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Abstract—The rapid adoption of mobile devices comes with
the growing prevalence of mobile malware. Mobile malware poses
serious threats to personal information and creates challenges in
securing network. Traditional network services provide connectiv-
ity but do not have any direct mechanism for security protection.
The emergence of Software-Defined Networking (SDN) provides
a unique opportunity to achieve network security in a more
efficient and flexible manner. In this paper, we analyze the
behaviors of mobile malware, propose several mobile malware
detection algorithms, and design and implement a malware
detection system using SDN. Our system detects mobile malware
by identifying suspicious network activities through real-time
traffic analysis, which only requires connection establishment
packets. Specifically, our detection algorithms are implemented
as modules inside the OpenFlow controller, and the security rules
can be imposed in real time. We have tested our system prototype
using both a local testbed and GENI infrastructure. Test results
confirm the feasibility of our approach. In addition, the stress
testing results show that even unoptimized implementations of
our algorithms do not affect the performance of the OpenFlow
controller significantly.

I. INTRODUCTION

The mobile era is underway. People are more dependent
than ever on their mobile devices in their daily lives and
work. It is predicted that mobile devices will surpass PCs
as the most common type of Internet access device in the
world by 2013 [1]. The growing popularity of mobile devices
has made them a more attractive target for attackers. The
first malicious software aimed specifically at smartphones hit
in 2004 [2]. Recently, one of the most famous malware on
Android, DroidDream, infected more than 260,000 devices
before Google was able to remove the related malicious apps
from its official market [3]. There were also reported cases
that malicious applications had passed the strict review process
of Apple and user information was stolen [4]. Experts have
warned the dangers of mobile malware for years, and alerted
that security research community should pay more attention to
mobile malware [5], [6].

Several factors make mobile malware an even greater
threat. First, people are placing growing reliance and valuable
information on mobile devices, which are enticing to attackers.
Second, mobile devices are more likely to connect to inse-
cure networks where malicious hosts may exist. Additionally,
people update/patch the software/firmware of mobile devices
less frequently, which makes zero-day vulnerability exploit
possible [7]. To make matters worse, giant app stores (e.g.,
Google’s Play store, Apple’s App Store, etc.), while enabling
apps to be distributed at an unprecedented speed, also provide

attackers opportunities to exploit a larger number of devices.
Last, many users jailbreak iOS devices or root Android devices
in order to install software from third parties, which usually
involves exploiting vulnerabilities in the operating systems to
gain root access and thus makes the devices more vulnerable
to malware [8], [9].

The growth of mobile malware and its security threats have
created challenges in securing networks. Traditional network
services provide connectivity but do not have any direct
mechanism for security protection. Most network security
mechanisms are provided as add-on features, such as web
authentication, firewalls, and intrusion detection tools, etc.
These features, however, may lack flexibility and responsive-
ness. For instance, if an infected host needs to be quarantined,
the administrator has to install firewalls and update firewall
rules, which involves protocols at multiple layers and is slow
to respond. The emergence of Software-Defined Networking
(SDN) provides a unique opportunity to protect networks in a
more efficient and flexible manner. In SDN, as the control and
data planes are decoupled [10], the network can be managed
in a logically centralized way and the traffic control rules can
be imposed in real time. For instance, when a host is found
misbehaving, the controller can instantly update the control
rules of access points (or switches), so that the host will be
disconnected immediately.

In this paper, we present a mobile malware detection
system using the SDN architecture. Our system can detect
mobile malware by identifying suspicious network activities
through traffic monitoring. It can further collaborate with
OpenFlow controllers to impose security rules directly at the
network layer by changing how the switches (access points)
handle the incoming traffic. Our main contributions are as
follows.

• To the best of our knowledge, this is the first effort
that uses the SDN architecture to tackle malware on
mobile devices.

• Inspired by existing malware detection methods, we
design several light-weight algorithms that are applica-
ble to SDN and require only connection establishment
packets.

• We implement a proof-of-concept mobile malware de-
tection system based on OpenFlow protocol, and test
it using both a local testbed and GENI infrastructure.
The test results confirm the feasibility of our approach.
Furthermore, we have stress tested our system through
extensive simulation, and the test results demonstrate



that even unoptimized implementations of our algo-
rithms do not lead to significant slowdown of the
OpenFlow controller.

The rest of the paper is organized as follows. Section II
describes the SDN architecture and malicious behaviors of
mobile malware. Section III presents our mobile malware
detection system architecture and detection algorithms. Sec-
tion IV presents the system implementation and performance.
Section V describes related work. Finally, Section VI con-
cludes the paper and presents future directions.

II. PRELIMINARIES

In this section, we describe the architecture of SDN and
major malicious behaviors of mobile malware.

A. SDN and OpenFlow Network

Software-Defined Networking (SDN) has emerged as a new
paradigm for enabling innovation in networking research and
development. In the SDN architecture, the control and data
planes are decoupled, network intelligence and state are logi-
cally centralized, and the underlying network infrastructure is
abstracted from the applications [10]. OpenFlow protocol [11]
is one element of the SDN architecture, which allows switches
to perform flows-level control1. An OpenFlow switch usually
contains at least one flow table that is managed by an external
controller. The controller connects to the switch through a
secured OpenFlow channel and manages the switch via the
OpenFlow protocol. Using this protocol, the controller can add,
update, and delete flow entries, both reactively in response to
packets and proactively with pre-defined rules. The flow table
inside the switch consists of a set of flow entries. Each flow
entry contains match fields (to match against packets), counters
(that are updated for matching packets), as well as a set of
instructions to be applied to matching packets. The actions for
a matching packet range from dropping the packet, outputting
the packet on specified port(s), and modifying header fields.

TABLE I. SELECTED MATCH FIELDS IN FLOW ENTRY (APPLICABLE TO
TCP PACKETS)

Field Name Note
Ingress Port Physical or switch-defined virtual port
Ethernet source MAC address of source host
Ethernet destination MAC address of destination host
IP source address IP address of the source host

(can use subnet mask or bitmask)
IP destination address IP address of the destination host

(can use subnet mask or bitmask)
IPv4 protocol E.g., TCP, UDP, ICMP, etc.
Source port TCP/UDP source port
Destination port TCP/UDP destination port

Table I shows several selected match fields that an incom-
ing packet is compared against. Each field can either contain a
specific value, or be wild-carded (which matches any value). It
thus allows flexibility in specifying the exact group of packets
on which a certain set of instructions is to be executed. For
instance, if we want to set up a rule of forwarding all HTTP
traffic to a server connected to a certain port of the switch, we

1The term flow can refer to a single data flow connection between two hosts,
defined uniquely by its five-tuple (source IP address, source port, destination
IP address, destination port, protocol type TCP/UDP).

can simply set up a flow entry which has all match fields wild-
carded except ‘IPv4 protocol’ being ‘TCP’ and ‘Destination
port’ being ‘80’.

Whenever a packet comes to an OpenFlow switch, it will
be compared against the flow tables in the switch. If a matching
flow entry is found, the actions associated with the flow entry
will be executed. Otherwise, the packet will be forwarded to
the controller, which then decides how to deal with the packet
and installs flow entries to the switch if needed.

B. Malware Behavior

Malicious behaviors of malware on both PC and mobile
platforms have been analyzed in many existing studies. Here
we summarize the major malicious behaviors that can be
potentially identified through traffic analysis.

1) Repackaging and Updating Attacks: One major way for
a malware program to infect mobile devices is to disguise
itself as a legitimate application through repackaging (i.e., the
malicious payload is piggybacked into popular applications). It
happens more often in third-party app stores. Sometimes, the
legitimate software and the malware look the same, and thus
users may get malware installed inadvertently. The malware
payload can be exposed using static analysis tools. To avoid
this, some recent malware does not include the malicious
payload in its installation package. Rather, it only encapsulates
a component that is able to fetch the malicious payload
after being installed on the devices. Whenever an Internet
connection is available, that component will download and
install the actual malicious payload by stealth.

2) Drive-by Download Attacks: Another technique adopted
by malicious software is the ‘drive-by download’ attack.
Users may inadvertently download malware by visiting a
compromised website, viewing a malicious e-mail or clicking
a misleading link. This kind of attack is even more likely to
succeed on mobile devices that have limited screen size. This is
because many mobile browsers hide the address bar to display
more page content, which removes the visual cues for users to
confirm the locations they are visiting.

3) Remote Control: A large portion of malware turns the
infected phones into bots for remote control [12], and most
of them use HTTP-based web traffic to receive bot command
from the attack’s server. While most of those servers are
registered in domains controlled by attackers themselves, a
recent study [12] shows that the servers can be hosted in public
cloud, such as Amazon cloud, which makes malware detection
even more difficult.

4) Information Collection: Malware also collects valuable
personal information stored on mobile devices, including mes-
sages, emails, phone numbers, and account information. The
information collected will be sent to the attacker’s server
secretly. Some of the malware can circumvent static analysis
by encrypting the URLs of their remote servers.

From the above analysis, we observe that most of the
malicious behaviors are directly or indirectly related to network
activities. Therefore, we believe a network-level protection is
necessary in case static-analysis based examination techniques
fail.



III. MOBILE MALWARE DETECTION USING SDN

In this section, we first describe the architecture of our mo-
bile malware detection system, and then present the algorithms
we adopt for malware detection based on OpenFlow protocol.

A. System architecture
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Fig. 1. Architecture of malware detection system.

Motivated by the flexibility of the SDN architecture and
the observation that most mobile malware requires Internet
connections (see Section II-B), we design a system that detects
mobile malware through real-time traffic analysis using the
SDN architecture. Fig. 1 illustrates the high level architecture
of our system. For ease of exposition, we assume only one
wireless access point to which all the mobile devices are
connected. We assume that the mobile traffic can be filtered
out using the methods described in [13]. In this architecture,
the access point, which is essentially an OpenFlow-enabled
switch, is controlled by an OpenFlow controller. The access
point forwards mobile traffic to the OpenFlow controller, and
receives and installs flow entries from the controller through
a secured channel. The malware detection system is a module
inside the OpenFlow controller, which can extract the traffic
information we are interested in. Based on the traffic infor-
mation, our malware detection system detects malware in real
time. The analysis results from the malware detection module
will instruct the controller to regulate the traffic by setting
up flow entries to the switch. In this way, the control of the
network is logically centralized and the security rules can be
imposed in real time right from the network layer.

Note that the entire process is transparent to mobile device
users and users do not need to install any special hardware or
software, which makes our system readily deployable.

B. Detection Algorithms

In traditional networks, realizing a real-time traffic in-
spection scheme requires additional devices and complicated
collaboration. Under SDN architecture, we can design detec-
tion algorithms that are readily integrated with the OpenFlow
controller, which enables controlling the traffic in a logically
centralized way. The algorithms we adopted are described as
follows.

1) IP Blacklist: A straightforward way to protect a network
is maintaining a blacklist of malicious IP addresses which can
either be obtained from public available sources (e.g., [14],
[15]) or from historic data, and denying immediately any
network flow that involves an IP address in that blacklist. In
OpenFlow protocol, such a blacklist based protection mech-
anism can be readily implemented as follows. When a new
connection is to be established, since any connection request
packet that does not match any flow entry in the OpenFlow
switch will be forwarded to the OpenFlow controller, the
controller can readily obtain the destination IP address of the
connection. If the IP address is in the blacklist, the connection
will be blocked. Otherwise, the connection request packet will
be forwarded to the destination host.

2) Connection Success Ratio: Inspired by [16], which
leverages the observation that the probability that a connection
attempt is successful should be much higher for a benign host
than a malicious host, we design a malware detection algorithm
based on connection success ratio. The algorithm aims at
detecting scanning worms that try to search for compromised
devices in the network and try to infect them.

To implement this algorithm using OpenFlow protocol, the
controller maintains a list of pending connections which have
yet to receive a response for each host. The more such pending
connections originated from a host, the higher the likelihood
that the host has been infected. Once the response to a connec-
tion request is received, the corresponding pending connection
will be removed from the list. And then our algorithm installs
the two-way flow entries to handle the subsequent packets in
that flow. If the number of pending connections for a host
exceeds a pre-defined threshold T1, the controller will consider
the host as infected, raise an alarm and disconnect the device
from network by dropping all the packets from the host.

Specifically, when a host x sends a connection request
to a new external destination y, the following steps will be
executed:

(a) If no matching flow entry (for flow from x to y) can be
found at the access point, the packet will be forwarded
to the controller.

(b) The controller simply forwards the packet to destina-
tion y directly through the access point, without setting
any flow entry. Meanwhile, it adds the connection
request to x’s list of pending connections.

(c) The controller checks the number of x’s pending
connections. If it is larger than T1, the controller raises
an alarm and disconnects the host.

(d) Once a reply packet from y is received, the packet will
be forwarded to the controller (as there is no matching
flow entry yet). Then the controller sets up two-way
flow entries in the access point, for traffic from x to
y and traffic from y to x, respectively. Meantime, the
controller removes the connection request from x’s list
of pending connections.

3) Throttling Connection: The study of [17] observed that
during virus propagation, an infected machine will try to
connect to as many different machines as fast as possible,
while an uninfected machine behaves differently: connections



are made at a lower rate, and are locally correlated (since
repeated connections to recently accessed machines are likely).
On mobile platforms, we expect to see a similar trend. To
limit the rate of connections to new hosts and identify the
infected clients, we implement an algorithm that maintains
a list of Recently Accessed Hosts (RAH) for each host and
check the list whenever a new connection request is received.
Specifically, if the destination is in the RAH list, then the
connection will be allowed. Otherwise, the connection request
will be placed into a waiting queue and the requests in the
queue will be popped out at a rate of R requests per second.
If the length of the waiting queue of a host becomes larger
than a pre-defined threshold T2, that host will be considered
suspicious and be disconnected. Specifically, when a host x
sends a connection request to an external destination y, the
following steps will be executed:

(a) If the destination y has been accessed before (i.e., it
is in the RAH list), then the controller sets up the
two-way flow entries directly.

(b) If the destination y is a new host (i.e., not in the RAH
list), the controller places the connection request at the
end of the queue without setting up any flow entry.
If the size of the waiting queue becomes larger than
the threshold T2, the controller raises an alarm and
disconnects the host from the network.

(c) At the rate of R requests per second, the controller
pops out the connection requests from the waiting
queue and adds the destination host to the RAH list.

(d) When a reply packet from destination y is received,
the controller sets up the two-way flow entries in the
access point.

4) Aggregation Analysis: Malware rarely infects only a
single victim. Therefore, we expect that when one host is
infected by malware, multiple other hosts may be infected
as well, especially in a large scale network. In addition, we
expect that the infected client share behavioral characteristics
in their network activities that are distinct from those of
benign clients. Inspired by [18], we design an algorithm
that detects the infected hosts by identifying aggregates of
“similar” communications. Specifically, given a collection of
bi-directional flow records observed, we collect the flows with
the following features.

• Common destination: Since most of the malware
needs to communicate with the control server, either
receiving command, downloading malicious payload
or uploading information, we expect to see the flows
to have common destination hosts. Intuitively, it is
especially suspicious when the URL or the IP address
of the destination host does not belong to a well-
known site.

• Common connection time: The duration of each flow
will be recorded. The rationale is that the same mal-
ware usually exhibits similar duration of connection.

• Common platform: Most mobile malware programs
are platform specific (i.e., cross-platform malware is
rare, if any). Therefore, we also identify the flows that
originate from the same platform.

Alone, each of the characteristics does not provide much infor-
mation since normal clients can also exhibit similar features.
But in combination, we can possibly extract aggregates of
malware communications as claimed in [18].

5) Discussion: Remark that all the above four algorithms
have the following merits. First, they only require the packets
that are related to connection establishments, so user privacy is
protected. In addition, since once the connection is established
and then later packets can go through the switch directly, it
does not incur large overhead. Secondly, the above algorithms
are independent from each other, so we have the flexibility to
use them selectively.

IV. SYSTEM EVALUATION

In this section, we first present the system implementation
of our proof-of-concept mobile malware detection system, and
then evaluate the performance of our system on a local testbed.
In the end, we present our experiments using the Global En-
vironment for Network Innovation (GENI) [19] infrastructure.

A. System Implementation

To validate our scheme, we implemented a prototype of our
mobile malware detection system. In particular, for the Open-
Flow controller, we choose an Apache-licensed, Java-based
OpenFlow controller, FloodLight [20], whose modular design
enables us to embed our detection algorithms as independent
modules. For the OpenFlow switch, we choose a Netgear
WNDR3800 wireless router as the access point for mobile
devices, along with the Pantou project [21] with OpenWrt [22]
backfire distribution to enable OpenFlow. Further, we use
four smartphones, two HTC wildfire with Android and two
Apple iPhone4S with iOS, as the mobile clients. For ease of
exposition, we label the four clients as A, B, C and D. The
topology of our experiment is shown in Fig. 2.

FloodLight Controller
192.168.1.10:6633

HTC Wildfire (A)
192.168.1.100

h1-wlan

Mobile Malware
Detection Module

OpenFlow Switch
(Netgear WNDR3800)

HTC Wildfire (B)
192.168.1.101

h2-wlan
iPhone 4S (C)
192.168.1.103

h3-wlan
iPhone 4S (D)
192.168.1.104

h4-wlan

wlan0

Fig. 2. Topology of small-scale experiments.

Specifically, the Floodlight controller connects to the Open-
Flow switch via a secured channel. Our four mobile detection
algorithms are implemented as independent modules inside
the Floodlight controller. And the four mobile devices are
connected to the access point through Wi-Fi.

B. Functionality Verification

To verify the functionalities of the four proposed detection
algorithms, we run scripts on the smartphones that mimic



malware behaviors2. The four algorithms are tested as follows.

• IP Blacklist. To test the blacklist functionality, we let
client A try to connect to a set of IP addresses that
are on the blacklist (obtained from [15]). We observed
that the client was disconnected from the network
immediately, and the OpenFlow controller raised an
alarm.

• Connection successful ratio. For this algorithm, we set
the parameter T1 (detection threshold, as defined in
Section III-B2) to be 20. Then we let client B connect
to a set of non-existing IP addresses sequentially.
We observed that when the number of unsuccessful
connections exceeded T1, the client was disconnected
immediately, and the controller raised an alarm.

• Connection throttling. For this algorithm, we set the
parameters T2 (maximum size of queue) to be 20
and R (connection rate) to be 1 request per second
(see Section III-B3). Then we let client C initiate
connections to a list of 30 valid IP addresses. We
observed that 20 of the connection requests were
allowed at the expected rate (one request per second).
Once the twenty-first connection was initiated, the
controller raised an alarm.

• Traffic aggregation. For this algorithm, we let all
the four clients connect to 30 IP addresses that are
randomly selected from a list of 100 IP addresses.
Our detection module was able to identify the common
destinations of the four clients. Based on the analysis
results, the network administer can identify suspicious
network activity more conveniently.

The above experiments confirm the feasibility of our mal-
ware detection algorithms. We should note that our system
is still at the proof-of-concept stage and the parameters of
the algorithms can be further optimized based on real traffic
characteristics.

C. Efficiency Evaluation

A natural question is whether our detection algorithms have
adverse effects on the performance of the network. To answer
this question, we benchmark the performance of the Floodlight
controller with and without our detection algorithms enabled
using Cbench [23].

OpenFlow Controller

Cbench

…

(1) packet-in

(2) flow-setup
response

Virtual Switch 1 Virtual Switch 2 Virtual Switch n

Fig. 3. Benchmark controller performance using Cbench.

2This is more controllable than running the real malware, and does not
affect the purpose of showing the feasibility of our approach.

Cbench is a tool for testing an OpenFlow controller. As
illustrated in Fig. 3, it simulates a set of switches that are
connected to the controller being tested. Each switch generates
‘packet-in’ messages and watches for flow-setup responses
from the controller. Every packet-in message will be examined
by the controller (and our detection algorithms as well). We
measure the performance of the controller with the following
metrics:

• Latency. It measures the packet processing delay of
the controller. To measure latency, Cbench allows
only one packet on the fly, and measures how fast
a response is received back from the controller. This
metric reflects the performance of the controller under
light traffic conditions.

• Throughput. It measures the maximum packet pro-
cessing rate of the controller. To measure throughput,
Cbench sends as many packet-ins as possible to the
controller, and counts how many responses per second
are received back from the controller. This metric in-
dicates the performance of the controller under heavy
traffic conditions.

Furthermore, when measuring the performance, we let all
the traffic generated by Cbench be benign (i.e., will not be
blocked by our algorithms). This is because the malicious
traffic will be discarded by our detection algorithms, which
could affect the performance measurement results. We remark
that the results under benign traffic can reflect the real world
performance well, as the malicious traffic usually takes up only
a very low percentage of the overall traffic in the real world.

1) Testbed Setup: In the simulation, the FloodLight con-
troller runs on a server with a quad-core Intel Core i7 CPU
and 16GB of RAM running Ubuntu 12.04. Cbench runs on
the same server and connect to FloodLight controller via loop-
back3. We adopt the configuration for FloodLight as suggested
in [24] and evaluate the performance of the controller in the
following scenarios.

• The controller runs without any detection algorithms
enabled. This scenario serves as the baseline.

• The controller runs with each one of the four detection
algorithms being enabled individually.

• The controller runs with all of the four detection
algorithms being enabled at the same time.

For each scenario, we let Cbench emulate 16 switches,
sending packet-in messages from ten thousand unique MACs
per switch for 10 seconds. Each test is repeated for 10 times.
And we present the average and standard deviation of the tests.

2) Simulation Results: The latency results are shown in
Table II. While the Floodlight controller itself, with no de-
tection algorithm enabled, achieves a latency of 2.09µs on
average (baseline), we are more interested in the relative per-
formance degradation when enabling our detection algorithms.
In comparison, when our detection algorithms are enabled,
we observed that there is no significant latency degradation.

3We let Floodlight controller and Cbench run on the same machine and
connect to each other via loopback, so that the results are not affected by
network related factors.



In particular, when the four detection algorithms are enabled
individually, the average latency is increased by less than 3%
in the worst case. Even when all the four detection algorithm
are enabled at the same time, the average latency is still
hardly affected (+3.2%). In addition, the results of standard
deviation is relatively low, indicating a steady performance of
our algorithms.

TABLE II. PERFORMANCE - LATENCY (µs, LOWER IS BETTER. THE
NUMBERS IN PARENTHESIS REPRESENT THE RELATIVE PERFORMANCE

COMPARED TO THE BASELINE RESULT)

Average Std. deviation
Baseline 2.09 0.01
Blacklist 2.11 (+1.0%) 0.02
Conn. Success Ratio 2.14 (+2.1%) 0.01
Throttling Conn. 2.15 (+2.7%) 0.06
Traffic Aggregation 2.13 (+1.8%) 0.02
All Four Together 2.16 (+3.2%) 0.02

The throughput results are shown in Table III. The base-
line result is 1034963 responses per second. When the four
detection algorithms are enabled individually, we observe that
the average throughput is decreased by less than 10% in the
worst case. When enabling all the four algorithms at the same
time, we observe a throughput decrease of 27.9%. The results
of standard deviation stay relatively low, indicating a steady
performance of our algorithms under heavy traffic conditions.

TABLE III. PERFORMANCE - THROUGHPUT (RESPONSES PER SECOND,
HIGHER IS BETTER. THE NUMBERS IN PARENTHESIS REPRESENT THE

RELATIVE PERFORMANCE COMPARED TO THE BASELINE RESULT)

Average Std. deviation
Baseline 1034963 7147
Blacklist 1005333 (-2.9%) 22203
Conn. Success Ratio 956151 (-7.6%) 13724
Throttling Conn. 977168 (-5.6%) 20408
Traffic Aggregation 938217 (-9.3%) 25176
All Four Together 746347 (-27.9%) 5978

The performance of our algorithms can potentially be
improved in many ways. First, we did not perform any special
optimization of our source code. For example, one of the
extensively used data structures, native Java ‘map’ and ‘set’
can be replaced by much faster ones provided by third-party
libraries. Secondly, the four algorithms independently extract
and save the traffic information, which can be potentially
optimized by information sharing. Then the performance of
four algorithm running at the same time can be improved
considerably. Last, the OpenFlow controller can be run on a
much more powerful server and the processing time will be
further reduced.

D. Experiments on GENI testbed

The Global Environment for Network Innovations (GENI)
is a suite of network research infrastructure, providing a
laboratory environment for networking and distributed systems
research and experimentation. The programmable hosts and
programmable networks, especially the OpenFlow resources,
provide us a unique opportunity to test and evaluate our
malware detection system in SDN.

To experiment on GENI, we use the GENI experiment
control tool, Omni [25], to reserve resources at GENI multiple
aggregate managers. The steps are as follows. First, we need

to create and renew our slice, which is essentially a collec-
tion of computation and communications resources, using the
following commands:

omni.py createslice [Slice] % [Slice] represents the name of the slice
omni.py renewslice [Slice] [YYYYMMDD]

After a slice has been created, we create slivers in it. While
slices are global containers of resources, slivers are small
collections of resources from each source. For our experiments,
we need both the computation resource and network resource.
Therefore, we query two aggregate managers (one is for
computation resource, the other is for networking resource)
of GPOLab for their available resources with the following
commands:

omni.py -a http://myplc.gpolab.bbn.com:12346/ -o listresources
omni.py -a https://foam.gpolab.bbn.com:3626/foam/gapi/1 -o listresources

The commands return two advertisement RSpec files,
which list all the available resource that each aggregate man-
ager currently controls. We pick the resources needed in two
RSpect files and then reserve the resources using the following
commands:

omni.py -a http://myplc.gpolab.bbn.com:12346/ createsliver [Slice] [RSpec]
omni.py -a https://foam.gpolab.bbn.com:3626/foam/gapi/1 createsliver [Slice] [RSpec]

Specifically, we have reserved three hosts (Sardis, Ganel
and Bain), as well as an OpenFlow switch from the GPO
aggregates. With the above steps, we are able to conduct
experiments on GENI testbed. In our experiment, we design
two scenarios as follows.

1) Single Switch: In this scenario, we connect only one
switch to the controller. The topology of the experiment is
shown in Fig. 4.

FloodLight Controller
Bain.gpolab.bbn.com:65101

Ganel
10.42.117.51

eth1.1750

Mobile Malware
Detection Module

GPOLab OpenFlow Switch
(Habanero, VLAN 1750)

Sardis
10.42.117.53

eth1.1750

Port 25 Port 27

Fig. 4. Topology of single switch scenario.

Specifically, we use Bain to run our java-based Floodlight
controller, and use the other two hosts (Sardis, Ganel) as the
clients. To make the Floodlight controller run on Bain, we need
to SSH into the node, and transfer the files required, and setup
the execution environment using the following commands:

After that, we ran the scripts that mimic the clients A, B
on Ganel and scripts that mimic the clients C, D on Sardis
(see Section IV-B). We verified the four algorithms in the same
way as described in Section IV-A, confirming our algorithms
worked as expected on GENI testbed.



scp controller.jar pgenigpolabbbncom [Slice]@bain.gpolab.bbn.com:
ssh pgenigpolabbbncom [Slice]@bain.gpolab.bbn.com
sudo yum install java %the controller is java-based

2) Two Switches: To verify that the system can work in
a more complicated environment, i.e., multiple switches, we
connect two switches to the controller running on Bain. One
switch is the same one as in the previous scenario, the other
is the switch used in our local testbed. The topology of the
experiment is shown in Fig. 5.

FloodLight Controller
bain.gpolab.bbn.com:65101

Ganel
10.42.117.51

eth1.1750

Mobile Malware
Detection Module

GPOLab OpenFlow Switch
(Habanero, VLAN 1750)

Sardis
10.42.117.53

eth1.1750

Port 25 Port 27

HTC Wildfire (A)
192.168.1.100

h1-wlan

OpenFlow Switch
(Netgear WNDR3800)

HTC Wildfire (B)
192.168.1.101

h2-wlan

wlan0

Fig. 5. Topology of two switches scenario.

In this experiment, we use the four hosts to simulate the
four clients (A, B, C and D). And they work as expected.
These simple experiments on GENI demonstrate the feasibility
of our SDN-based approach in real networks. We note that
our system is at its early stage, but we plan to extend our
experiments to a larger scale and will keep improving the
system design as the future work.

V. RELATED WORK

The rapid adoption of mobile devices comes with the
growing prevalence of mobile malware. To the best of our
knowledge, there is no existing work on network level mobile
malware detection in the context of SDN. In the following,
we first describe the studies that address security issues using
SDN, and then review existing researches on malware.

Several recent studies use SDN for security related issues.
For instance, Shin and Gu proposed a framework that routes
network packets to the pre-installed security devices using
SDN [26]. Yap et al. proposed an approach that decouples
authentication, access and accounting in guest Wi-Fi network-
ing using SDN [27]. Clark et al. studied the admission control
and monitoring at network level using OpenFlow [28]. Our
work differs from the above studies in that we focus on mobile
malware detection.

Malware related issues have been extensively studied in
the literature. For instance, to understand how deeply malware
has penetrated, studies have quantified the size of botnets [29],
the number of executables infected with spyware [30], and
the number of malicious web sites that launch drive-by down-
loads [31]. To investigate the behavior of malicious programs,
there are been studies that investigate botnet activities [32],
malware control mechanisms [33], and propagation mecha-
nisms [34].

Several recent studies are specifically for mobile platforms.
Zhou and Jiang showed that mobile malware is rapidly evolv-
ing and existing anti-malware solutions are seriously lagging
behind based on over 1,2000 mobile malware samples [12].
Porras et al. analyzed an Apple iPhone bot client through
reverse engineering [8]. And Damopoulos et al. designed
and implemented a stealth and airborne malware that can
wirelessly infect and self-propagate to iPhone devices [9].
To detect malware, Egele et al. designed a static analysis
based tool to detect data flows for possible leaks of sensitive
information [35].

Our approach differs from the above approaches in that
we seek to detect malware by identifying suspicious network
activity through real-time traffic analysis using SDN architec-
ture.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the behaviors of mobile malware
and proposed several mobile malware detection algorithms that
are implemented using SDN. Our algorithms detect mobile
malware by identifying suspicious network activities through
real-time traffic analysis. Experiments using both a local
testbed and GENI infrastructure confirmed the feasibility of
our approach and simulation results show that our detection
algorithms do not incur significant performance degradation.

As future work, we will further study the characteristics
of mobile malware, investigate more malware detection tech-
niques and explore the possibilities of employing them in the
context of SDN. In addition, we plan to take better advantage
of GENI infrastructure and test our system at an even larger
scale in order to optimize our system design.
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