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Abstract—Exchangeable random variables form an important According to the famous De Finetti theorem| [6],] [7], a
and well-studied generalization of i.i.d. variables, howeer simple sequence X;) is exchangeable if and only if the joint dis-
examples show that no nontrivial concept or function classe tribution P on Q* is a mixture of product distributions (that

are PAC learnable under general exchangeable data inputs . . . . .
X1, Xs,.... Inspired by the work of Berti and Rigo on a 'S (X;) is a mixture of a family of i.i.d. random sequences).

Glivenko—Cantelli theorem for exchangeable inputs, we prpose A nice llustration and the most extreme example of an
a new paradigm, adequate for learning from exchangeable dat exchangeable sequence which is noti.i.d is a sequencerof ide
predictive PAC learnability. A learning rule £ for a function tjcal copies of one and the same random variaflg= X,

class.7 is predictive PAC if for every ,0 > 0 and each function ; _ ¢ 9 The joint distribution of this process is a measure

f € F, whenever|o| > s(d,¢), we have with confidencel — ¢ . S

that the expected difference betweerf(X,.1) and the image of SUPPorted on the diagonal of the infinite product spgce,

f|o under £ does not exceed conditionally on X;, Xo,..., X,. Which is clearly a mixture of infinite powers of all Dirac poin
Thus, instead of learning the function f as such, we are learning masses 0f).

to a given accuracye the predictive behaviour of f at the future Now, it is immediately clear that no nontrivial function st

points X;(w), i > n of the sample path. Using de Finetti's g o, 5 qomain) will be PAC learnable under such a data
theorem, we show that if a universally separable function @ss

7 is distribution-free PAC learnable under i.i.d. inputs, then it INPUt process: almost every sample patiwill be constant,
is distribution-free predictive PAC learnable under exchangeable = = (z,z,z,...), thus revealing no information about the
inputs, with a slightly worse sample complexity. values of a functionf € .# away fromz. Consequently, if
Index Terms—Exchangeable random variables, de Finetti the- we want to be able to learn from exchangeable data inputs,
orem, predictive PAC learnability. the paradigm of learnability itself has to be re-examined.
A way out was shown by Berti and Rigo in their visionary
note [2] where they prove that the classical Glivenko—QOénte
In the classical theory of statistical learning as inittatetheorem holds for a sequen¢&’;) of exchangeable random
in [15], [4] (see [14] for a historical and philosophical pervariables if and only if the sequence is i.i.d. At the same
spective) data inputs are traditionally modelled by a segee time, they observe that the classical GC theorem is formally
of i.i.d. random variable$X;). Generalizating this approachequivalent to the statement about the predictive distiobut
usually involves easing the i.i.d. restriction on the semee being approximated by the observed frequency:
of inputs, all the while trying to obtain the same conclusion
as in the classical theory, namely the uniform convergengep |Fi(t,w) — P(X,41 <t X1, ..., Xpn)(w)| = 0 as.
of empirical means and subsequently the PAC learnability of
a concept or a function class under the usual combinatori#ére F,(t,w) = (1/n)>."" | I (X;) is the empirical
restrictions in terms of shattering. For instance, thed.i.i.mean of the indicator function, anB(-|| X, ..., X,) is the
condition can be relaxed to that of being an ergodic stationaconditional probability. As shown in_[2], in this form the
sequence [([12], p. 9), or g-mixing sequence [16]. As to statement remains valid if the r.¢X;) are exchangeable, and
a-mixing sequences, they are known to result in the sartlee result can be considered as a conditional (or: predictiv
PAC learnable function classes under a single distribJfi@h version of the classical Glivenko-Cantelli theorem.
although it is still unknown whether uniform convergence Since the uniform Glivenko-Cantelli theorems are at the
of empirical means takes place [18]. An interesting receheart of statistical learning, one would think that the aggh
investigation is([[11]. of Berti and Rigo should have consequences for learning from
However, at some point this approach hits a wall. Among tlexchangeable inputs. We show that this is indeed the case: by
best studied classes of dependent stationary random kewialbeplacing PAC learnability wittpredictive PAC learnability,
are exchangeable random variables [6]; [3], p. 473; [9]].[10one arrives at a new broad paradigm of learnability suited fo
A sequence of r.v(X;) is exchangeableif for every finite learning under exchangeable inputs.
sequenceiy,io,...,i,) Of integers the joint distributions of  Say that a function clas$ is predictively PAC learnable
(X, Xiy,...,X;,) and of (X1, Xs, ..., X,,) are the same. under a given clasp of exchangeable random proces&&s,)

|I. INTRODUCTION
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if there exists gredictive PAC learning ruldor .# under?P, A learning ruleL is probably approximately correqiPAQ)
that is, a mapC from the sample spacg to a hypothesis class for the function class# under the class of measurgsif for

2 such that everye >0
Plo:E(|(L(flo) = /) Xng)| |1 X1, X2,..., X)) >} =0 sug ?‘HBP{O' eMENL(flo)—fll>e}—0
reEP fe

uniformly in f € .# and(X;) € P. This is different from PAC

learnability in that the expected value f(f],) — f| is re- Equivalently, there is a functios(e, §) (sample complexity
placed with the conditional expectation givéh, X», ..., X,,. of ) such that for eactf € .7 and everyu € P an iid.

If in particular(X;) are i.i.d., the above definition is a reformu-

lation of PAC learnability under the family of corresponglin S?|m<pleeow\i’;/::hcfmf’k(fe’ggegoTts ?as the propert, [/ —L(f |
laws on the domaif. g > 1 —o.

We show that if a function clas is distribution-free pac _ A function class7 is PAC learnable undep, if there exists

: PAC learning rule for# underpP.
learnable under the usual assumption that the data sam?)lﬁ . .
: . - -~ P = P(Q) is the set of all probability measures, thén
inputs are i.i.d., then# is predictively PAC learnable under. aid to ée )(distribution-fred;’)AC Iearnyable At the same
the class of all sequences of exchangeable data inputs. Qu

results are obtained under the assumption.thas universally Ime, Iearngblhty und_er |ntermed|at_e families of measuoe
separable. Q has received considerable attention, cf. Chapter 7 in [16].

A closely related concept to that of a PAC learnable class is
Il. SETTING FOR LEARNABILITY that of auniform Glivenko—Cantellfunction class, that is, a
Here we review the PAC learnability modél [1]] [4], ]13],function classZ such that for each, e > 0 one has, whenever

[16] in order to fix a precise setting. Th®main or instance " = s(6,¢e),

asn — oo. Here P stands foru®™.

space Q = (2, &) is a measurable spacdhat is, a sef 1
equipped with a sigma-algebra of subsets We will assume sup P { sup E.(f) - —Sn(f)’ > 5} < 0.
that() is astandard Borel spacéhat is, a complete separable pepb@) | feF "

metric space equipped with the sigma-algebra of Borel sabsene also says tha&f has the property afiniform convergence
For intstance, without loss in generality one can alwaysrass of empirical meanUCEM property). Heres(§,¢) is the
thatQ = R* is the Euclidean space. sample complexityof the uniform Glivenko-Cantelli class
Denote by #((,[0,1]) the collection of all Borel mea- (which in general has to be distinguished from the sample
surable functions fronf2 to [0,1]. A function class# is a complexity of a learning rule).
subfamily of #(Q, [0, 1]). Every uniform Glivenko—Cantelli function class is PAC
The family P(€2) of all probability measures o2, .«7) is  |earnable, for instance, every consistent learning ruleffois
itself a measurable space, whose sigma-algebra is gederg@acC, with the same learning sample complexity. For concept
by the functionsy — v(A) from P(Q2) to R, as A runs over classes, the converse is also true, though not for function
. classes in general.
In the PAC learning model, a sét of probability measures A function class.# is universally separable12] if it
on Q) is fixed. Usually eitherP = P(Q) is the set of all contains a countable subfamif§’ with the property that every
probability measuresd{stribution-free learniny or P = {u} f € .% is a pointwise limit of a sequendg,,) of functions
is a single measurde@arning under a fixed distributign from .#’: for eachz € Q, one hasf,(z) — f(z) asn — cc.
A learning sampleis a pairs consisting of a finite subset Notice that in this paper, we only talk gfotential learn-
o of Q and of a function orv. It is convenient to assume ability, adopting a purely information-theoretic viewpbi
that elementsr,, xs,...,2, € o are ordered, and thus the

set of all samplego, 7) with |o| = n can be identified with IIl. EXCHANGEABLE VARIABLES AND DE FINETTI'S

(2 x[0,1))". Foro € Q™ and a functionf € % we will o _THFOREM _
denotef | o the sample obtained by restrictinfgto o. De Finetti's theorem, in its classical form [[6], Ch. IV [7]
A learning ruleis a mapping Th. 7.2) states that a sequer{cg;) of random variables taking
o values in a standard Borel spa€eis exchangeable if and
L U Q" % [0,1]" — B(Q,[0,1]), only if the joint distribution P of the sequence is a mixture
net of i.i.d. distributions. More precisely, there exists a lpability
which is measurable with regard to every Borel structuf@&asure; on the Borel spacé’((2) of probability measures
induced on%(<, [0, 1]) by the distanceL! (1), u € P. on Q (the directing measure) so that
. : : P
A Iefrnlng ruleL is consistentf for every f € .% and each p_ 6% n(do), (1)
o € Q" one has PO
L(flo)lo=fTo. in the sense that for every measurable functfoon Q2> one
has

Consistent learning rules exist for every function cla&s
under mild measurability restrictions. E(f) = /E9°°(f)’7(d9)-



In this spirit, & will denote a (random) element d?((2), and from the definition of F'(t,w) on p. 386, line - 9 as the a.s.
“almost all §” is to be understood in the sense of directinimit of (1/n)S,, (- ) and the strong law of large numbers

measure;. (2)). The second claim is immediate. [ ]
A slightly different viewpoint, adopted in[[9], is to fix
a random measure, that is, a measurable mapping from IV. PREDICTIVE PAC LEARNABILITY

the basic probability space t&(€2). Under this approach, Definition 4.1: Let X, X,,... be an exchangeable se-

de Finetti's theorem can be put in the following, essentiallquence of random variables with values in a standard Borel

equivalent, form. Denote by’ the tail sigma-field or2>°.  space. DenoteP the joint distribution or2>°. We say that a

Then, conditionally on7, the sequenceX;) is i.i.d.: learning ruleZ for a function classZ on (2 is predictively PAC

o with sample complexity(d, ) (under the sequendgeX;)), if
Plwe || 7)=v™as. for every f € . and ea(chs,)d > 0, whenevern gs(()s, £),
Note that if§ # ¢, then§> and (> are mutually singular. one has
This follows from a remark of Kakutani[8], p. 223: fixwith

Eo(f) # Ec(f), then the empirical mean Plo: E((L(f T o) = ) (Xns)|| X1, X2, ..., X)) > e} <(6j
4
lS (f) = 1 Xn:f(X-) If P is a family of sequences of exchangeable random vari-
n " — ! ables, then we say that a function cla8sis predictively PAC

] learnable underP if it admits a learning ruleC that is predic-
converges at the same tin#€"-a.s. toE,(f) and(>-a.s. 10 tjely PAC under every exchangeable sequeiiég € P, with
E¢(f). This observation helps to understand the decompositigq sample complexity uniformly bounded by some function

: ~s(d,¢). Finally, if & is predictively PAC learnable under the
The strong law of large numbers for exchangeable vanabl@;n"y of all exchangeable sequencgk;), we will simply
(cf. e.g. [10], Eq. (2.2) on p. 185, alsdl [9], Proposition())4 say thatZ is predictively PAC learnable.
says that 1 The following theorem is the main result of the article.
=Sa(f) = E(f|9) (2) It allows to deduce predictive PAC learnability from the
n ) distribution-free PAC learnability. The proof bypassesri u
almost surely. IfP(A) = 1, then a.sy(A) = 1, that is, for ¢5:m Glivenko—Cantelli theorem for exchangeable variable
almost allf, one hag)(A) = 1. Thus, the convergence ill(2) Theorem 4.2:Let # be a non-trivial universally separable
takes place/-a.s. for aimost alt € ©. One concludes: function class on a standard Borel sp&zevhich is uniform
For a.ed, E(f(X1)|T)=Eq(f) 0 as. A3) GIivenko_—CanteIIi (in the classi_cal sensg), with the sampl
complexityn = s(d,¢). Then.% is predictive PAC learnable
Informally, the conditional expectatiofii(f(X1)|7) given ith the sample complexity(de, =/2) under the family of all
the tail sigma-field is viewed by almost every non-rando’equences of2-valued exchangeable random variables.
measured as a constant function, identically assuming the  prgof: For everyn, lete, be the smallest > 0 with the
valueEy(f). propertys(0.5, ) < n. Since.Z is non-trivial, that is, contains
Lemma 3.1:Let Xy, X, ... be a sequence of exchangeablg; |east two functionss,, > 0. Let .#’ be a countable dense
random variables taking values in a standard Borel space gypfamily of.Z such that every € .7 is a pointwise limit of a
Then for every measurable functighon &, for all i and all - sequence of functions fror’. For everys, the set of samples
J>mn ofthe formf | o, f € &' is clearly dense in the set of samples
EE(F(X)I ) X1, ... Xn) = E(F(X))| X1, ..., Xn) f I o fe #. For this reason, using standard selection
theorems (e.g. Theorem 5.3.2 inl [5]), one can construct a
a.s., where7 is the tail sigma-field. Consequently,4f is a measurable emprical risk minimization learning ridlen the
countable family of measurable functions, then one has  set of samples

Vfe9 EE(S (X)X, ... Xn) S(F)={(f10):0€Q", feF}

=E(f(Xj)IX1,..., Xn) . . -
taking values in the countable famil’ and such that for

almost surely. everyn and each(o, s) € S,,(F)
Proof: Because of exchangeability, one can assume with- 1
out loss in generality that = 1 andj = n + 1. Now it is —Sp(L(s) [0 —s) < en.
n

enough to establish the result for indicator functighs- 14

of some generating family of Borel subsets C Q, for Notice that for everyn > s(d,¢), whenevers < 0.5, one
instance, by identifying2 with R and considering the intervalshaseo < €, and sos + ¢¢ < 2¢. For this reason, and taking
A = (—o0o,t]. In this form, the result has been proved innto account the uniform Glivenko-Cantelli property.&f, for
Berti and Rigo [[2], where a stronger assertion appears @¢eryd € P(f2) and eachf € .# one has

formula (7) on p. 389. (Their functio'(¢t,w) is equal a.s.

t0 E(J(—0o,yy(X1)[7) = P(X1 < t]|.7), which fact follows P{Eg(L(f 10)—f)>2e} <. (5)



Now let f € # ande,d > 0. According to Eq.[(B), for a.e. V. CONCLUSION
0 € P(Q) there is a subsel’ = Wy C Q with (W) =1 pregdictable PAC learnability of a function clags allows to

and such that for every € W and eacty € {f} U 7", bound, with high confidence, the probability of misclassific

_ tion of a value of a classifier functiofi e .% at any future data

E(gll7)(w) = Eq(g). sampleX;(w), i > n, given the values of on a multisample

Let o,(w) denote, for short, the sequence of value&i(w), Xz2(w),...,Xn(w). Under this version of learnability,
X1 (w), X2 (w), ..., Xn(w). Define the functionf € .# cannot be learned in general, it is only

its future values that can be predicted with high confidence.
A={w: E(IL(f [ on(w))(X1) = f(X)[|7) (w) <2e}.  For a large number of problems of statistical learning, this
(6) apparently sufficient.
For a.e.f, one hasf-a.s., In statistics, exchangeable random variables and de Fnett
. theorem are at the forefront of an ongoing discussion betwee
ANWy ={w: B (|L(f [ on(w)) = f) <2} (7) frequentists and bayesians. (Cf. [3], p. 475.) There is kewe

According to [B), oncer > (4, ), no need to enter the fray and choose sides, simply because,
in Vapnik’'s words [13], p. 720,
0(ANWy) > 14, “Statistical learning theory does not belong to any

specific branch of science: It has its own goals, its
own paradigm, and its own techniques.
Statisticians (who have their own paradigm) never
= > - . . . . .
P(4) /Q(A)n(de) 21-9 considered this theory as part of statistics”.
Because of symmetry, we can replake in the definition[[5) ~ Thus, our new approach can be seen just as an addition
of A with X1 to the classical framework of learning theory, posessisg it
Now we are applying Lemm@3.1 to the countable famil§Wn i_nner dynamics and putting forward a number of open
of functions = {f} U{L(f | o): o € Q"}. Conditioning duestions.

and consequently

on X1, Xa,..., X, amounts to integrating with respect to Among the mo_st immediate, let us mention_the_ foII_owir_wg
the conditional distributiotP (dw|| X1, Xa, . . ., X,,). One must three, all concerning Theor.Z. Can one maintain thiauinit
have sample complexitys(d,e) in the conclusion of the result?
Does the theorem hold under less restrictive measurability
P{w: P(A%| X1, Xa,..., Xp)(w) > 2} < de L. assumptions o than universal separability, for instance, on

an assumption tha# is image admissible Sousliri {[5], pages
186-187)? Can one conclude thtis consistentlypredictive
n PAC learnable, that is, predictive PAC learnable unelegry
Plo e Q" E(|L(o, fls) — flI| X1, Xoy..., Xpn) <2 . T !
{o (£ flo) = fllI Xy, Xo ) °} consistent learning rul€?

We conclude:

>1—6e L.
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Remark 4.3:The proof can be modified so that/2 is

replaced withe — ~,, for an arbitrarily sequence,, | 0. We
have only choser/2 for simplicity. On the other hand, the
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