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Characteristic of partition-circuit matroid through
approximation number
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Abstract. Rough set theory is a useful tool to deal with uncertain, granular and
incomplete knowledge in information systems. And it is based on equivalence
relations or partitions. Matroid theory is a structure thatgeneralizes linear inde-
pendence in vector spaces, and has a variety of applicationsin many fields. In
this paper, we propose a new type of matroids, namely, partition-circuit matroids,
which are induced by partitions. Firstly, a partition satisfies circuit axioms in ma-
troid theory, then it can induce a matroid which is called a partition-circuit ma-
troid. A partition and an equivalence relation on the same universe are one-to-one
corresponding, then some characteristics of partition-circuit matroids are studied
through rough sets. Secondly, similar to the upper approximation number which
is proposed by Wang and Zhu, we define the lower approximationnumber. Some
characteristics of partition-circuit matroids and the dual matroids of them are in-
vestigated through the lower approximation number and the upper approximation
number.
Keywords: Rough set; Matroid; Partition-circuit matroid; Lower approximation
number; Upper approximation number.

1 Introduction

Rough set theory [1] was first proposed by Pawlak as a mathematical tool for im-
perfect data analysis. Through two definable subsets which are the lower and upper
approximations, rough set theory deals with the approximation of an arbitrary subset
of a universe, and discovers rules from data without priori knowledge. It has been suc-
cessfully applied into feature selection [2,3,4], rule extraction [5,6], uncertainty reason-
ing [7,8], decision evaluation [9,10], granular computing[11,12,13,14] and so on.

Rough set theory is based on equivalence relations or partitions. In recent years,
many extensions of classical rough sets have been proposed.For example, through re-
laxing the partitions to coverings, several covering-based rough sets have been pro-
posed [15,16,17,18,19]. In these covering-based rough sets, the concept of covering of
a universe was presented to construct the lower and upper approximations of an arbi-
trary set.

Matroid theory [20] was proposed by Whitney as a generalization of linear indepen-
dence in vector spaces. It borrowed extensively from the terminology of linear algebra
and graph theory, and made great progress in recent decades.In theory, a matroid can
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be defined by dozens of ways, which provides a well platform toconnect it with other
theories. Some authors have connected matroid theory with classical rough sets [21],
covering-based rough sets [22,23,24], generalized rough sets based on relations [25,26],
fuzzy theory [27] and so on. In application, it has widely been used in many fields, such
as combinatorial optimization [28] and algorithm design [29].

In this paper, a new type of matroids is proposed, which is called partition-circuit
matroid. Through partitions, we build the connection between rough sets with matroids.
And some characteristics of partition-circuit matroids and the dual matroids of them are
studied through rough sets and the lower and upper approximation numbers. The main
contributions of this paper are two folds. On the one hand, a partition satisfies the circuit
axioms of matroid theory [20], then a type of matroids, called partition-circuit matroids,
are induced by partitions. Any partition has a one-to-one correspondence with an equiv-
alence relation on the same universe. Therefore, some characteristics of partition-circuit
matroids are studied through the lower and upper approximation operators in rough sets.
On the other hand, we investigate some characteristics of partition-circuit matroids and
the dual matroids of them through lower and upper approximation numbers. Wang and
Zhu proposed the upper approximation number based on coverings in [23,24,26]. Sim-
ilar to the upper approximation number, we propose the lowerapproximation num-
ber based on coverings. First, some properties of the lower and upper approximation
numbers are investigated. Second, some characteristics ofpartition-circuit matroids are
studied through the lower approximation number based on partitions. Third, some char-
acteristics of the dual matroid of a partition-circuit one are investigated through the
upper approximation number.

The rest of this paper is arranged as follows. Section 2 introduces some basic defini-
tions of rough sets and matroids. In Section 3, through partitions, we get a type of ma-
troids, namely, partition-circuit matroids, and study them through rough sets. Section 4
introduces the upper approximation number and proposes thelower upper approxima-
tion number to investigate some characteristics of partition-circuit matroids and the dual
matroids of them. Finally, we conclude this paper in Section5.

2 Basic definitions

In this section, we first review some fundamental ideas and results related to rough
sets, and then introduce some notions of matroids.

2.1 The rough set model

LetU be a finite and nonempty set andR an equivalence relation onU . The equiv-
alence relationR induces a partitionU/R = {P1, · · · , Pm} onU , whereP1, · · · , Pm

are the equivalence classes.
The equivalence classes ofR are elementary sets to construct rough set approxima-

tions. For anyX ⊆ U , its lower and upper approximations are defined as follows:

R(X) =
⋃
{P ∈ U/R : P ⊆ X};

R(X) =
⋃
{P ∈ U/R : P

⋂
X 6= ∅}.



Xc is denoted by the complement ofX in U andY ⊆ U . We have the following
properties of rough sets:

(1L) R(X) ⊆ X ;
(1H)X ⊆ R(X);
(2L) R(X

⋂
Y ) = R(X)

⋂
R(Y );

(2H)R(X
⋃
Y ) = R(X)

⋃
R(Y );

(3L) R(Xc) = (R(X))c;
(3H)R(Xc) = (R(X))c;
(4L) R((R(X))c) = (R(X))c;
(4H)R((R(X))c) = (R(X))c.
The (1L), (1H), (2L), (2H), (4L) and (4H) are characteristicproperties of the lower

and upper approximation operators [30], in other words, allother properties can be
deduced from these properties.

2.2 The matroid model

A matroid is a structure that generalizes the notion of linear independence in ma-
trices. There are several ways to define a matroid, such as independent sets, circuits,
bases, rank function and closure operator. We will first define a matroid that focuses on
its independent sets.

Definition 1. (Matroid [20]) A matroid M is a pair (U, I), whereU is a finite set
(called the ground set) andI is a collection of subsets ofU (called the independent
sets) with the following properties:
(I1) ∅ ∈ I;
(I2) If I ∈ I andI ′ ⊆ I, thenI ′ ∈ I;
(I3) If I1, I2 ∈ I and |I1| < |I2|, then there existsu ∈ I2 − I1 such thatI1

⋃
{u} ∈ I,

where|I| denotes the cardinality ofI.

In order to make some expressions simple, we introduce some symbols as follows.

Definition 2. ([20]) Let U be a finite set andA a family of subsets ofU . Then
Upp(A) = {X ⊆ U : ∃A ∈ A, s.t.A ⊆ X};
Low(A) = {X ⊆ U : ∃A ∈ A, s.t.X ⊆ A};
Max(A) = {X ∈ A : ∀Y ∈ A, X ⊆ Y ⇒ X = Y };
Min(A) = {X ∈ A : ∀Y ∈ A, Y ⊆ X ⇒ X = Y };
Opp(A) = {X ⊆ U : X /∈ A}.

A maximal independent set of a matroid is a base. The base of a matroid generalizes
the maximal linear independence in vector spaces.

Definition 3. (Base [20]) LetM = (U, I) be a matroid. Any maximal independent set
in M is called a base ofM , and the family of bases ofM is denoted byB(M), i.e.,
B(M) = Max(I).

A matroid and its family of bases are uniquely determined by each other. Then, one
of equivalent definitions of a matroid is represented in terms of bases.



Proposition 1. (Base axioms [20]) LetB be a family of subsets ofU . Then there exists
a matroidM = (U, I) such thatB = B(M) if and only ifB satisfies the following two
conditions:
(B1)B 6= ∅;
(B2) If B1, B2 ∈ B and x ∈ B1 − B2, then there existsy ∈ B2 − B1 such that
(B1 − {x})

⋃
{y} ∈ B.

The complement of the independent sets in power sets are dependent ones. And a
minimal set of the dependent sets is called a circuit of the matroid.

Definition 4. (Circuit [20]) Let M = (U, I) be a matroid. A minimal dependent set in
M is called a circuit ofM , and we denote the family of all circuits ofM byC(M), i.e.,
C(M) = Min(Ic), whereIc denotes the complement ofI in 2U .

A matroid can be defined from the viewpoint of its circuits in the following propo-
sition. A matroid uniquely determines its circuits, and vice versa.

Proposition 2. (Circuit axioms [20]) LetC be a family of subsets ofU . Then there ex-
ists a matroidM = (U, I) such thatC = C(M) if and only ifC satisfies the following
properties:
(C1)∅ /∈ C;
(C2) IfC,C′ ∈ C andC′ ⊆ C, thenC′ = C;
(C3) If C1, C2 ∈ C, C1 6= C2 andu ∈ C1

⋂
C2, then there existsC3 ∈ C such that

C3 ⊆ C1

⋃
C2 − {u}.

The cardinality of any maximal independent set in vector spaces can be expressed
by the rank function of a matroid.

Definition 5. (Rank function [20]) LetM = (U, I) be a matroid. ThenrM is called the
rank function ofM , whererM (X) = max{|I| : I ⊆ X, I ∈ I} for all X ⊆ U .

One of equivalent definitions of a matroid is represented in terms of its rank func-
tion. And a matroid and its rank function are uniquely determined by each other.

Proposition 3. Let M = (U, I) be a matroid andrM its rank function. Then for all
X ⊆ U , X ∈ I iff rM (X) = |X |.

In order to represent the relationship between an element and a set of a universe, we
introduce the closure operator through the rank function inmatroids.

Definition 6. (Closure [20]) LetM = (U, I) be a matroid andX ⊆ U . For anyu ∈ U ,
if rM (X) = rM (X

⋃
{u}), thenu depends onX . The subset including all elements

depending onX of U is called the closure with respect toX and denoted byclM (X):
clM (X) = {u ∈ U : rM (X) = rM (X

⋃
{u})},

whereclM is called the closure operator ofM .

In a matroid, if the closure of a set is equal to itself, then the set is a closed set.

Definition 7. (Closed set [20]) LetM = (U, I) be a matroid andX ⊆ U . Therefore
X is a closed set ofM if clM (X) = X .



Duality is one of important characteristics of matroids, which can generate a new
matroid through a given matroid. And the new matroid is called dual matroid which
generalizes the orthogonal complement of a vector space. The dual matroid of a matroid
is introduced as follows.

Definition 8. (Dual matroid [20]) LetM = (U, I) be a matroid. Then the matroid
whose base family is{B : Bc ∈ B(M)} is called the dual matroid ofM and denoted
byM∗.

The relationship between a matroid and its dual matroid is represented as follows.

Proposition 4. LetM = (U, I) be a matroid andM∗ the dual matroid.rM is the rank
function ofM andr∗

M
is the rank function ofM∗. Then, for allX ⊆ U ,
r∗
M
(X) = |X | − rM (U) + rM (Xc).

Through the independent set axioms of a matroid, Liu and Chen[31] proposed
partition matroids induced by partitions with respect to a group of nonnegative integers.

Definition 9. (Partition matroid [31]) LetP = {P1, · · · , Pm} be a partition onU and
k1, · · · , km be a group of nonnegative integers. ThenM(P; k1, · · · , km) = (U, I(P; k1,
· · · , km)) is a matroid whereI(P; k1, · · · , km) = {X ⊆ U : |X

⋂
Pi| ≤ ki, 1 ≤ i ≤

m}, and it is called the partition matroid induced byP with respect tok1, · · · , km.

3 Matroidal structure of partition

In this section, we propose a matroid which is induced by a partition through the
circuit axioms.

Definition 10. LetP be a partition onU . We define a familyCP of subsets ofU , where
CP = P.

According to the above definition, a family of subsets of a universe is equal to
a partition on the universe. In fact, the family of subsets ofthe universe satisfies the
circuit axioms of matroids.

Proposition 5. LetP be a partition onU . ThenCP satisfies (C1), (C2) and (C3).

Proof. According to Definition 10 and Proposition 2, it is straightforward.

According to Proposition 2, a matroid and its circuits determine each other. There-
fore, the family of subsets of the universe induced by a partition can generate a matroid.

Definition 11. (Partition-circuit matroid) LetP be a partition onU . The matroid,
whose family of all circuits isCP, is denoted byMP = (U, IP) and called partition-
circuit matroid. We sayMP = (U, IP) is the matroid induced byP, whereIP =
Opp(Upp(CP)).

According to Definition 10, the family of all circuits of a matroid is equal to a par-
tition on the same universe. Then we will represent the independent sets of the matroid
from the viewpoint of the partition.



Proposition 6. Let P be a partition onU and MP = (U, IP) the partition-circuit
matroid induced byP. ThenIP = {X ⊆ U : ∀P ∈ P, |X

⋂
P | ≤ |P | − 1}.

Proof. We only need to proveOpp(Upp(CP)) = {X ⊆ U : ∀P ∈ P, |X
⋂
P | ≤

|P |−1}. For allX /∈ {X ⊆ U : ∀P ∈ P, |X
⋂
P | ≤ |P |−1}, then there existsP ∈ P

such that|X
⋂
P | ≥ |P |. AndX

⋂
P ⊆ P , thenX

⋂
P = P , i.e.,P ⊆ X . According

to Definition 10,CP = P. ThereforeX ∈ Upp(CP), i.e.,X /∈ Opp(Upp(CP)). This
provesOpp(Upp(CP)) ⊆ {X ⊆ U : ∀P ∈ P, |X

⋂
P | ≤ |P |−1}. Conversely, for all

X /∈ Opp(Upp(CP)), i.e.,X ∈ Upp(CP), according to Definition 10, there existsP ∈
P such thatP ⊆ X . Thus|X

⋂
P | = |P |. SoX /∈ {X ⊆ U : ∀P ∈ P, |X

⋂
P | ≤

|P |−1}. This proves thatOpp(Upp(CP)) ⊇ {X ⊆ U : ∀P ∈ P, |X
⋂
P | ≤ |P |−1}.

To sum up, this completes the proof.

According to Proposition 6, the independent sets of a partition-circuit matroid can
be expressed by a group of nonnegative integers. Then we obtain a proposition in the
the following.

Proposition 7. Let P be a partition onU and MP = (U, IP) the partition-circuit
matroid induced byP. Then,MP is a partition matroid.

Proof. According to Definition 9 and Proposition 6, it is straigtforward.

Proposition 5 establishes a matroidal structure of a partition. A partition coincides
with an equivalence relation. Then, some characteristics of the matroid induced by a
partition are represented through rough sets. Firstly, theindependent sets of the matroid
are expressed by approximation operators of rough sets.

Proposition 8. Let P be a partition onU and MP = (U, IP) the partition-circuit
matroid induced byP. Let R be an equivalence relation onU andP = U/R. Then
IP = {X ⊆ U : R(X) = ∅}.

Proof. We only need to prove thatOpp(Upp(CP)) = {X ⊆ U : R(X) = ∅}.
For all X /∈ {X ⊆ U : R(X) = ∅}, there existsP ∈ U/R = P such that
P ⊆ X . According to Definition 10,CP = P. Therefore,X ∈ Upp(CP), i.e.,
X /∈ Opp(Upp(CP)). This proves thatOpp(Upp(CP)) ⊆ {X ⊆ U : R(X) = ∅}.
Conversely, for allX /∈ Opp(Upp(CP)), i.e.,X ∈ Upp(CP), there existsP ∈ CP

such thatP ⊆ X . ThereforeR(X) 6= ∅, i.e.,X /∈ {X ⊆ U : R(X) = ∅}. This proves
Opp(Upp(CP)) ⊇ {X ⊆ U : R(X) = ∅}. To sum up, this completes the proof.

Corollary 1. Let P be a partition onU andMP = (U, IP) the partition-circuit ma-
troid induced byP. Let R be an equivalence relation onU and P = U/R. Then
IP = {X ⊆ U : R(Xc) = U}.

4 Partition-circuit matroid and its dual matroid

Section 3 establishes a matroidal structure of a partition.The matroid induced by
a partition is called a partition-circuit matroid. In orderto investigate the characteris-
tics of partition-circuit matroids and the dual matroids ofthem, we propose the lower
approximation number and introduce the upper approximation number [23,24,26].



4.1 Lower approximation number and upper approximation number

The upper approximation number proposed in [23,24,26] is based on coverings.
Similarly, we propose the lower approximation number.

Definition 12. (Upper approximation number [23,24,26], lower approximation num-
ber) LetC be a covering onU . For all X ⊆ U ,

f
C
(X) = |{K ∈ C : K ⊆ X}|;

fC(X) = |{K ∈ C : K
⋂
X 6= ∅}|

are the lower and upper approximation numbers ofX with respect toC, respectively.
We omit the subscriptC when there is no confusion.

Properties of the upper approximation number are studied in[23,24,26]. Then, in
this paper, we only investigate the properties of the lower approximation number and
the relationship between it and the upper approximation number.

Proposition 9. Let C be a covering onU andX,Y ⊆ U . The following properties
hold:
(1) f(∅) = 0;
(2) f(X) ≤ f(Y ) if X ⊆ Y ;
(3) f(X) + f(Y ) ≤ f(X

⋃
Y ) + f(X

⋂
Y );

(4) f(X) ≤ f(X);

(5) f(X) + f(Xc) = |C|.

Proof. (1) and (2) are straightforward.
(3): we need to provef(X) + f(Y ) ≤ f(X

⋃
Y ) + f(X

⋂
Y ), i.e., |{K ∈ C : K ⊆

X}|+ |{K ∈ C : K ⊆ Y }| ≤ |{K ∈ C : K ⊆ X
⋃
Y }|+ |{K ∈ C : K ⊆ X

⋂
Y }|.

For allS ∈ {K ∈ C : K ⊆ X} or S ∈ {K ∈ C : K ⊆ Y }, thenS ∈ {K ∈ C : K ⊆
X

⋃
Y }. Similarly, for allS ∈ {K ∈ C : K ⊆ X} andS ∈ {K ∈ C : K ⊆ Y }, then

S ∈ {K ∈ C : K ⊆ X
⋂
Y }. This provesf(X) + f(Y ) ≤ f(X

⋃
Y ) + f(X

⋂
Y ).

(4): According to Definition 12,f(X) ≤ f(X) is straightforward.
(5): We only need to provef(X) + f(Xc) ≤ |C| andf(X) + f(Xc) ≥ |C|. For all
S ∈ {K ∈ C : K ⊆ X}, S

⋂
Xc = ∅, thenS /∈ {K ∈ C : K

⋂
Xc 6= ∅}. Similarly,

for all S ∈ {K ∈ C : K
⋂
Xc 6= ∅}, S * X , thenS /∈ {K ∈ C : K ⊆ X}. Therefore

|{K ∈ C : K ⊆ X}|+ |{K ∈ C : K
⋂
Xc 6= ∅}| ≤ |C|, i.e.,f(X) + f(Xc) ≤ |C|.

Conversely,f(X) + f(Xc) ≥ |C|, we only need to prove{K ∈ C : K ⊆ X}
⋃
{K ∈

C : K
⋂
Xc 6= ∅} ⊇ C, i.e.,C − {K ∈ C : K ⊆ X} ⊆ {K ∈ C : K

⋂
Xc 6= ∅}.

Suppose that there existsS ∈ C − {K ∈ C : K ⊆ X} such thatS
⋂
Xc = ∅, then

S ⊆ X , which is contradictory with the condition. Therefore,C − {K ∈ C : K ⊆
X} ⊆ {K ∈ C : K

⋂
Xc 6= ∅}. This provesf(X) + f(Xc) ≥ |C|. To sum up, this

completes the proof.

Partitions are a special kind of coverings. In this paper, wepropose partition-circuit
matroids induced by partitions. Therefore, in this paper, the lower and upper approxi-
mation numbers are based on partitions unless otherwise stated.



4.2 Partition-circuit matroid through lower approximatio n number

On a universe, a partition coincides with an equivalence relation. According to
Proposition 8, the lower approximation of any independent set in the partition-circuit
matroid induced by a partition is equal to empty set with respect to the equivalence
relation which coincides with the partition. The independent sets of a partition-circuit
matroid induced by a partition can be well expressed by the lower approximation num-
ber with respect to the partition.

Proposition 10. Let P be a partition onU andMP the partition-circuit matroid in-
duced byP. Then,IP = {X ⊆ U : f(X) = 0}.

Proof. According to Proposition 8 and Definition 12, it is straightforward.

The family of all circuits of the partition-circuit matroidinduced by a partition is
equal to the partition. Then, all circuits can be represented by the lower approximation
number with respect to the partition.

Proposition 11. Let P be a partition onU andMP the partition-circuit matroid in-
duced byP. Then,CP = Min{X ⊆ U : f(X) = 1}.

The rank function is to computer the cardinality of the maximal independent sets in
subspaces. Then, we use the lower approximation number to represent the rank function
of the partition-circuit matroid induced by a partition.

Proposition 12. Let P be a partition onU andMP the partition-circuit matroid in-
duced byP. Then, for allX ⊆ U ,

rMP
(X) = |X | − f(X).

Proof. According to Proposition 3, we only need to provef(X) = 0 whenX ∈ IP.
According to Proposition 10, it is straightforward.

According to Definition 6, the closure of a subset is a set of all elements depend-
ing to the subset in matroids, in other words, the set of elements which are added to
a subset, whose rank is equal to the rank of the subset, is the closure of the subset.
Then we represent the closure operator of partition-circuit matroids through the lower
approximation number.

Proposition 13. Let P be a partition onU andMP the partition-circuit matroid in-
duced byP. Then, for allX ⊆ U ,

clMP
(X) = X

⋃
{x ∈ Xc : f(X

⋃
{x}) = f(X) + 1}.

Proof. According to Definition 6,clMP
(X) = {x ∈ U : rMP

(X
⋃
{x}) = rMP

(X)}.
Then, we only need to prove{x ∈ Xc : f(X

⋃
{x}) = f(X) + 1} = {x ∈ Xc :

rMP
(X

⋃
{x}) = rMP

(X)}. According to Proposition 12,rMP
(X) = |X | − f(X).

Therefore, for allx ∈ Xc, rMP
(X

⋃
{x}) = rMP

(X) ⇔ |X
⋃
{x}| − f(X

⋃
{x}) =

|X | − f(X) ⇔ |X |+ 1− f(X
⋃
{x}) = |X | − f(X) ⇔ f(X

⋃
{x}) = f(X) + 1.

Definition 7 presents that a set is a closed set when the closure of the set is equal to
itself.



Corollary 2. LetP be a partition onU , MP the partition-circuit matroid induced by
P andX ⊆ U . X is a closed set ifff(X) = f(X

⋃
{x}) for anyx ∈ U .

Proof. According to Definition 7 and Proposition 13, it is straightforward.

Some characteristics of partition-circuit matroids are well expressed by the lower
approximation number based on partitions.

4.3 duality of partition matroid through upper approximati on number

According to Proposition 7, a partition-circuit matroid isa partition matroid. The
dual matroid of a partition matroid can be expressed by the partition one in [32].
Through the upper approximation number [26,23,24] based onpartitions in this pa-
per, we investigate the dual matroids of partition-circuitmatroids. Firstly, we introduce
a lemma to represent the relationship between a partition matroid and its dual matroid.

Lemma 1. ([32]) Let P = {P1, · · · , Pm} be a partition onU , k1, · · · , km a group of
nonnegative integers andM(P; k1, · · · , km) the partition matroid induced byP. Then

M∗(P; k1, · · · , km) = M(P; |P1| − k1, · · · , |Pm| − km).

The dual matroid of a partition matroid is also a partition one. Then, we can obtain
the following proposition.

Proposition 14. LetP be a partition onU , MP the partition-circuit matroid induced
byP andM∗

P
its dual matroid. Then,I∗

P
= {X ⊆ U : ∀P ∈ P, |X

⋂
P | ≤ 1}

Proof. According to Definition 9, Proposition 6 and Lemma 1, it is straightforward.

The dual matroid of a partition-circuit matroid can be expressed by the elements
of the partition. Then, the independent sets of the dual matroid of a partition-circuit
matroid are investigated through the upper approximation number.

Proposition 15. LetP be a partition onU , MP the partition-circuit matroid induced
byP andM∗

P
its dual matroid. Then,I∗

P
= {X ⊆ U : f(X) = |X |}.

Proof. According to Proposition 14, we only need to prove{X ⊆ U : ∀P ∈ P, |X
⋂
P | ≤

1} = {X ⊆ U : f(X) = |X |}. For allX ⊆ U , |X | = |X
⋂
U | = |X

⋂
(
⋃

P∈P
P )| =

∑
P∈P

|X
⋂
P |. ∀P ∈ P, |X

⋂
P | ≤ 1 ⇔ f(X) =

∑
P∈P

|X
⋂
P | = |X |. To sum

up, this completes the proof.

One of equivalent definitions of a matroid is rank function. And a matroid and its
rank function determine each other. The rank function of thedual matroids of partition-
circuit ones can be well expressed by the upper approximation number.

Proposition 16. LetP be a partition onU , MP the partition-circuit matroid induced
byP andM∗

P
its dual matroid. Then, for allX ⊆ U , r∗

MP
(X) = f(X).



Proof. According to Proposition 4,r∗
MP

(X) = |X |− rMP
(U)+ rMP

(Xc). According
to (5) of Proposition 9,f(Xc)+f(X) = |P|. According to Proposition 12,rMP

(X) =
|X | − f(X). Therefore, for allX ⊆ U , r∗

MP
(X) = |X | − rMP

(U) + rMP
(Xc) =

|X | − (|U | − f(U)) + (|Xc| − f(Xc)) = |X | + |Xc| − |U | + f(U) − f(Xc) =

f(U)− f(Xc) = |P| − f(Xc) = f(X).

Added an element to a set, the rank of the set does not change, then the element
belongs to the closure of the set. According to Proposition 16, the closure operator of a
matroid can be represented through the upper approximationnumber.

Proposition 17. LetP be a partition onU , MP the partition-circuit matroid induced
byP andM∗

P
its dual matroid. Then, for allX ⊆ U ,

cl∗
MP

(X) = {x ∈ U : f(X) = f(X
⋃
{x})}.

Proof. According to Definition 6 and Proposition 16, it is straightforward.

5 Conclusions

In this paper, we proposed partition-circuit matroids induced by partitions, and stud-
ied some characteristics of them and their dual matroids. Similar to the upper approxi-
mation number, we proposed the lower approximation number with respect to a cover-
ing. Then the properties of the lower approximation number and the relationships be-
tween it and the upper approximation number are studied. Partitions are a special kind
of coverings. In this paper, we used the lower and upper approximation numbers, which
are based on partitions. Some characteristics of partition-circuit matroids and the dual
matroids of them are investigated through the lower and upper approximation numbers.
In future work, we will study the connection between covering-based rough sets and
matroids through the lower and upper approximation numbersbased on coverings.
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