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Abstract—The growing popularity of mobile internet services, 

characterized by heavy network transmission, intensive 

computation and an always-on display, poses a great challenge 

to the battery lifetime of mobile devices. To manage the power 

consumption in an efficient way, it is essential to understand 

how the power is consumed at the system level and to be able 

to estimate the power consumption during runtime. Although 

the power modeling of each hardware component has been 

studied separately, there is no general solution at present of 

combining them into a system-level power model. In this paper 

we present a methodology for building a system-level power 

model without power measurement at the component level. We 

develop a linear regression model with nonnegative 

coefficients, which describes the aggregate power consumption 

of the processors, the wireless network interface and the 

display. Based on statistics and expert knowledge, we select 

three hardware performance counters, three network 

transmission parameters and one display parameter as 

regression variables. The power estimation, based on our 

model, exhibits 2.62% median error on real mobile internet 

services. 

Keywords-regression; power model; system-level; mobile 

device 

I.  INTRODUCTION 

In recent years, mobile internet services have become 
increasingly popular. Compared with the traditional mobile 
services such as voice call and short messaging service, 
mobile internet services such as video-on-demand and 
mobile gaming are often characterized by heavy network 
transmission, intensive computation and an always-on 
display. These features imply a heavy workload on the 
processors, the wireless network interface and the display in 
performing these services, which causes high power 
consumption. Because the battery technology is not 
advancing as fast as the mobile computing and networking 
technology, the usage of mobile internet services poses a big 
challenge to the battery lifetime of mobile devices. It is 
therefore critical to manage the power consumption in a 
more efficient way, a core requirement of which is to 
understand how the power is consumed at the system level 
and to be able to estimate the power consumption during 
runtime. 

In this paper we present a system-level power model, 
which includes the power consumption of the processors, the 

wireless LAN interface (WNI), and the display. Unlike the 
system-level power model proposed by A. Carroll et al. [1], 
our methodology does not require a physical power 
measurement at the component level. Instead, we use the 
total power consumption of a mobile device, which can be 
measured through a power meter or energy profiling 
software like Nokia Energy Profiler

1
. It addresses the issue 

that the power measurement could not be done at the 
component level on most of the off-the-shelf devices.  

Our model is based on linear regression with nonnegative 
coefficients. We select the variables that reflect the activity 
levels of each hardware component such as the hardware 
performance counters (HPCs) for processors, the downlink 
and uplink data rates for the WNI, and the brightness level 
for the display.  

Linear regression has been widely used for modeling the 
power consumption of processors [2, 3, 4, 5], with a set of 
HPCs as regression variables. A challenge to the HPC-based 
modeling is that only a small proportion of the HPC set can 
be monitored simultaneously during runtime. For instance, 
only 3 out of 17 HPCs can be simultaneously observed on 
ARM 1136, a mobile processor, which is deployed in many 
commercial mobile devices such as the Nokia N810, 
Motorola Z6 and T-Mobile G1. To the best of our 
knowledge, no prior research has introduced the nonnegative 
coefficient feature into regression-based power modeling. In 
this paper, we show that this feature makes the variable 
selection efficient.  

We extend the usage of linear regression to system-level 
power modeling. In addition to the HPC-based regression 
variables that are selected through statistical methods, we 
select other regression variables including the network 
transmission parameters and the display parameter based on 
the knowledge gained from a previous study [6]. The 
variables we use can be obtained from OS or application, 
without monitoring the power status of each hardware 
component and the network traffic underlying the transport 
layer.  

We aim at a model that can be independent of the usage 
scenarios of a mobile device. Thus, we define our test cases 
in ways that they can be used to explore the possible activity 
levels of each hardware component, and use different test 
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cases for model fitting and evaluation. The power estimation, 
based on our model, exhibits a median error of 2.62% in real 
mobile internet services. 

In summary, we report on a regression-based approach 
for modeling the system-level power consumption of a 
mobile device. Our work makes the following specific 
contributions: 

  

 We demonstrate the feasibility of building a system-
level power model that is still able to reflect the 
activity levels of each hardware component without 
using component-level power measurement. 

 We show the advantage of using nonnegative 
coefficients in regression-based power modeling for 
reducing the size of the variable set more efficiently. 

 We provide a power model that is independent of 
usage scenarios and that can be used for runtime 
power estimation with reasonable accuracy. 

 
We present our methodology and show its practicality in 

the remainder of this paper. Section 2 introduces the related 
research on power measurement and modeling. Section 3 
presents the theoretical approach including the model 
definition, the variable selection and the benchmark design. 
Section 4 describes our experiments and shows the results. 
The potential usage of our model and future work is 
discussed in Section 5. Finally, Section 6 concludes the 
paper. 

II. RELATED WORK 

Dynamic power management on mobile devices requires 
rich knowledge about how and where the power is 
consumed. Power measurement is a must for quantitative 
analysis of power consumption, although it is not always 
feasible. For example, the power measurement at the 
component level requires information about the power 
distribution network at the circuit level, which is not publicly 
available except for a few devices like Openmoko Neo 
Freerunner

2
. In addition, power measurement itself does not 

give information about how the energy is consumed. To 
solve this problem, power modeling is proposed as a 
complementary method for power analysis. It uses the 
information gained from hardware, OS and/or applications to 
describe how the power is consumed. 

Power modeling of mobile devices has been under study 
in the last decade. Some models are based on the physical 
design of the hardware, such as the intellectual property-
level power model that was proposed by M. Onouchi et al. 
[7]. These physical-level models can be used for power 
analysis during the design stage, but not for the power 
estimation during runtime. V.Tiwari et al. [8] proposed an 
instruction-level model for processors, which was based on 
the power measurement of instructions. It is useful for the 
power analysis of a software component, but it has its 
shortcoming in supporting multi-threaded applications. To 
address the above issues, some researchers [2, 3, 4, 5, 9] 
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proposed building a power model for processors based on 
HPCs, because HPCs reflect the activity levels of each 
hardware component in a processor and can be monitored 
during runtime.  

D. Brooks et al [9] implemented an HPC-based power 
model into an offline power estimator on top of a 
performance simulator. C. Isic et al. [4] showed an HPC-
based runtime energy profiler, with a median error rate up to 
7.2%. They used several HPCs for each hardware component 
for estimating the power consumption of that component. 
However, previous models [2, 3, 4, 5] could not be directly 
used in our experimental device, because the number of 
HPCs that can be monitored simultaneously on our 
experimental device is less than that required for the 
previous models. 

Derived from [2, 3, 4, 5], we also apply the regression 
method in our system-level power modeling, but our work 
differs from previous work in the way that we apply the 
nonnegative coefficient feature for regression variable 
selection. In addition, we extend the usage of regression-
based modeling from component-level power modeling to 
system-level power modeling.   

Some power monitoring software, such as PowerTutor
3
 

for Android-based mobile platform, claim to be able to 
monitor the power consumption at the system level. Because 
the models they use for calculating the power breakdown of 
the hardware components and applications are not publicly 
available, it is difficult to compare their models with ours. 
According to the published information, there are at least two 
differences between our model and PowerTutor. First, 
PowerTutor only considers the CPU frequency level when 
estimating the power consumption of CPU, whereas we 
consider the I/O operations in addition. Second, in addition 
to uplink data rate, we consider downlink data rate and the 
802.11 power saving mode, which have not been taken into 
account in PowerTutor. 

III. REGRESSION-BASED POWER MODELING 

We use linear regression as a baseline method to build a 
system-level power model that takes three hardware 
components into account, namely, the processor, the WNI 
and the display. Our method requires no extra effort for 
parameter tuning. The linearity is consistent with our 
previous findings on the power characteristics of hardware 
resources, for example,  the linear relationship between the 
increments in HPCs and the processor power consumption 
[2, 3, 4, 5], as well as the linear increase in the network 
transmission cost with the network data rate [6]. In this paper 
we describe our modeling methodology, which follows the 
five steps below. 

 

 Defining the regression variables, such as CPU cycle 
rate and network data rates, which reflect the activity 
levels of the corresponding hardware resources. 

 Designing the energy benchmark, which stresses 
each regression variable and explores their cross 

                                                           
3 http://www.powertutor.org 



product. In practice, the benchmark runs a batch of 
real-life mobile applications (workloads) in ways 
that correspond to different activity levels of the 
hardware resources.  

 Running the energy benchmark to generate two data 
sets. One for model fitting, and the other for model 
evaluation. 

 Forming a linear regression model based on the least 
square method [10]. The model can be used for 
runtime power estimation. 

 Validating the power model with the testing data set. 
The prediction accuracy is evaluated by the 
prediction percentage error. 

A. Linear Regression Model 

Suppose that in a large universe of interest, a subset of n  

observations is known including the values of p predictor 

variables and the values of the corresponding responses. The 
linear regression approach builds a linear relationship 
between the p predictor variables and the responses based on 

the n observations. Denote a response by  ),..( n1iyi  the 

corresponding predictor variables by    ),( ..p1,j..n1ixi,j 

and the variable coefficient by   ).,..( 0p1j jj    

Differently from previous work [2, 3, 4, 5], we introduce 
the nonnegative coefficient feature [11] into our power 
model for the following reasons. First, the power 
consumption of the processor, the WNI and the display is 
non-subtractive. Second, it is well-known in machine 
learning theory that linear regression with nonnegative 
coefficients can show strong sparse effects, which means 
most of the coefficients will be close to zero [11]. Because 
the value of the coefficient for each independent variable 

reflects the amount of the effect that the variable has on the 
response, the sparse model can be utilized to reduce the size 
of the regression variable set. This feature is desired for 
cases where a small proportion of the variables have to be 
selected from a set of variables. On our experimental device, 
at most 3 out of 17 HPCs can be used for runtime power 
estimation.   

The power consumption is estimated based on the linear 
regression model [11] below.  

 


p

1j
jijj0i xgyf ),()( ,          (1) 

where )( , jij xg  is a preprocessing function of the original 

values of the predictors, 0 is the intercept, which implies the 

response when all the variables are set to zero. The 
preprocessing functions used for the predictors in our model 
are listed in Table I. The observed power consumption can 

then be expressed as iii eyfy  )( , where ie is an additive 

noise with zero mean and constant variance. 
The values of the intercept and each coefficient are 

automatically adjusted during the model fitting towards a 
model in which the response can be the best predicted from 
the predictor variables. To evaluate the goodness of the 
prediction, we define the sum of the squared deviations of 

the predicted response, ),,...,( p0S   as below. 
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During model fitting, we apply the least square method 

[10] that minimizes the value of ),...,( p0S  . The results of 

the model fitting are presented in Section 4.2. 

TABLE I.  DESCRIPTION OF REGRESSION VARIABLES AND THEIR PREPROCESSING FUNCTIONS. 

Hardware 

Resource 
Regression Variable jix ,  Preprocessing Function )( , jij xg  Description 

Processor 17 HPC-based event rates:  
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where 0ic , is the increment in 

CPU_CYCLES, and 

   )..,..(, n1i161jc ji   is the 

increment in any other HPC during the 

same monitoring period id . 

Normalization function: 

)(

)(
)(

,

,,
,

ji

jiji
jij

xdeviationstandard

xmeanx
xg


    (4) 

The mean and the standard deviation are calculated 
from the data set used for model fitting. 

HPCs available on ARM 1136:  

CPU_CYCLES, DCACHE_MISS, 

TLB_MISS, ITLB_MISS, 

CYCLES_DATA_STALL, 

INSN_EXECUTED, DTLB_MISS, 

DCACHE_ACCESS, 
DCACHE_MISS, EXP_EXTERNAL, 

DCACHE_ACCESS_ALL, 

IFU_IFETCH_MISS, 
BR_INST_MISS_PRED,  

CYCLES_IFU_MEM_STALL, 
LSU_STALL, PC_CHANGE, 

BR_INST_EXECUTED. 

WLAN 
Interface 

Download data rate (KB/s)  17ix ,  

Upload data rate (KB/s) 18ix ,  

CAM switch  )..( ,, 10xx 19i19i   

jijij xxg ,, )(   

 

:, 1x 19i  CAM enabled AND 

network data rate is lower than a 

threshold [6]; 

 :, 0x 19i  Otherwise. 

Display Brightness level  )..( ,, 50xx 20i20i   
jijij xxg ,, )(   

6 Brightness levels on a Nokia N810: 

0: off;  
1..5:  brightness from low to high. 



B. Regression Variables 

We initially select 21 regression variables, which reflect 
the power characteristics of the processor, the WNI and the 
display respectively. The variables and their preprocessing 
functions are described in Table I.  

First, we use HPCs to estimate the power consumed by 
the CPU processing and the memory access. As shown in [2, 
3, 4, 5], HPCs reflect the activity levels of the hardware 
components in a processor such as data cache and instruction 
cache. In addition, monitoring some HPCs such as the L3 
cache miss counter allows us to track the use of the off-chip 
memory. 

There are 17 HPCs available on our experimental 
processor ARM 1136, as listed in Table I, whereas only the 
CPU cycle counter CPU_CYCLES and any other two HPCs 
can be monitored simultaneously during runtime. We define 
an event rate for each HPC as shown in (3). HPCs are 
aggregate counters. For CPU_CYCLES, we define its event 
rate as the consumption rate of CPU cycles, which can be 
calculated as the number of CPU cycles elapsed in a unit of 
time. For the other HPCs, similarly with [2], we define the 
event rate of each HPC as the increment in the HPC during a 
CPU cycle. It can be calculated as a ratio of the increment in 
the HPC to the corresponding increment in CPU_CYCLES 
during the same monitoring period. The event rates are 

normalized using (4). The statistics used for normalization 
are calculated based on the data set used for model fitting. 

Second, we select 3 network parameters based on the 
knowledge gained from a previous study about power 
modeling of data transmission [6]. The power consumption 
of the data transmission through an 802.11 WLAN linearly 
increases with the upload/download data rate. Hence, we 
select the upload and download data rates as regression 
variables because they reflect the workload of the WNI. 
Moreover, the 802.11 power saving mode has impact on the 
power consumption. For instance, when the data rate is lower 
than a threshold such as 32KB/s [6], the power consumption 
is higher if the Continuously Active Mode (CAM) is 
enabled. Concerning the requirement of nonnegative 
coefficients, we choose the CAM switch as a regression 
variable. When the power saving mode is disabled, the value 
of the CAM switch is set to 1. Otherwise, it is set to 0.  

A mobile internet application can invoke the protocol 
processing in a processor, the read/write operations in a 
memory, and the receive/transmit operations on a network 
interface. The first two types of operations can be reflected 
by HPCs, and the last one can be measured by the network 
parameters. Hence, with HPCs and the network parameters, 
our model can be used for modeling the power consumption 
of network applications, which has not been widely 
discussed in previous work. 

 

TABLE II.  DESCRIPTIONS OF THE WORKLOADS USED IN OUR ENERGY BENCHMARK. 

Category Description Test Case 

Idle with Different 
Brightness Levels 

CPU and memory workload: Low 
Wireless connection: No 

Brightness level: 0~5 

Keep the system idle without running any applications and set the 
brightness level of the display to different values.  

Audio/ 
Video Players 

CPU and memory workload: Low ~ High 
Wireless connection: No 

Brightness level: 0 for audio player;  

                            5 for video player. 

Media player on N810: mplayer4 
Media file storage: Phone memory 

Audio format: MP3, OGG, RM  

Number of audio players in parallel: 1, 2, 3  
Video format: AVI, MPEG  

Number of video players in parallel: 1, 2  

Audio/ 

Video Recorders 

CPU and memory workload: Medium 

Wireless connection: No 

Brightness level : 5 

Run an embedded audio recorder to record an audio file played on a 

machine close to the experimental device. 

Use the embedded camera to record a video. 

File Download/ 

Upload at Different 
Data Rates 

CPU and memory workload:  Low ~High 

WLAN connection: On 
Network data rate: 16KB/s ~ 400KB/s. 

Brightness level: 0 

N810: netcat5  

Linux Server: netcat, Trickle6(bandwidth limiting utility)  
Data rate limit: 16, 32, 128, 256, and 400KB/s. 

CAM: On/off (data rate < 32KB/s); Off (data rate ≥32KB/s)  
Download Storage: phone memory, /dev/null 

Upload storage: phone memory 

Streaming CPU and memory workload: High 

WLAN connection: On  
WLAN Power saving mode: Enabled 

Brightness level: 5 

Watch online TV programs transferred from www.itv.com.  

Encoding rate: 16 ~ 72KB/s 

Listen to radio programs from three different radio websites.  

Download date rate: around 24KB/s. 

Use web browser to watch YouTube videos online.  

Download data rate: 46~136KB/s depending on the network 
conditions. 

                                                           
4 http://mplayer.garage.maemo.org/ 
5 http://netcat.sourceforge.net 
6 http://monkey.org/~marius/pages/?page=trickle 



Third, similarly with PowerTutor, we use brightness 
level to model the power consumption of the display. 
Assuming that the resolutions of the displays are fixed 
during runtime, we divide the workload of the display into 6 
brightness levels, compatible with the screen configuration 
on our experimental device. 

C. Energy Benchmark 

We develop a new benchmark to generate data for fitting 
the regression-based power model, because the existing 
system-level energy benchmarks such as JouleSort [12] do 
not take the power consumption of the display and the WNI 
into account [13]. Our benchmark captures the values of the 
regression variables defined in Section 3.2 at a certain 
sampling frequency when running the workloads. Each run 
of the workload lasts for a certain monitoring period such as 
60 seconds. 

The workloads we use are categorized into five types, 
namely, idle with different brightness levels, audio/video 
players, audio/video recorders, file download/upload at 
different network data rates, and streaming. In each category 
there are multiple test cases as described in Table II. They 
are chosen based on the following three principles. 

First, similarly with the micro-benchmarks used in [4], 
our benchmark stresses the selected variables and explores 
the space of their cross product. The resource consumption 
of a real-life mobile application can be described in terms of 
four elements, CPU processing intensity, memory access 
rate, network data rates, and the brightness level of the 
display. Each element can be represented by one or multiple 
regression variables. We define the values of the first three 
elements to be low, medium and high, and the value of the 
fourth element to be equal to the brightness level of the 
display set in the screen configuration. We choose the test 
cases in which the resource consumption corresponds to as 
many different combinations of the values of the four 
elements as possible, which makes it possible for our model 
to be independent of usage scenarios.  

Second, we choose the workloads with a fixed demand 
on hardware resources over a sampling interval of the HPC 
event rates. Accordingly, the power consumption is 
considered to be stable during the sampling interval. A 
monitoring period includes at least one sampling interval. 
For the workloads with a fixed demand on the hardware 
resources over a given monitoring period, the values of the 
corresponding HPCs are increasing at a constant rate. For 
example, in a case where a video playback with a fixed 
frame rate is a workload with a fixed demand on the 
hardware resources over the monitoring period, the 
increment in the HPCs such as CPU_CYCLES is stable in 
each sampling interval. In this case, we calculate the average 
value of all the samples and consider it as one observation. 

For the workloads with varying demand on the hardware 
resources over the monitoring period, we try to divide the 
monitoring period into several smaller periods in each of 
which the demand can be considered to be stable. For 
example, an internet radio test case can be divided into two 
periods: downloading only, downloading together with 
playback. To simplify the synchronization of the HPCs, the 

network parameters and the power consumption during data 
collection, we define the test cases in the way that the 
demand of the hardware resources can be stable for a 
relatively long time. 

Third, we choose the applications that are typical on the 
mobile devices in question. All the applications we use are 
either embedded in our experimental device, or easy to 
download and install from the support website of the device. 
The detailed information about the applications we use is 
listed in Table II. 

IV. EXPERIMENTATION 

A. Data Collection 

Our experimental device, a Nokia Internet Tablet N810, 
is equipped with an ARM 1136 processor at 330 MHz, an 
802.11 WNI, and a high-resolution WVGA display 
(800×480 pixels). It is running a Linux-based OS, Maemo. 

Our benchmark ran oprofile
7 

to access the HPCs from 
user space, and logged the readings of HPCs every 1 second. 
The sampling interval of the HPCs was set to 100000 CPU 
cycles during the initialization of oprofile. During runtime, 3 
HPCs at most can be accessed simultaneously on ARM 
1136, and one counter is reserved to count the CPU cycles. 
Similarly with the multiplexing technique presented in [14], 
to get a full observation including all the 17 event rates, our 
benchmark repeated the same test case for 8 times with two 
different HPCs monitored each time. We used the CPU 
cycles as timers to multiplex the event rates. In other words, 
the 8 samples from different runs can be merged into one full 
observation only when the event rate of CPU_CYCLES in 
each sample is equal to each other. 

In practice, we collected 60 samples continuously from 
the beginning of a test case in each run except for the 
streaming cases in which we started the monitoring when the 
playback started. After 8 runs, we got 60 full observations. 
According to our observation, in most of test cases, the 
difference among the 60 samples in a line is close to 0. In 
these cases, instead of importing 60 similar observations into 
our data sets, we only imported one observation, which 
included the average value of each HPC in the 60 
observations. In total, our benchmark ran each test case for 
48 times to get 6 full observations for each.  

Our test cases can be divided into 5 categories as 
described in Table II. We use different test cases to generate 
two different data sets for model fitting and evaluation, 
respectively. For example, we used the data collected from 
three types of workload for model fitting, including idle with 
different brightness levels, audio/video players, and file 
download/upload at different network data rates. For model 
evaluation, we used the data collected from streaming, 
audio/video recorders, and file download/upload at different 
network data rates. Even for the same type of workload, the 
test cases used in model evaluation are different from those 
in model fitting.  

We connected the N810 to a sample multimeter to 
measure the power consumption. The sampling frequency of 
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the multimeter was synchronized with that of the event rates 
and was set to 1Hz. In the test cases with the N810 
connected to an 802.11g network, the timeout of the 802.11 
power saving mode was set to 100ms. The network data rates 
in the file transmission cases were limited by a traffic shaper 
running on a Linux server, and the data rates in the streaming 
cases depended on the streaming protocols, the media 
formats and the network conditions. We captured the 
network traffic by running Wireshark

8
, a network analyzer, 

on a laptop that was connected to the same WLAN. We 
adjusted the CAM settings and the display brightness levels 
through the user interfaces.  

B. Model Fitting 

We used a function called lsqnonneg in Matlab
9
, which is 

meant for optimizing the least-square objectives with non-
negativity constraint. During model fitting, we ran this 
function twice. In the first round, each observation included 
17 HPC-based variables, 3 network parameters and 1 display 
parameter. After executing lsqnonneg, we chose 3 HPC-
based variables with the biggest coefficient values. They 
were the event rates of DCACHE_WB, TLB_MISS and 
CPU_CYCLES. In the second round, we fitted the 
observations including the three selected event rates, the 
three network parameters and the one display parameter to a 
regression model by running lsqnonneg again. Our final 
power model is presented in (5).  
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We define the IDLE mode of a mobile device as the 
status when there is no application running. The value of the 
intercept, 0.7655, is close to the power consumption in the 
IDLE mode with the display turned off. Among the three 
HPC-based variables, the event rate of CPU_CYCLES 
describes the general workload of the processor, which takes 
a big part of the total power consumption. The event rates of 
TLB_MISS and DCACHE_WB reflect the memory access 
efficiency in a CPU cycle. The coefficient values of the non-
HPC variable show an increase in the power consumption of 
the WNI or the display when the corresponding variable 
increases by one unit. For example, an increase of 1 KB/s in 
the upload data rate costs on average 1.5mW more power, 
and the network transmission with CAM enabled costs on 
average 0.3822W more when the network data rate is less 
than 32KB/s on the experimental device.  

C. Model Evaluation 

We used our testing data set to evaluate the regression 
model obtained in Section 4.2. Although we computed the 
prediction values offline, the computation followed the same 
steps and gained the same results as the online computation 
for runtime power estimation. First, we calculated the event 
rates based on the collected HPC values. Second, we 
normalized the event rates based on the statistics of the data 
set used for model fitting. Third, we obtained the 
upload/download data rates from traffic traces, and the 
display settings from the user interface. The data rates can 
also be monitored during runtime through networking APIs. 
Fourth, we estimated the power consumption following (5) 
and compared the estimates to the physical measurement. 

For the data set used for model evaluation, the median 
percentage error in power estimation is 2.62%, and the 
standard deviation of the error rate is 0.0376. Compared to 
[4] whose median percentage error is 3.9% ~7.2% depending 
on the testing data sets, our model still provides adequate 
accuracy while using fewer HPCs and extending the power 
estimation to network applications. 

To analyze the prediction accuracy for different 
workloads, we calculated the median error for each category 
of workload. As shown in Fig. 1, our power model tracks the 
power consumption in each category fairly well. Only in the 
cases of video recorder is the error a little bigger. We 
attribute the error in the power estimates for the video  

 

 

Figure 1.  Median percentage error in the power estimates of different test 

cases. 
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recorder to the usage of the camera, which could not be 
monitored through our variables. In future we will consider 
the power consumption of the camera in different operating 
modes, such as standby and capturing, in our model. 

V. DISCUSSION 

Our model can be used for power simulation at the 
system level when the regression variables are available. The 
HPCs are available on the performance simulators such as 
Wattch [9], and the network transmission parameters can be 
found from network simulators such as NS-2. However, to 
the best of our knowledge, no prior simulator can provide 
both the HPCs and the network transmission parameters. In 
large-scale distributed computing networks, both 
computational and communication workload consumes high 
power consumption on a mobile device. Hence, for future 
work it is worth developing a mobile device simulator, 
which combines performance and network simulators, and 
supports power simulation at the system level. 

Dynamic power management on a mobile device requires 
knowledge about the power consumption at different 
granularities depending on the policies it uses. For example, 
total power consumption is required for estimating the 
remaining battery lifetime, while the power breakdown of 
processes is needed for task scheduling in OS. Although we 
only showed the estimation of total power consumption in 
this paper, our model can also be used for more detailed 
power analysis.   

Because the HPCs can be monitored for each process, we 
propose to estimate the computational power consumption of 
each process based on the per-process HPC values. Assume 
that there are N  processes contributing to the HPCs during a 

monitoring period .d  For process  ),..( 1N0ii  the 

increments in DCACHE_WB, TLB_MISS, and 

CPU_CYCLES are defined as ii mw , and ,iu respectively. 

The total number of CPU cycles elapsed in d  is defined as 
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It is possible to estimate the computational power 

consumption of process i  as shown in (8). However, 

because there is no power meter available for measuring the 
power consumption of each process, we have not been able 
to validate our power breakdown of the processes. 
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The power consumption of a WNI is estimated based on 

the aggregate data rates in our model. It is derived from the 
model basing on the operating mode of the WNI and the 
802.11 power saving mode [6]. For example, the WNI is in 
TRANSMIT or RECEIVE mode when it is transmitting or 
receiving data, and it is in either IDLE or SLEEP mode 
during traffic intervals depending on the settings of the 
802.11 power saving mode. The power consumption of a 
WNI includes the power consumed in each operating mode. 
When there are multiple flows sharing a WNI, the traffic 
intervals can be inside a flow or between flows, and there is 
no common rule in assigning traffic intervals to each flow. If 
the power consumption during the traffic intervals is ignored, 
the power consumed by each flow depends on how much 
data rate it contributes to the aggregate data rate. For 
example, if a flow contributes 50% of the data rate, this flow 
consumes 50% of the power consumption in TRANSMIT 
and RECEIVE modes. 

In this paper we present a regression-based method of 
building a system-level power modeling. When a new 
hardware component is installed into the mobile device, 
there are two ways to update the system-level power model. 
One way is to add regression variables, which describe the 
activity levels of the new hardware component, define new 
test cases to stress the new variables, and fit the new data 
sets to a regression model. The other way is to directly add 
an analytical power model of the new hardware component 
to the existing system-level model. For the latter method, an 
analytical power modeling of the hardware component must 
be built and validated beforehand. In future we will compare 
these two methods by adding more hardware resources such 
as 3G interface and GPS receiver in the system.  

VI. CONCLUSION 

We have proposed a power model for mobile internet 
devices taking the major hardware resources such as the 
processor, the WLAN interface and the display into account. 
We showed how to build such a system-level power model 
using linear regression with nonnegative coefficients. The 
model we built can be used for runtime power estimation and 
offline power simulation, with a median error of 2.62%, 
which can help improve the efficiency of power management 
during runtime.  
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