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Abstract. Rough set theory is a useful tool to deal with uncertain, gi@amand
incomplete knowledge in information systems. And it is lohee equivalence
relations or partitions. Matroid theory is a structure thaneralizes linear inde-
pendence in vector spaces, and has a variety of applicatiomany fields. In
this paper, we propose a new type of matroids, namely, jmartiircuit matroids,
which are induced by partitions. Firstly, a partition sfis circuit axioms in ma-
troid theory, then it can induce a matroid which is called gifj@an-circuit ma-
troid. A partition and an equivalence relation on the sameange are one-to-one
corresponding, then some characteristics of partitiocudti matroids are studied
through rough sets. Secondly, similar to the upper appration number which
is proposed by Wang and Zhu, we define the lower approximationber. Some
characteristics of partition-circuit matroids and thelduatroids of them are in-
vestigated through the lower approximation number and pipeuapproximation
number.

Keywords: Rough set; Matroid; Partition-circuit matroid; Lower apgpimation
number; Upper approximation number.

1 Introduction

Rough set theory [1] was first proposed by Pawlak as a matheahadol for im-
perfect data analysis. Through two definable subsets whighh& lower and upper
approximations, rough set theory deals with the approxonaif an arbitrary subset
of a universe, and discovers rules from data without prinawledge. It has been suc-
cessfully applied into feature selection [2]3,4], ruleragtion [5,.6], uncertainty reason-
ing [7[8], decision evaluation [9,10], granular computjdf12,13,14] and so on.

Rough set theory is based on equivalence relations or ipaditin recent years,
many extensions of classical rough sets have been propesedxample, through re-
laxing the partitions to coverings, several covering-dasrigh sets have been pro-
posed([15,16,1[7,18.19]. In these covering-based roughtbet concept of covering of
a universe was presented to construct the lower and uppeoxpyations of an arbi-
trary set.

Matroid theory[[20] was proposed by Whitney as a generadinaif linear indepen-
dence in vector spaces. It borrowed extensively from theiteslogy of linear algebra
and graph theory, and made great progress in recent ded¢adisory, a matroid can
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be defined by dozens of ways, which provides a well platforrotonect it with other
theories. Some authors have connected matroid theory Veifisical rough sets [21],
covering-based rough sets [22/23,24], generalized roetghbsised on relatioris [25]26],
fuzzy theory[[27] and so on. In application, it has widely heised in many fields, such
as combinatorial optimization [28] and algorithm desig8][2

In this paper, a new type of matroids is proposed, which iedgartition-circuit
matroid. Through partitions, we build the connection betweough sets with matroids.
And some characteristics of partition-circuit matroidd éme dual matroids of them are
studied through rough sets and the lower and upper apprérinraumbers. The main
contributions of this paper are two folds. On the one handyttjwn satisfies the circuit
axioms of matroid theory [20], then a type of matroids, ahpertition-circuit matroids,
are induced by partitions. Any partition has a one-to-onmeaspondence with an equiv-
alence relation on the same universe. Therefore, someathastics of partition-circuit
matroids are studied through the lower and upper approidmaperators in rough sets.
On the other hand, we investigate some characteristicsrifipa-circuit matroids and
the dual matroids of them through lower and upper approxonatumbers. Wang and
Zhu proposed the upper approximation number based on cggdn [23,24,26]. Sim-
ilar to the upper approximation number, we propose the loapgproximation num-
ber based on coverings. First, some properties of the longru@per approximation
numbers are investigated. Second, some characterisfiestitfon-circuit matroids are
studied through the lower approximation number based ditipas. Third, some char-
acteristics of the dual matroid of a partition-circuit one @&nvestigated through the
upper approximation number.

The rest of this paper is arranged as follows. Sefion 2ditres some basic defini-
tions of rough sets and matroids. In Secfidn 3, throughtpams, we get a type of ma-
troids, namely, partition-circuit matroids, and studyrthiénrough rough sets. Sectioh 4
introduces the upper approximation number and proposds\ex upper approxima-
tion number to investigate some characteristics of pantitiircuit matroids and the dual
matroids of them. Finally, we conclude this paper in SedHon

2 Basic definitions

In this section, we first review some fundamental ideas asdlt®related to rough
sets, and then introduce some notions of matroids.

2.1 The rough set model

Let U be a finite and nonempty set aidan equivalence relation di. The equiv-
alence relatior? induces a partitiod’/R = {Py,--- , P,,} onU, wherePy,--- , P,
are the equivalence classes.

The equivalence classes Bfare elementary sets to construct rough set approxima-
tions. For anyX C U, its lower and upper approximations are defined as follows:

R(X)=U{PeU/R: PC X};
R(X)=U{P€U/R: PNX #0}.



X ¢ is denoted by the complement &f in U andY C U. We have the following
properties of rough sets:

(1L) R(X) C X;

(1H) X C R(X);

L) R(X YY) = R(X) N E(Y);
H) R(XUY) = R(X)UR(Y);
(BL) B(X¢) = (R(X));
(8H) R(X°) = (R(X));

(4L) B((B(X))%) = (B(X))

(4H) R((R(X))) = (R(X))".

The (1L), (1H), (2L), (2H), (4L) and (4H) are characterigtioperties of the lower
and upper approximation operators|[30], in other wordsptier properties can be
deduced from these properties.

2.2 The matroid model

A matroid is a structure that generalizes the notion of liriedependence in ma-
trices. There are several ways to define a matroid, such apémdient sets, circuits,
bases, rank function and closure operator. We will first @edimatroid that focuses on
its independent sets.

Definition 1. (Matroid [20]) A matroid M is a pair (U,I), whereU is a finite set
(called the ground set) anllis a collection of subsets @f (called the independent
sets) with the following properties:

(1) eT;

(I2)If I eTandl’ C I, thenl’ €1,

(13) If I, I, € Tand|1] < |I2|, then there exista € I, — I; such thatl; [ J{u} € I,
where|I| denotes the cardinality df.

In order to make some expressions simple, we introduce spmkedis as follows.

Definition 2. ([20]) Let U be a finite set and\ a family of subsets df. Then
Upp(A)={X CU:3A€ A st.AC X},

Low(A)={X CU:34€ A st.X C A};
Mazx(A)={X e A:VWWecAXCY=X=Y}
Min(A)={X e A: VY ecAYCX=X=Y}

Opp(A)={X CU:X ¢ A}.

A maximal independent set of a matroid is a base. The base afraithgeneralizes
the maximal linear independence in vector spaces.

Definition 3. (Base [20]) LetM = (U,I) be a matroid. Any maximal independent set
in M is called a base of, and the family of bases @ is denoted byB(M), i.e.,
B(M) = Max(I).

A matroid and its family of bases are uniquely determineddgheother. Then, one
of equivalent definitions of a matroid is represented in teafibases.



Proposition 1. (Base axioms [20]) LeB be a family of subsets 6f. Then there exists
a matroidM = (U, I) such thatB = B(M) if and only ifB satisfies the following two
conditions:

(B1)B # 0;

(B2) If B;,Bs € B andx € By — By, then there existy € B — B; such that
(B1 — {«}) U{y} € B.

The complement of the independent sets in power sets aredepeones. And a
minimal set of the dependent sets is called a circuit of theaith

Definition 4. (Circuit [20]) Let M = (U, I) be a matroid. A minimal dependent set in
M is called a circuit ofM, and we denote the family of all circuits df by C(M), i.e.,
C(M) = Min(I¢), wherel¢ denotes the complementlof 2V

A matroid can be defined from the viewpoint of its circuits e following propo-
sition. A matroid uniquely determines its circuits, andei@rsa.

Proposition 2. (Circuit axioms [20]) LetC be a family of subsets &f. Then there ex-
ists a matroidM = (U,I) such thatC = C(M) if and only if C satisfies the following
properties:

(C10 ¢ C;

(C2)IfC,C" € CandC’ C C, thenC’ = C;

(C3) If C1,C4 € C,Cy # Cy andu € C1 [ Cs, then there exist§’s € C such that
03 g Cl UCQ — {u}

The cardinality of any maximal independent set in vectocepaan be expressed
by the rank function of a matroid.

Definition 5. (Rank function[[20]) Lef\/ = (U, I) be a matroid. Them), is called the
rank function ofM, wherery; (X) = maxz{|I|: I C X, I € I} forall X C U.

One of equivalent definitions of a matroid is represente@ims of its rank func-
tion. And a matroid and its rank function are uniquely detieed by each other.

Proposition 3. Let M = (U, I) be a matroid and-, its rank function. Then for all
X CU, X eliffry(X) =|X|.

In order to represent the relationship between an elemeid apt of a universe, we
introduce the closure operator through the rank functionatroids.

Definition 6. (Closure [20]) LetM = (U, I) be a matroid andX C U. For anyu € U,

if rar(X) = ra (X J{u}), thenu depends onX. The subset including all elements

depending orX of U is called the closure with respect # and denoted byl (X):
dpy(X)={uwelU:ry(X)=ru(XU{uh)},

wherecl), is called the closure operator a@ff .

In a matroid, if the closure of a set is equal to itself, themghbt is a closed set.

Definition 7. (Closed set[[20]) LetV/ = (U,I) be a matroid andX C U. Therefore
X isaclosed setal/ if clp (X) = X.



Duality is one of important characteristics of matroids,athcan generate a new
matroid through a given matroid. And the new matroid is chlieal matroid which
generalizes the orthogonal complement of a vector spaeed@ial matroid of a matroid
is introduced as follows.

Definition 8. (Dual matroid [20]) LetM = (U,I) be a matroid. Then the matroid
whose base family i§B : B¢ € B(M)} is called the dual matroid a#/ and denoted
by M*.

The relationship between a matroid and its dual matroidgsagented as follows.

Proposition 4. Let M = (U, I) be a matroid and\/* the dual matroidr;, is the rank
function of M andrj, is the rank function of\/*. Then, for allX C U,
(X)) = 1X|—rm(U) + ru(X°).

Through the independent set axioms of a matroid, Liu and (B&hproposed
partition matroids induced by partitions with respect to@ugp of nonnegative integers.

Definition 9. (Partition matroid [31]) LetP = {Py,--- , P,,,} be a partition onU and

k1,--- , km beagroup of nonnegative integers. THeiP; k1, - - - , k) = (U, I(P; k1,
-, km)) is a matroid wherd(P; k1, -+, k) = {X CU : | XN P < ki, 1 <i <

m}, and it is called the partition matroid induced By with respect tdky, - - - , ky,.

3 Matroidal structure of partition

In this section, we propose a matroid which is induced by &tjmar through the
circuit axioms.

Definition 10. LetP be a partition on/. We define a familp of subsets of/, where
Cp =P.

According to the above definition, a family of subsets of avarse is equal to
a partition on the universe. In fact, the family of subsetshef universe satisfies the
circuit axioms of matroids.

Proposition 5. LetP be a partition onU. ThenCp satisfies (C1), (C2) and (C3).
Proof. According to Definitiod ID and Propositi@h 2, it is straigitfard.

According to Proposition]2, a matroid and its circuits detile each other. There-
fore, the family of subsets of the universe induced by a fi@antcan generate a matroid.

Definition 11. (Partition-circuit matroid) LetP be a partition onU. The matroid,
whose family of all circuits i€Cp, is denoted by\/p = (U, Ip) and called partition-
circuit matroid. We sayMp = (U,Ip) is the matroid induced b¥, wherelp =

Opp(Upp(Cp)).

According to Definitior ID, the family of all circuits of a ntatd is equal to a par-
tition on the same universe. Then we will represent the ieddpnt sets of the matroid
from the viewpoint of the partition.



Proposition 6. Let P be a partition onU and Mp = (U,Ip) the partition-circuit
matroid induced byP. Thenlp = {X CU :VP e P,| X P| < |P| —1}.

Proof. We only need to prov®pp(Upp(Cp)) = {X C U : VP € P,| XN P| <

|P|—1}.ForallX ¢ {X CU:VP e P,| X P| <|P|-1},thenthere exist® € P

suchthatX N P| > |P|.And X (P C P,thenX (P = P,i.e.,P C X.According
to Definition[10,Cp = P. ThereforeX € Upp(Cp), i.e.,X ¢ Opp(Upp(Cp)). This
proveOpp(Upp(Cp)) C{X CU :VP € P,|X ) P| < |P|—-1}. Conversely, for all
X ¢ Opp(Upp(Cp)),i.e.,X € Upp(Cp), according to Definition 0, there exidtse

P such thatP C X. Thus| X P| = |P|.SoX ¢ {X CU :VP € P, |XNP| <

|P|—1}. This proves thaDpp(Upp(Cp)) 2 {X CU : VP e P, | X P| < |P|-1}.

To sum up, this completes the proof.

According to Propositionl6, the independent sets of a pamtitircuit matroid can
be expressed by a group of nonnegative integers. Then wan@btaoposition in the
the following.

Proposition 7. Let P be a partition onU and Mp = (U,Ip) the partition-circuit
matroid induced byP. Then,Mp is a partition matroid.

Proof. According to Definitiod P and Propositibnh 6, it is straigtiard.

Propositio b establishes a matroidal structure of a jpamtiA partition coincides
with an equivalence relation. Then, some characterisfithkeomatroid induced by a
partition are represented through rough sets. Firstlyintthependent sets of the matroid
are expressed by approximation operators of rough sets.

Proposition 8. Let P be a partition onU and Mp = (U,Ip) the partition-circuit
matroid induced byP. Let R be an equivalence relation otf andP = U/R. Then
Ip = {X CU: R(X)=0}.

Proof. We only need to prove tha®pp(Upp(Cp)) = {X C U : R(X) = 0}.

Forall X ¢ {X C U : R(X) = 0}, there exists? € U/R = P such that
P C X. According to DefinitiolC’ID,Cp = P. Therefore,X € Upp(Cp), i.e.,
X ¢ Opp(Upp(Cp)). This proves thaDpp(Upp(Cp)) C {X C U : R(X) = 0}.

Conversely, for allX ¢ Opp(Upp(Cp)), i.e., X € Upp(Cp), there existsP? € Cp

such thatP? C X. ThereforeR(X) # 0,i.e.,X ¢ {X C U : R(X) = 0}. This proves
Opp(Upp(Cp)) 2 {X C U : R(X) = 0}. To sum up, this completes the proof.

Corollary 1. LetP be a partition onU and Mp = (U, Ip) the partition-circuit ma-
troid induced byP. Let R be an equivalence relation oti and P = U/R. Then
Ip ={X CU:R(X°=U}.

4 Partition-circuit matroid and its dual matroid

Sectior B establishes a matroidal structure of a partifitve. matroid induced by
a partition is called a partition-circuit matroid. In orderinvestigate the characteris-
tics of partition-circuit matroids and the dual matroidstleém, we propose the lower
approximation number and introduce the upper approximationber([23,2/4,26].



4.1 Lower approximation number and upper approximation number

The upper approximation number proposed!inl[[2[3,24,26] setan coverings.
Similarly, we propose the lower approximation number.

Definition 12. (Upper approximation numbef [23,24,26], lower approximatnum-
ber) LetC be a covering ort/. For all X C U,

Jo(X) =K € C: K C X}
fe(X) =K eC: KNX # 0}

are the lower and upper approximation numbers¥fvith respect toC, respectively.

We omit the subscrigf when there is no confusion.

Properties of the upper approximation number are studigd324,26]. Then, in
this paper, we only investigate the properties of the lovpgraximation number and
the relationship between it and the upper approximationtrarm

Proposition 9. Let C be a covering orV and X,Y C U. The following properties
hold:

1) f(0) = 0;

() f(X) < J)if X CY;

@) f(X)+ f(Y) < fF(XUY)+ f(XNY);
4 f(X) < F(X);

(6) f(X) + f(X°) =|C].

Proof. (1) and (2) are straightforward.

(3): we needtoprovg(X) + f(V) < f(XUY)+ f(XNY),ie,{K €C: K C
XH+{KeC:KCY}<{KeC:KCXUY}+{KeC:KCXNY}
ForallSe {KeC: KCX}lorSe{KeC:KCY},thenSe{KeC:KC
XY} Similarly, forallS e {K e C: K C X}andS € {K € C: K C Y}, then
Se{KeC:KCXNY} Thisprovesf(X)+ f(Y) < f(XUY) + f(XNY).
(4): According to Definitiof IR/ (X) < f(X) is straightforward.

(5): We only need to prové(X) + f(X°) < |C|andf(X) + f(X°) > |C|. For all
Sc{KecC:KCX},SOX¢=0,thenS ¢ {K € C: KX # (}. Similarly,
foralSe {KeC: KNXc#0},S¢ X,thenS ¢ {K € C: K C X}. Therefore
K €C:KCX}|+|{KeC:KNX#0} <|C|ie.,f(X)+[(X)<I|C.
Converselyf(X) + f(X¢) > |C|, we only need to provéK € C: K C X} |J{K €
C:KNX°#0}2C,ie,C-{KecC:KCX}C{KeC:KNX°®#0}.
Suppose that there exisfse C — {K € C : K C X} such thatS( X¢ = {}, then
S C X, which is contradictory with the condition. Therefo@,— {K € C : K C
X} C{K € C:KNX°+#0}. This provesf(X) + f(X°) > |C|. To sum up, this
completes the proof. B

Partitions are a special kind of coverings. In this paperpvopose partition-circuit
matroids induced by partitions. Therefore, in this pages,lower and upper approxi-
mation numbers are based on partitions unless otherwisglsta



4.2 Partition-circuit matroid through lower approximatio n number

On a universe, a partition coincides with an equivalencatiaei. According to
Propositior 8, the lower approximation of any independenirs the partition-circuit
matroid induced by a partition is equal to empty set with eesfo the equivalence
relation which coincides with the partition. The indepemidgets of a partition-circuit
matroid induced by a partition can be well expressed by tivei@pproximation num-
ber with respect to the partition.

Proposition 10. Let P be a partition onU and Mp the partition-circuit matroid in-
duced byP. ThenIp = {X C U : f(X) = 0}.

Proof. According to Propositionl8 and Definition]12, it is straigintfard.

The family of all circuits of the partition-circuit matroiciduced by a partition is
equal to the partition. Then, all circuits can be represthiethe lower approximation
number with respect to the partition.

Proposition 11. Let P be a partition onU and Mp the partition-circuit matroid in-
duced byP. Then,Cp = Min{X C U : f(X) = 1}.

The rank function is to computer the cardinality of the maaiimdependent sets in
subspaces. Then, we use the lower approximation numbepresent the rank function
of the partition-circuit matroid induced by a partition.

Proposition 12. Let P be a partition onU and Mp the partition-circuit matroid in-
duced byP. Then, for allX C U,
rue (X) = [X| = £(X).

Proof. According to Propositiohl3, we only need to profeX) = 0 whenX € Ip.
According to Proposition 10, it is straightforward.

According to Definitior B, the closure of a subset is a set béleiments depend-
ing to the subset in matroids, in other words, the set of etesehich are added to
a subset, whose rank is equal to the rank of the subset, isidkare of the subset.
Then we represent the closure operator of partition-dimaitroids through the lower
approximation number.

Proposition 13. Let P be a partition onU and Mp the partition-circuit matroid in-
duced byP. Then, for allX C U,
cap(X) =X Hz e X f(XU{r}) = f(X) + 1}

Proof. According to Definitioi B¢l (X) = {z € U : rae (X U{z}) = rae (X)}.
Then, we only need to prover € X : f(X|J{z}) = f(X)+ 1} = {z € X°:
e (X U{z}) = rup (X)}. According to Proposition 12, (X) = |X| — f(X).
Therefore, for all: € X¢, ra (X U{z}) = rap (X) © [ X ULz} — F(X U{z}) =

(X[ = f(X) & [X|+1 - f(XU{z}) = [X] = £(X) & f(XU{z}) = £(X) + 1.

Definition[4 presents that a set is a closed set when the eaduhe set is equal to
itself.



Corollary 2. LetP be a partition onlU, Mp the partition-circuit matroid induced by
PandX CU. X is aclosed setiff (X) = f(X [J{x}) foranyz € U.

Proof. According to Definitiod ¥ and Propositignl13, it is straigintfard.

Some characteristics of partition-circuit matroids ardl wepressed by the lower
approximation number based on patrtitions.

4.3 duality of partition matroid through upper approximati on number

According to Propositiof]7, a partition-circuit matroidagpartition matroid. The
dual matroid of a partition matroid can be expressed by thétioa one in [32].
Through the upper approximation numbier|[26,23,24] basegaotitions in this pa-
per, we investigate the dual matroids of partition-cirendtroids. Firstly, we introduce
a lemma to represent the relationship between a partitidroidaand its dual matroid.

Lemmal. ([B2]) LetP = {Py,---, P,} be a partition onU, ki, - - - , k,, a group of
nonnegative integers and (P; k1, - - - , k,,) the partition matroid induced bJ. Then

M*(P;ky, - km) = M(P; |P| — ki, -, |Pn| — km)-

The dual matroid of a partition matroid is also a partitioeohhen, we can obtain
the following proposition.

Proposition 14. Let P be a partition onlU, Mp the partition-circuit matroid induced
by P and M} its dual matroid. Thenly = {X CU : VP € P,| X P| < 1}

Proof. According to Definitiod ®, Propositidd 6 and Lemfda 1, it issagghtforward.

The dual matroid of a partition-circuit matroid can be exgsedl by the elements
of the partition. Then, the independent sets of the dual aithtsf a partition-circuit
matroid are investigated through the upper approximationtrer.

Proposition 15. Let P be a partition onU, Mp the partition-circuit matroid induced
by P and M} its dual matroid. Thenly = {X C U : f(X) = | X]|}.

Proof. According to Proposition14, we only needtoprqye C U : VP € P, |[X | P| <
I} ={XCU: f(X)=|X][}. Forallx c U, | X[ = [XNU| = |X (Upep P)| =
Yopep | XNPLVP e P XNP| <1 & f(X) =3 pcpl|XNP| = [X]. Tosum
up, this completes the proof.

One of equivalent definitions of a matroid is rank functiomdfa matroid and its
rank function determine each other. The rank function oftir@ matroids of partition-
circuit ones can be well expressed by the upper approximationber.

Proposition 16. Let P be a partition onU, Mp the partition-circuit matroid induced
by P and My its dual matroid. Then, for alX’ C U, 3., (X) = f(X).



Proof. According to Propositionl4s},, (X) = | X| =7 (U) + 7 (X€). According
to (5) of Propositiofi9/ (X <) + f(X) = [P|. According to Proposition 12/, (X) =
| X| — f(X). Therefore, for allX C U, rj, (X) = |X| — rap (U) + rape (X€) =

(X| = (U] = fU)) + (1X] = £(X)) = |[X] + |X] = [U] + [(U) = f(X) =
FU) = £(X°) = [P| = f(X) = f(X).

Added an element to a set, the rank of the set does not chdregethe element
belongs to the closure of the set. According to Propodif@rtte closure operator of a
matroid can be represented through the upper approximatiorer.

Proposition 17. Let P be a partition onlU, Mp the partition-circuit matroid induced
by P and M} its dual matroid. Then, for alX C U,

e (X) ={z € U f(X) = F(X U{a})}.
Proof. According to Definitiod 6 and Propositignl16, it is straigintfard.

5 Conclusions

In this paper, we proposed partition-circuit matroids ioeldiby partitions, and stud-
ied some characteristics of them and their dual matroiasil&ito the upper approxi-
mation number, we proposed the lower approximation numiiterrespect to a cover-
ing. Then the properties of the lower approximation numivet the relationships be-
tween it and the upper approximation number are studieditiBas are a special kind
of coverings. In this paper, we used the lower and upper appedion numbers, which
are based on partitions. Some characteristics of partiauit matroids and the dual
matroids of them are investigated through the lower and ugpgroximation numbers.
In future work, we will study the connection between covgfbrased rough sets and
matroids through the lower and upper approximation numbassed on coverings.
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