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Abstract—Exchangeable random variables form an important
and well-studied generalization of i.i.d. variables, however simple
examples show that no nontrivial concept or function classes
are PAC learnable under general exchangeable data inputs
X1, X2, . . .. Inspired by the work of Berti and Rigo on a
Glivenko–Cantelli theorem for exchangeable inputs, we propose
a new paradigm, adequate for learning from exchangeable data:
predictive PAC learnability. A learning rule L for a function
classF is predictive PAC if for every ε, δ > 0 and each function
f ∈ F , whenever |σ| ≥ s(δ, ε), we have with confidence1 − δ
that the expected difference betweenf(Xn+1) and the image of
f |σ under L does not exceedε conditionally on X1, X2, . . . , Xn.
Thus, instead of learning the functionf as such, we are learning
to a given accuracyε the predictive behaviour of f at the future
points Xi(ω), i > n of the sample path. Using de Finetti’s
theorem, we show that if a universally separable function class
F is distribution-free PAC learnable under i.i.d. inputs, then it
is distribution-free predictive PAC learnable under exchangeable
inputs, with a slightly worse sample complexity.

Index Terms—Exchangeable random variables, de Finetti the-
orem, predictive PAC learnability.

I. I NTRODUCTION

In the classical theory of statistical learning as initiated
in [15], [4] (see [14] for a historical and philosophical per-
spective) data inputs are traditionally modelled by a sequence
of i.i.d. random variables(Xi). Generalizating this approach
usually involves easing the i.i.d. restriction on the sequence
of inputs, all the while trying to obtain the same conclusions
as in the classical theory, namely the uniform convergence
of empirical means and subsequently the PAC learnability of
a concept or a function class under the usual combinatorial
restrictions in terms of shattering. For instance, the i.i.d.
condition can be relaxed to that of being an ergodic stationary
sequence ([12], p. 9), or aβ-mixing sequence [16]. As to
α-mixing sequences, they are known to result in the same
PAC learnable function classes under a single distribution[17],
although it is still unknown whether uniform convergence
of empirical means takes place [18]. An interesting recent
investigation is [11].

However, at some point this approach hits a wall. Among the
best studied classes of dependent stationary random variables
are exchangeable random variables [6]; [3], p. 473; [9], [10].
A sequence of r.v.(Xi) is exchangeable,if for every finite
sequence(i1, i2, . . . , in) of integers the joint distributions of
(Xi1 , Xi2 , . . . , Xin) and of (X1, X2, . . . , Xn) are the same.

According to the famous De Finetti theorem [6], [7], a
sequence(Xi) is exchangeable if and only if the joint dis-
tribution P on Ω∞ is a mixture of product distributions (that
is, (Xi) is a mixture of a family of i.i.d. random sequences).

A nice illustration and the most extreme example of an
exchangeable sequence which is not i.i.d is a sequence of iden-
tical copies of one and the same random variable,Xi = X ,
i = 1, 2, . . .. The joint distribution of this process is a measure
supported on the diagonal of the infinite product spaceΩ∞,
which is clearly a mixture of infinite powers of all Dirac point
masses onΩ.

Now, it is immediately clear that no nontrivial function class
F on a domainΩ will be PAC learnable under such a data
input process: almost every sample pathx̄ will be constant,
x̄ = (x, x, x, . . .), thus revealing no information about the
values of a functionf ∈ F away fromx. Consequently, if
we want to be able to learn from exchangeable data inputs,
the paradigm of learnability itself has to be re-examined.

A way out was shown by Berti and Rigo in their visionary
note [2] where they prove that the classical Glivenko–Cantelli
theorem holds for a sequence(Xi) of exchangeable random
variables if and only if the sequence is i.i.d. At the same
time, they observe that the classical GC theorem is formally
equivalent to the statement about the predictive distribution
being approximated by the observed frequency:

sup
t

|Fn(t, ω)− P (Xn+1 ≤ t‖X1, . . . , Xn)(ω)| → 0 a.s.

Here Fn(t, ω) = (1/n)
∑n

i=1 I(−∞,t](Xi) is the empirical
mean of the indicator function, andP (·‖X1, . . . , Xn) is the
conditional probability. As shown in [2], in this form the
statement remains valid if the r.v.(Xi) are exchangeable, and
the result can be considered as a conditional (or: predictive)
version of the classical Glivenko-Cantelli theorem.

Since the uniform Glivenko-Cantelli theorems are at the
heart of statistical learning, one would think that the approach
of Berti and Rigo should have consequences for learning from
exchangeable inputs. We show that this is indeed the case: by
replacing PAC learnability withpredictive PAC learnability,
one arrives at a new broad paradigm of learnability suited for
learning under exchangeable inputs.

Say that a function classF is predictively PAC learnable
under a given classP of exchangeable random processes(Xn)
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if there exists apredictive PAC learning rulefor F underP ,
that is, a mapL from the sample spaceS to a hypothesis class
H such that

P{σ : E (|(L(f |σ)− f)(Xn+1)| ‖X1, X2, . . . , Xn) > ε} → 0

uniformly in f ∈ F and(Xi) ∈ P . This is different from PAC
learnability in that the expected value of|L(f |σ) − f | is re-
placed with the conditional expectation givenX1, X2, . . . , Xn.
If in particular(Xi) are i.i.d., the above definition is a reformu-
lation of PAC learnability under the family of corresponding
laws on the domainΩ.

We show that if a function classF is distribution-free PAC
learnable under the usual assumption that the data sample
inputs are i.i.d., thenF is predictively PAC learnable under
the class of all sequences of exchangeable data inputs. Our
results are obtained under the assumption thatF is universally
separable.

II. SETTING FOR LEARNABILITY

Here we review the PAC learnability model [1], [4], [13],
[16] in order to fix a precise setting. Thedomain, or instance
space, Ω = (Ω,A ) is a measurable space,that is, a setΩ
equipped with a sigma-algebra of subsetsA . We will assume
thatΩ is astandard Borel space,that is, a complete separable
metric space equipped with the sigma-algebra of Borel subsets.
For intstance, without loss in generality one can always assume
thatΩ = R

k is the Euclidean space.
Denote byB(Ω, [0, 1]) the collection of all Borel mea-

surable functions fromΩ to [0, 1]. A function classF is a
subfamily ofB(Ω, [0, 1]).

The familyP (Ω) of all probability measures on(Ω,A ) is
itself a measurable space, whose sigma-algebra is generated
by the functionsν 7→ ν(A) from P (Ω) to R, asA runs over
A .

In the PAC learning model, a setP of probability measures
on Ω is fixed. Usually eitherP = P (Ω) is the set of all
probability measures (distribution-free learning), or P = {µ}
is a single measure (learning under a fixed distribution).

A learning sampleis a pairs consisting of a finite subset
σ of Ω and of a function onσ. It is convenient to assume
that elementsx1, x2, . . . , xn ∈ σ are ordered, and thus the
set of all samples(σ, τ) with |σ| = n can be identified with
(Ω× [0, 1])n. For σ ∈ Ωn and a functionf ∈ F we will
denotef ↾ σ the sample obtained by restrictingf to σ.

A learning rule is a mapping

L :

∞
⋃

n=1

Ωn × [0, 1]n → B(Ω, [0, 1]),

which is measurable with regard to every Borel structure
induced onB(Ω, [0, 1]) by the distancesL1(µ), µ ∈ P .

A learning ruleL is consistentif for every f ∈ F and each
σ ∈ Ωn one has

L(f ↾ σ) ↾ σ = f ↾ σ.

Consistent learning rules exist for every function classF

under mild measurability restrictions.

A learning ruleL is probably approximately correct(PAC)
for the function classF under the class of measuresP if for
everyε > 0

sup
µ∈P

sup
f∈F

P {σ ∈ Ωn : Eµ|L(f ↾ σ)− f || > ε} → 0

asn → ∞. HereP stands forµ⊗n.
Equivalently, there is a functions(ε, δ) (sample complexity

of L) such that for eachf ∈ F and everyµ ∈ P an i.i.d.
sampleσ with ≥ s(ε, δ) points has the propertyEµ|f −L(f ↾

σ)| < ε with confidence≥ 1− δ.
A function classF is PAC learnable underP , if there exists

a PAC learning rule forF underP .
If P = P (Ω) is the set of all probability measures, thenF

is said to be (distribution-free)PAC learnable. At the same
time, learnability under intermediate families of measures on
Ω has received considerable attention, cf. Chapter 7 in [16].

A closely related concept to that of a PAC learnable class is
that of auniform Glivenko–Cantellifunction class, that is, a
function classF such that for eachδ, ε > 0 one has, whenever
n ≥ s(δ, ε),

sup
µ∈P (Ω)

P

{

sup
f∈F

∣

∣

∣

∣

Eµ(f)−
1

n
Sn(f)

∣

∣

∣

∣

≥ ε

}

< δ.

One also says thatC has the property ofuniform convergence
of empirical means(UCEM property). Heres(δ, ε) is the
sample complexityof the uniform Glivenko-Cantelli class
(which in general has to be distinguished from the sample
complexity of a learning rule).

Every uniform Glivenko–Cantelli function class is PAC
learnable, for instance, every consistent learning rule for F is
PAC, with the same learning sample complexity. For concept
classes, the converse is also true, though not for function
classes in general.

A function classF is universally separable[12] if it
contains a countable subfamilyF ′ with the property that every
f ∈ F is a pointwise limit of a sequence(fn) of functions
from F ′: for eachx ∈ Ω, one hasfn(x) → f(x) asn → ∞.

Notice that in this paper, we only talk ofpotential learn-
ability, adopting a purely information-theoretic viewpoint.

III. E XCHANGEABLE VARIABLES AND DE FINETTI ’ S

THEOREM

De Finetti’s theorem, in its classical form ([6], Ch. IV; [7],
Th. 7.2) states that a sequence(Xi) of random variables taking
values in a standard Borel spaceΩ is exchangeable if and
only if the joint distributionP of the sequence is a mixture
of i.i.d. distributions. More precisely, there exists a probability
measureη on the Borel spaceP (Ω) of probability measures
on Ω (the directing measure) so that

P =

∫

P (Ω)

θ∞ η(dθ), (1)

in the sense that for every measurable functionf on Ω∞ one
has

E(f) =

∫

Eθ∞(f) η(dθ).



In this spirit, θ will denote a (random) element ofP (Ω), and
“almost all θ” is to be understood in the sense of directing
measureη.

A slightly different viewpoint, adopted in [9], is to fix
a random measureν, that is, a measurable mapping from
the basic probability space toP (Ω). Under this approach,
de Finetti’s theorem can be put in the following, essentially
equivalent, form. Denote byT the tail sigma-field onΩ∞.
Then, conditionally onT , the sequence(Xi) is i.i.d.:

P (ω ∈ ·‖T ) = ν∞ a.s.

Note that ifθ 6= ζ, thenθ∞ andζ∞ are mutually singular.
This follows from a remark of Kakutani [8], p. 223: fixf with
Eθ(f) 6= Eζ(f), then the empirical mean

1

n
Sn(f) =

1

n

n
∑

i=1

f(Xi)

converges at the same timeθ∞-a.s. toEθ(f) and ζ∞-a.s. to
Eζ(f). This observation helps to understand the decomposition
(1).

The strong law of large numbers for exchangeable variables
(cf. e.g. [10], Eq. (2.2) on p. 185, also [9], Proposition 1.4(i)),
says that

1

n
Sn(f) → E(f‖T ) (2)

almost surely. IfP (A) = 1, then a.s.ν(A) = 1, that is, for
almost allθ, one hasθ(A) = 1. Thus, the convergence in (2)
takes placeθ-a.s. for almost allθ ∈ Θ. One concludes:

For a.e.θ, E(f(X1)|T ) = Eθ(f) θ a.s. (3)

Informally, the conditional expectationE(f(X1)|T ) given
the tail sigma-field is viewed by almost every non-random
measureθ as a constant function, identically assuming the
valueEθ(f).

Lemma 3.1:Let X1, X2, . . . be a sequence of exchangeable
random variables taking values in a standard Borel spaceΩ.
Then for every measurable functionf on Ω, for all i and all
j > n:

E (E(f(Xi)‖T )‖X1, . . . , Xn) = E(f(Xj)‖X1, . . . , Xn)

a.s., whereT is the tail sigma-field. Consequently, ifG is a
countable family of measurable functions, then one has

∀f ∈ G E (E(f(Xi)‖T )‖X1, . . . , Xn)

= E(f(Xj)‖X1, . . . , Xn)

almost surely.
Proof: Because of exchangeability, one can assume with-

out loss in generality thati = 1 and j = n + 1. Now it is
enough to establish the result for indicator functionsf = IA
of some generating family of Borel subsetsA ⊆ Ω, for
instance, by identifyingΩ with R and considering the intervals
A = (−∞, t]. In this form, the result has been proved in
Berti and Rigo [2], where a stronger assertion appears as
formula (7) on p. 389. (Their functionF (t, ω) is equal a.s.
to E(I(−∞,t](X1)‖T ) = P (X1 ≤ t‖T ), which fact follows

from the definition ofF (t, ω) on p. 386, line - 9 as the a.s.
limit of (1/n)Sn(I(−∞,t]) and the strong law of large numbers
(2)). The second claim is immediate.

IV. PREDICTIVE PAC LEARNABILITY

Definition 4.1: Let X1, X2, . . . be an exchangeable se-
quence of random variables with values in a standard Borel
spaceΩ. DenoteP the joint distribution onΩ∞. We say that a
learning ruleL for a function classF onΩ is predictively PAC
with sample complexitys(δ, ε) (under the sequence(Xi)), if
for every f ∈ F and eachε, δ > 0, whenevern ≥ s(δ, ε),
one has

P{σ : E(|(L(f ↾ σ)−f)(Xn+1)|‖X1, X2, . . . , Xn) > ε} < δ.
(4)

If P is a family of sequences of exchangeable random vari-
ables, then we say that a function classF is predictively PAC
learnable underP if it admits a learning ruleL that is predic-
tively PAC under every exchangeable sequence(Xi) ∈ P , with
the sample complexity uniformly bounded by some function
s(δ, ε). Finally, if F is predictively PAC learnable under the
family of all exchangeable sequences(Xi), we will simply
say thatF is predictively PAC learnable.

The following theorem is the main result of the article.
It allows to deduce predictive PAC learnability from the
distribution-free PAC learnability. The proof bypasses a uni-
form Glivenko–Cantelli theorem for exchangeable variables.

Theorem 4.2:Let F be a non-trivial universally separable
function class on a standard Borel spaceΩ which is uniform
Glivenko-Cantelli (in the classical sense), with the sample
complexityn = s(δ, ε). ThenF is predictive PAC learnable
with the sample complexitys(δε, ε/2) under the family of all
sequences ofΩ-valued exchangeable random variables.

Proof: For everyn, let εn be the smallestε > 0 with the
propertys(0.5, ε) ≤ n. SinceF is non-trivial, that is, contains
at least two functions,εn > 0. Let F ′ be a countable dense
subfamily ofF such that everyf ∈ F is a pointwise limit of a
sequence of functions fromF ′. For everyσ, the set of samples
of the formf ↾ σ, f ∈ F ′ is clearly dense in the set of samples
f ↾ σ, f ∈ F . For this reason, using standard selection
theorems (e.g. Theorem 5.3.2 in [5]), one can construct a
measurable emprical risk minimization learning ruleL on the
set of samples

Sn(F ) = {(f ↾ σ) : σ ∈ Ωn, f ∈ F},

taking values in the countable familyF ′ and such that for
everyn and each(σ, s) ∈ Sn(F )

1

n
Sn(L(s) ↾ σ − s) < εn.

Notice that for everyn ≥ s(δ, ε), wheneverδ ≤ 0.5, one
hasε0 ≤ ε, and soε + ε0 < 2ε. For this reason, and taking
into account the uniform Glivenko-Cantelli property ofF , for
everyθ ∈ P (Ω) and eachf ∈ F one has

P {Eθ(L(f ↾ σ)− f) ≥ 2ε} < δ. (5)



Now let f ∈ F andε, δ > 0. According to Eq. (3), for a.e.
θ ∈ P (Ω) there is a subsetW = Wθ ⊆ Ω with θ(W ) = 1
and such that for everyω ∈ W and eachg ∈ {f} ∪ F ′,

E(g‖T )(ω) = Eθ(g).

Let σn(ω) denote, for short, the sequence of values
X1(ω), X2(ω), . . . , Xn(ω). Define

A = {ω : E (|L(f ↾ σn(ω))(X1)− f(X1)| ‖T ) (ω) < 2ε}.
(6)

For a.e.θ, one has,θ-a.s.,

A ∩Wθ = {ω : Eθ (|L(f ↾ σn(ω))− f |) < 2ε}. (7)

According to (5), oncen ≥ s(δ, ε),

θ(A ∩Wθ) ≥ 1− δ,

and consequently

P (A) =

∫

θ(A) η(dθ) ≥ 1− δ.

Because of symmetry, we can replaceX1 in the definition (6)
of A with Xn+1.

Now we are applying Lemma 3.1 to the countable family
of functionsG = {f} ∪ {L(f ↾ σ) : σ ∈ Ωn}. Conditioning
on X1, X2, . . . , Xn amounts to integrating with respect to
the conditional distributionP (dω‖X1, X2, . . . , Xn). One must
have

P{ω : P (Ac‖X1, X2, . . . , Xn)(ω) ≥ 2ε} < δε−1.

We conclude:

P{σ ∈ Ωn : E(|L(σ, f |σ)− f |‖X1, X2, . . . , Xn) < 2ε}

> 1− δε−1.

Remark 4.3:The proof can be modified so thatε/2 is
replaced withε − γn for an arbitrarily sequenceγn ↓ 0. We
have only chosenε/2 for simplicity. On the other hand, the
extra factor ofε added toδ does not make much difference,
because — unlike the learning precisionε — the confidence
parameterδ is well known to be “cheap”.

Corollary 4.4: Let C be a universally separable concept
class on a standard Borel spaceΩ having finite VC-dimension
d. Then C admits a learning rule which is predictive PAC
learnable with regard to any sequence of exchangeable data
inputs, with the sample complexity bound

s(δ, ε) = max

{

16d

ε
lg

16e

ε
,
8

ε
lg

2

δ
+

8

ε
lg

1

ε

}

.

The proof follows from Theorem 4.2 and the sample
complexity bound for distribution-free PAC learnability ([16],
Theorem 7.8),

s(δ, ε) = max

{

8d

ε
lg

8e

ε
,
4

ε
lg

2

δ

}

.

V. CONCLUSION

Predictable PAC learnability of a function classF allows to
bound, with high confidence, the probability of misclassifica-
tion of a value of a classifier functionf ∈ F at any future data
sampleXi(ω), i ≥ n, given the values off on a multisample
X1(ω), X2(ω), . . . , Xn(ω). Under this version of learnability,
the functionf ∈ F cannot be learned in general, it is only
its future values that can be predicted with high confidence.
For a large number of problems of statistical learning, thisis
apparently sufficient.

In statistics, exchangeable random variables and de Finetti’s
theorem are at the forefront of an ongoing discussion between
frequentists and bayesians. (Cf. [3], p. 475.) There is however
no need to enter the fray and choose sides, simply because,
in Vapnik’s words [13], p. 720,

“Statistical learning theory does not belong to any
specific branch of science: It has its own goals, its
own paradigm, and its own techniques.
Statisticians (who have their own paradigm) never
considered this theory as part of statistics”.

Thus, our new approach can be seen just as an addition
to the classical framework of learning theory, posessing its
own inner dynamics and putting forward a number of open
questions.

Among the most immediate, let us mention the following
three, all concerning Theorem 4.2. Can one maintain the initial
sample complexitys(δ, ε) in the conclusion of the result?
Does the theorem hold under less restrictive measurability
assumptions onF than universal separability, for instance, on
an assumption thatF is image admissible Souslin ([5], pages
186–187)? Can one conclude thatF is consistentlypredictive
PAC learnable, that is, predictive PAC learnable underevery
consistent learning ruleL?
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