + count[T’]
22: else

23: thisNode < nextNode

24: end if

25: end if

26: end for

procedure write(node, STDB)

1: numltems «— 0O
2: nextNode «+— child[node]

3: while nextNode # null do

4: if count[nextNode] > 0 then

5: numltems++

6: count[backList[numltems]] < count[nextNode]
7 item[backList[numltems]] < item[nextNode]
8: end if

9: nextNode «— sibling[nextNode]

10: end while

11: if numltems > O then

12: nextNode < node

13: while nextNode # root[CTtree] do

14: frontltems «— add item[nextNode]

15: nextNode «— parent[nextNode]

16: end while

17: if frontltems is not empty then

18: STDB « write frontltems
19: STDB «— write backList
20: end if

21: end if

22: if child[node] # null then
23: write(child[node], STDB)
24: end if
25: if sibling[node] # null then
26: write(sibling[node], STDB)
27: end if

The head of CTDB is copied into STDB in the first step.
From step 2 to step 5, a complete CT-tree is built with one
scan of the body of CTDB by calling the procedure insert('l},,
CT-tree). Then, after calling the procedure write(root, STDB)
in step 7 recursively, every analogical transaction with two
parts, frontltems and backList, is written into the body of STDB
(step 18 and 19). Thus, a super compact transaction database
is generated.

IV. HI-mine* ALGORITHM

The HI-mine* algorithm improves its predecessor, HI-mine,
by mining indirect associations from an STDB instead of an

Head;;;‘aBble of Index Frequent-Item Projection
Item |Count| Link | __-7 Index | Count left right
c | o - o1 3 c [1B,22D
B 8 - 02 5 C,B_|2:D,3:A
D 6 “_\ 03 1 C,B,D 1:A
A s 04 1 B.D 1:A
Fig. 2. The initial HI-struct of STDB.
Header Table of Header Table of
{C:9} {CB:7}
Item |Count| Link Index Item |Count| Link Index
D | 5 Al 4
A 4
Fig. 3. Head table Ho and Hop.

original database. The algorithm consists of two phases. In
the first phase, it builds an HI-struct from an STDB and then
dynamically adjusts and mines the HI-struct to compute the
indirect itempair set (/IS) and the mediator support sets (MSSs)
(see Definitions 2.1 and 2.2). In the second phase of HI-mine*,
the complete set of indirect associations is generated from IIS
and MSSs.

Let’s illustrate HI-mine* using the following example. Sup-
poset, =ty =tq=0.5, where t,, ty and ¢4 are itempair support
threshold, mediator support threshold and mediator depen-
dence threshold, respectively (see Definition 2.1). The initial
HI-struct of the STDB in Table III is shown in Fig 2, which
consists of a header table H and frequent-item projections of
the transactions in the STDB. A frequent-item projection of a
transaction contains only the frequent items in the transaction
with respect to ¢¢. In this example, all the items in the database
are frequent.

The initial HI-struct is constructed as follows. First, we
collect the set of frequent items F with respect ¢y and their
supports in support descending order from the head part of
STDB. For the example database, F is {C, B, D, A}. Then
a header table H is created, where each frequent item has an
entry with three fields: its item-id, its support count, and a
pointer to a queue. For each record R in the body of STDB,
select the frequent items according to the order of F. Let the
frequent item list in the front of R be [¢|T], where is the first
element and 7' is the remaining list. Let the back list of R be
Ty and the sum of the count values of frequent items in T} be
c. Add [c][7|Tf1[Tp] to a frequent-item projection array, and
append its index of the array to ¢’s queue in the header table
H. Thus, all indexes of the frequent-item projections with the
same first item (in the order of F) are linked together as a
queue, and the entries in the header table H act as the heads
of the queues.

The subsequent mining process involves building IIS(STDB)
and MSS of each frequent item. We use a divide-and-conquer
strategy to build these sets by partitioning each set into
disjoined subsets and generating each subset in turn. Following
the support descending order of frequent items: C, B, D, A,
the complete IIS(STDB) and each MSS can be partitioned into
4 subsets as follows: (1) those containing item C; (2) those
containing item B but no item C; (3) those containing item D,
but no item C nor B; and (4) those containing only item A.

In order to find /IS(STDB) and MSSs that contain item C, a

Head;;zl)aBble of Frequent-Item Projection

Item [Count| Link Index | Count left right
C 9 Index 01 3 C 1:B,2: D
B 8 -f---s > 02 5 C,B_|2D, 3A
D | 6 03 1 [cB,D| 1A
A | s 04 1 B.D L:A

Fig. 4. HI-struct after mining C-queue.

C-header table H¢o (shown in the left side of Fig 3) is created
by traversing the C-queue in the header table H once. In H¢,
every frequent item, except for C itself, has an entry with the
same fields as in H, i.e., item-id, support count and a pointer
to a queue. The support count in H¢ records the support of
the corresponding item in the C-queue. For example, since
item A appears 4 times in the frequent-item projections of
C-queue, the support count in the entry for A in H¢o is 4.
And all the indexes of the frequent-item projections with the
same first two items are linked together as a queue, and the
entries in the header table Ho act as the heads of the queues.
For instance, the B-queue in Ho stores all indexes of the
frequent-item projections with the same first two items CB.
Since A is locally infrequent with respect to C, itempair (A,
C) is added to /IS(STDB). The other two items B and D are
locally frequent, and the IS measure between C and each of
these two items passes the minimum dependence threshold
0.5. Therefore, {C} is added to MSS(B) and MSS(D).

Then, a header table Hop (shown in the right part of Fig 3)
is created by examining B-queue in H¢ in the same manner as
in generating H¢ from the C-queue in H. Thus the algorithm
recursively exams the CB-projected database to determine
whether itemset {C, B} belongs to MSS(D) and MSS(A). Since
Hep contains no frequent item, the search along path CB
completes. Similarly, the mining process continues to discover
MSSs that contain itemset {C, D}, itemset {C, A} and so on.

In the next step, all the indexes in the C-queue of header
table I are moved into the proper queues in H to mine
IIS(STDB) and MSSs that contain item B but not C, and
other subsets of them. The proper queue is the queue of the
item right after item C in the corresponding frequent-item
projection. The header table H after this adjustment is shown
in Fig 4. The final results for IIS(STDB) and MSSs after mining
B, D and A queues are listed as follows:

LIS(STDB) = {(C, A), (B, D), (D, A)}

MSS(A) = {{B}} MSS(B) = {{C}, {A}}

MSS(C) = {{B}, {D}} MSS(D) = {{C}}

The second phase of the HI-mine* algorithm is to compute
the set of mediators for each indirect itempair in IIS(STDB).
For example, the set of mediators for itempair (C, A) in
IIS(STDB) is computed by intersecting MSS(C) and MSS(A),
which results in {{B}}. In this way, two indirect associations
are discovered in the example database: (C, A | {B}) and (B,
D | {C}).

Compared to HI-mine, HI-mine* uses the following tech-
niques to optimize the performance of indirect association
mining.

(1) One database scan: In HI-mine, two scans of the original
database are needed to build the initial HI-struct. It first
scans the database to get the set of frequent items and then
scans it again to construct HI-struct. Only one scan of an

STDB (whose size is usually much smaller) is needed in HI-
mine*. Even though it takes time to build an STDB from the
original database, the database compression into the STDB
is conducted only once. The subsequent mining of indirect
associations from the STDB can be conducted multiple times
with different settings of support and dependence thresholds.
These multiple runs of HI-mine* all benefit from the one-time
database compression.

(2) Identical transaction merging: HI-mine* avoids repeat-
edly scanning transactions that have the same set of items by
merging them into a single transaction. This strategy, as well
as the following one, saves a great amount of memory required
to build the HI-struct.

(3) Analogical transaction combining: HI-mine* avoids
repeatedly scanning the same set of items by combining
analogical transactions, in which only the last item is different,
into a new transaction with two parts: the front part containing
the same set of items and the back part containing the list of
all different items with their count values.

(4) Direct frequent item projecting: Since the items in
the front of each new transaction are stored in frequency
descending order, HI-mine* can directly add the selected items
to the frequent-item projection array with no need to sort these
items first, while these operations must be done during the
second database scan of HI-mine.

(5) Dynamic infrequent item pruning: In HI-mine*, items
that are locally infrequent are dynamically pruned from the
deeper level header table of HI-struct. For example, header
table Hop does not contain item A, because A’s count is 4
in the header table H-. Moreover, items in the back of each
frequent-item projection will never be considered for adjusting
proper queues, only the count values of these items are needed
in the mining process.

Due to these features, HI-mine* uses less amount of mem-
ory and performs much faster than HI-mine.

V. EXPERIMENTAL STUDIES

In this section, we report our experimental results on the
generation of super compact transaction databases as well
as the performance of the HI-mine* algorithm using super
compact transaction databases in comparison with the HI-mine
algorithm using original transaction databases.

A. Environment of experiments

All the experiments are performed on a double-processor
server, which has 2 Intel Xeon 2.4G CPU and 2G main
memory, running on Linux with kernel version 2.4.26. All
the programs are written in Sun Java 1.4.2. To evaluate the
performance of the two algorithms over a large range of data
characteristics, we have tested the programs on various real
world and synthetic data sets.

The synthetic data sets, shown in the first 4 rows of
Table IV, are generated using the procedure described in [1].
In these data sets, total number of items and number of
maximal potentially frequent items are set to 1000 and
2000, respectively. Microsoft data set, obtained from UCI
Machine Learning Repository, was created by sampling and
processing the web logs of Microsoft. LiveLink data set

TABLE IV
DATABASE CHARACTERISTICS

Database # Items Trans | # Trans in | Compr.
STDB rate
TI0ISDI00K 1000 100,000 83,859 16.1%
T20110D100K 1000 100,000 88,157 11.8%
T15110D200K 1000 200,000 141,339 29.3%
T20115D200K 1000 200,000 132,264 33.9%
Microsoft 294 32,711 6,053 79.7%
LiveLink 38,679 | 30,586 17,201 43.8%
Retail 16,470 | 88,162 75,407 14.5%
Kosarak 41 270 990,002 364 573 63.2%

was first used in [4] to discover interesting association rules
from Livelink web log data. This data set is not publicly
available for proprietary reasons. The other two data sets are
taken from the Frequent Itemset Mining Dataset Repository
(http://fimi.cs.helsinki.fi/data), in which Retail contains the
(anonymized) retail market basket data from an anonymous
Belgian retail store and Kosarak contains (anonymized) click-
stream data of a Hungarian on-line news portal.

B. Generation of STDB

To evaluate the effectiveness of our approach, we compared
the super compact transaction database with the original
database in terms of the number of transactions and the
memory requirement to store the frequent-item projections.

Table IV shows the number of transactions in the trans-
action data base (TDB), the number of transactions in STDB

and the compression rate in transaction numbers, defined as

of tvans in TDB—+# of trans in STDB _'We can see that the
of transactions in TDB

proposed approach leads to a good compression in the number
of transactions with an average compression rate of 22.8%
among the synthetic databases and an excellent compression
with an average rate of 50.3% among the real-world databases.
In the best case, a compression rate of 79.7% is achieved in
the Microsoft web data.

Frequent—item Projection
70

——— T10I5D100K

Compression Rate (%)

+
> 15 1 0.75 0.5
Minimum Support Threshold (%)

Fig. 5.

Fig 5 shows the compression rates of the memory require-
ment for storing frequent-item projections of the STDBs from
all the synthetic and real-world datasets mentioned above, for
various values of minimum support from 0.25% to 2%. The
compression rate is calculated as (amount of memory needed in
HlI-mine - amount of memory needed in HI-mine*) / (amount
of memory needed in HI-mine). We can observe from Fig 5
that, for the real-word datasets, the compression rates become
much greater when the support threshold increases to relatively
higher values. Even for very low support values, such as
0.5%, the compression rates are over 20% for all the real-
world datasets except the Retail dataset. Moreover, we find
once again that much higher compression rates are achieved
in the real-world data sets than in the synthetic ones, which

Compression rates of STDB

TI0IEDIOK T20I0DI0K

05 03025 2 1
Werietor Support Threshor (%)

20115 020K

1 o7
Mediator Suppor Threshol (%)
TISI10020K

2 15 7 05 0302 2 75 05 0%025

T o 5 1 o
Megator Support Theshol () Werietor Support Threshor (%)

Fig. 6. Performance on synthetic data sets

Mrosol Web Data
= fimne = Fime]
—e—Hinine —e—Himine

LieLink Web Data

‘/_/‘74‘//
o 05 omizs

Z/IJ
2 s w05 omo

5 T o
Medator Suppor Treshld (%)
Kosarak Data Set

T
Medator Support Threshad (%)
Retall Data St

= Fimne

075 05 0s0s 2 075 05 om0z

5 T 1
Modialor Suppor Thresno (%) Metatr Support Treshor (%)

Fig. 7. Performance on real-world data sets
indicates that the super compact transaction database provides
more effective data compression in real-world applications.

C. Evaluation of efficiency

To assess the efficiency of our proposed approach, we
performed a number of experiments to compare the runtime of
HI-mine* with that of HI-mine. Fig. 6 and Fig. 7 illustrate the
corresponding execution times for the two algorithms on two
different types of databases with various support thresholds
from 2% down to 0.25%.

From these performance curves, it can be observed that HI-
mine* achieves remarkably better runtimes than HI-mine in all
situations, and shows the anticipated behavior. It is important
to note that there is a significant efficiency gain by HI-mine* in
real-world data, where HI-mine* is approximately two to three
times faster than HI-mine for almost all support levels. This
also indicates that our new approach offers more performance
improvement in real-world applications.

VI. CONCLUSION

In this paper, we propose HI-mine*, an innovative optimiza-
tion of the previously developed HI-mine algorithm for fast
extracting indirect associations. This optimization is based on a
novel strategy that compresses a transaction database into a su-
per compact transaction database, which dramatically reduces
not only the number of transactions in the original database,
but also the memory requirement for storing frequent-item
projections and the runtime for mining indirect associations.
Our experimental results verify the effectiveness and efficiency
of our approach, and demonstrate that HI-mine* consistently
outperforms the previous algorithm in terms of both memory
requirement and runtime on both real-world and synthetic
databases. In particular, it achieves a significant efficiency gain
in real-world data by a factor of two to three on average.

Our study has been confined to mining the complete set of
indirect associations between itempairs from compact transac-
tion databases. However, the method developed here can be
extended for mining indirect associations between itemsets or
other new types of interesting associations. We are studying
these problems and will report our progress in the future.
Furthermore, in [9] we proposed a solution for HI-mine to
handle situations where frequent-item projections cannot be
held in the main memory. The solution will be adapted to
HI-mine*.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487-499,
1994.

S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting

and implication rules for market basket data. In Proceedings of the Inter-

national ACM SIGMOD Conference, pages 255-264, Tucson, Arizona,

USA, May 1997.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate

generation. In Proceedings of ACM-SIGMOD Int. Conf. on Management

of Data, pages 1-12, 2000.

[4] X. Huang, A. An, N. Cercone, and G. Promhouse. Discovery of

interesting association rules from livelink web log data. In Proceedings

of IEEE Int. Conf. on Data Mining, 2002.

J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-mine: hyper-

structure mining of frequent patterns in large database. In Proceedings

of the IEEE International Conference on Data Mining, San Jose, CA,

November 2001.

[6] A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative
associations in a large database of customer transactions. In Proceedings
of the 14th International Conference on Data Engineering, pages 494—
502, 1998.

[7] P. Tan and V. Kumar. Mining indirect associations in web data. In Proc
of WebKDD2001: Mining Log Data Across All Customer TouchPoints,
August 2001.

[8] P. Tan, V. Kumar, and J. Srivastava. Indirect association: mining higher
order dependencies in data. In Proc. of the 4th European Conf. on
Principles and Practice of Knowledge Discovery in Databases, pages
632-637, 2000.

[9] Q. Wan and A. An. An efficient approach to mining indirect associations.
Journal of Intelligent Information Systems (JIIS). To appear.

[10] Q. Wan and A. An. Efficient mining of indirect associations using
HI-mine. In Proceedings of the 16th Conference of the Canadian Society
for Computational Studies of Intelligence, AI 2003, Halifax, Canada, June
2003.

[11] Q. Wan and A. An. Compact transaction database for efficient frequent
pattern mining. In Proceedings of IEEE Int. Conf. on Granular Comput-
ing, Beijing, China, 2005.

[12] X. Wu, C. Zhang, and S. Zhang. Mining both positive and negative
association rules. In Proceedings of the 19th Int. Conf. on Machine
Learning, pages 658—665, 2002.

[2

[

3

—_

[5

—

