
A System-level Model for Runtime Power Estimation on Mobile Devices

Yu Xiao
1
, Rijubrata Bhaumik

1
, Zhirong Yang

1
, Matti Siekkinen

1
, Petri Savolainen

2
, Antti Ylä-Jääski

1

1
School of Science and Technology, Aalto University

2
Helsinki Institute for Information Technology (HIIT)/University of Helsinki

Espoo, Finland

e-mail: {yu.xiao, rbhaumik, zhirong.yang, matti.siekkinen}@tkk.fi, petri.savolainen@hiit.fi, antti.yla-jaaski@tkk.fi

Abstract—The growing popularity of mobile internet services,

characterized by heavy network transmission, intensive

computation and an always-on display, poses a great challenge

to the battery lifetime of mobile devices. To manage the power

consumption in an efficient way, it is essential to understand

how the power is consumed at the system level and to be able

to estimate the power consumption during runtime. Although

the power modeling of each hardware component has been

studied separately, there is no general solution at present of

combining them into a system-level power model. In this paper

we present a methodology for building a system-level power

model without power measurement at the component level. We

develop a linear regression model with nonnegative

coefficients, which describes the aggregate power consumption

of the processors, the wireless network interface and the

display. Based on statistics and expert knowledge, we select

three hardware performance counters, three network

transmission parameters and one display parameter as

regression variables. The power estimation, based on our

model, exhibits 2.62% median error on real mobile internet

services.

Keywords-regression; power model; system-level; mobile

device

I. INTRODUCTION

In recent years, mobile internet services have become
increasingly popular. Compared with the traditional mobile
services such as voice call and short messaging service,
mobile internet services such as video-on-demand and
mobile gaming are often characterized by heavy network
transmission, intensive computation and an always-on
display. These features imply a heavy workload on the
processors, the wireless network interface and the display in
performing these services, which causes high power
consumption. Because the battery technology is not
advancing as fast as the mobile computing and networking
technology, the usage of mobile internet services poses a big
challenge to the battery lifetime of mobile devices. It is
therefore critical to manage the power consumption in a
more efficient way, a core requirement of which is to
understand how the power is consumed at the system level
and to be able to estimate the power consumption during
runtime.

In this paper we present a system-level power model,
which includes the power consumption of the processors, the

wireless LAN interface (WNI), and the display. Unlike the
system-level power model proposed by A. Carroll et al. [1],
our methodology does not require a physical power
measurement at the component level. Instead, we use the
total power consumption of a mobile device, which can be
measured through a power meter or energy profiling
software like Nokia Energy Profiler

1
. It addresses the issue

that the power measurement could not be done at the
component level on most of the off-the-shelf devices.

Our model is based on linear regression with nonnegative
coefficients. We select the variables that reflect the activity
levels of each hardware component such as the hardware
performance counters (HPCs) for processors, the downlink
and uplink data rates for the WNI, and the brightness level
for the display.

Linear regression has been widely used for modeling the
power consumption of processors [2, 3, 4, 5], with a set of
HPCs as regression variables. A challenge to the HPC-based
modeling is that only a small proportion of the HPC set can
be monitored simultaneously during runtime. For instance,
only 3 out of 17 HPCs can be simultaneously observed on
ARM 1136, a mobile processor, which is deployed in many
commercial mobile devices such as the Nokia N810,
Motorola Z6 and T-Mobile G1. To the best of our
knowledge, no prior research has introduced the nonnegative
coefficient feature into regression-based power modeling. In
this paper, we show that this feature makes the variable
selection efficient.

We extend the usage of linear regression to system-level
power modeling. In addition to the HPC-based regression
variables that are selected through statistical methods, we
select other regression variables including the network
transmission parameters and the display parameter based on
the knowledge gained from a previous study [6]. The
variables we use can be obtained from OS or application,
without monitoring the power status of each hardware
component and the network traffic underlying the transport
layer.

We aim at a model that can be independent of the usage
scenarios of a mobile device. Thus, we define our test cases
in ways that they can be used to explore the possible activity
levels of each hardware component, and use different test

1 http://www.forum.nokia.com/info/sw.nokia.com/id/324866e9-0460-4fa4-

ac53-01f0c392d40f/Nokia_Energy_Profiler.html

cases for model fitting and evaluation. The power estimation,
based on our model, exhibits a median error of 2.62% in real
mobile internet services.

In summary, we report on a regression-based approach
for modeling the system-level power consumption of a
mobile device. Our work makes the following specific
contributions:

 We demonstrate the feasibility of building a system-
level power model that is still able to reflect the
activity levels of each hardware component without
using component-level power measurement.

 We show the advantage of using nonnegative
coefficients in regression-based power modeling for
reducing the size of the variable set more efficiently.

 We provide a power model that is independent of
usage scenarios and that can be used for runtime
power estimation with reasonable accuracy.

We present our methodology and show its practicality in

the remainder of this paper. Section 2 introduces the related
research on power measurement and modeling. Section 3
presents the theoretical approach including the model
definition, the variable selection and the benchmark design.
Section 4 describes our experiments and shows the results.
The potential usage of our model and future work is
discussed in Section 5. Finally, Section 6 concludes the
paper.

II. RELATED WORK

Dynamic power management on mobile devices requires
rich knowledge about how and where the power is
consumed. Power measurement is a must for quantitative
analysis of power consumption, although it is not always
feasible. For example, the power measurement at the
component level requires information about the power
distribution network at the circuit level, which is not publicly
available except for a few devices like Openmoko Neo
Freerunner

2
. In addition, power measurement itself does not

give information about how the energy is consumed. To
solve this problem, power modeling is proposed as a
complementary method for power analysis. It uses the
information gained from hardware, OS and/or applications to
describe how the power is consumed.

Power modeling of mobile devices has been under study
in the last decade. Some models are based on the physical
design of the hardware, such as the intellectual property-
level power model that was proposed by M. Onouchi et al.
[7]. These physical-level models can be used for power
analysis during the design stage, but not for the power
estimation during runtime. V.Tiwari et al. [8] proposed an
instruction-level model for processors, which was based on
the power measurement of instructions. It is useful for the
power analysis of a software component, but it has its
shortcoming in supporting multi-threaded applications. To
address the above issues, some researchers [2, 3, 4, 5, 9]

2 http://www.openmoko.com/freerunner.html

proposed building a power model for processors based on
HPCs, because HPCs reflect the activity levels of each
hardware component in a processor and can be monitored
during runtime.

D. Brooks et al [9] implemented an HPC-based power
model into an offline power estimator on top of a
performance simulator. C. Isic et al. [4] showed an HPC-
based runtime energy profiler, with a median error rate up to
7.2%. They used several HPCs for each hardware component
for estimating the power consumption of that component.
However, previous models [2, 3, 4, 5] could not be directly
used in our experimental device, because the number of
HPCs that can be monitored simultaneously on our
experimental device is less than that required for the
previous models.

Derived from [2, 3, 4, 5], we also apply the regression
method in our system-level power modeling, but our work
differs from previous work in the way that we apply the
nonnegative coefficient feature for regression variable
selection. In addition, we extend the usage of regression-
based modeling from component-level power modeling to
system-level power modeling.

Some power monitoring software, such as PowerTutor
3

for Android-based mobile platform, claim to be able to
monitor the power consumption at the system level. Because
the models they use for calculating the power breakdown of
the hardware components and applications are not publicly
available, it is difficult to compare their models with ours.
According to the published information, there are at least two
differences between our model and PowerTutor. First,
PowerTutor only considers the CPU frequency level when
estimating the power consumption of CPU, whereas we
consider the I/O operations in addition. Second, in addition
to uplink data rate, we consider downlink data rate and the
802.11 power saving mode, which have not been taken into
account in PowerTutor.

III. REGRESSION-BASED POWER MODELING

We use linear regression as a baseline method to build a
system-level power model that takes three hardware
components into account, namely, the processor, the WNI
and the display. Our method requires no extra effort for
parameter tuning. The linearity is consistent with our
previous findings on the power characteristics of hardware
resources, for example, the linear relationship between the
increments in HPCs and the processor power consumption
[2, 3, 4, 5], as well as the linear increase in the network
transmission cost with the network data rate [6]. In this paper
we describe our modeling methodology, which follows the
five steps below.

 Defining the regression variables, such as CPU cycle
rate and network data rates, which reflect the activity
levels of the corresponding hardware resources.

 Designing the energy benchmark, which stresses
each regression variable and explores their cross

3 http://www.powertutor.org

product. In practice, the benchmark runs a batch of
real-life mobile applications (workloads) in ways
that correspond to different activity levels of the
hardware resources.

 Running the energy benchmark to generate two data
sets. One for model fitting, and the other for model
evaluation.

 Forming a linear regression model based on the least
square method [10]. The model can be used for
runtime power estimation.

 Validating the power model with the testing data set.
The prediction accuracy is evaluated by the
prediction percentage error.

A. Linear Regression Model

Suppose that in a large universe of interest, a subset of n

observations is known including the values of p predictor

variables and the values of the corresponding responses. The
linear regression approach builds a linear relationship
between the p predictor variables and the responses based on

the n observations. Denote a response by  ),..(n1iyi  the

corresponding predictor variables by    ),(..p1,j..n1ixi,j 

and the variable coefficient by  ).,..(0p1j jj  

Differently from previous work [2, 3, 4, 5], we introduce
the nonnegative coefficient feature [11] into our power
model for the following reasons. First, the power
consumption of the processor, the WNI and the display is
non-subtractive. Second, it is well-known in machine
learning theory that linear regression with nonnegative
coefficients can show strong sparse effects, which means
most of the coefficients will be close to zero [11]. Because
the value of the coefficient for each independent variable

reflects the amount of the effect that the variable has on the
response, the sparse model can be utilized to reduce the size
of the regression variable set. This feature is desired for
cases where a small proportion of the variables have to be
selected from a set of variables. On our experimental device,
at most 3 out of 17 HPCs can be used for runtime power
estimation.

The power consumption is estimated based on the linear
regression model [11] below.

 


p

1j
jijj0i xgyf),()(, (1)

where)(, jij xg is a preprocessing function of the original

values of the predictors, 0 is the intercept, which implies the

response when all the variables are set to zero. The
preprocessing functions used for the predictors in our model
are listed in Table I. The observed power consumption can

then be expressed as iii eyfy )(, where ie is an additive

noise with zero mean and constant variance.
The values of the intercept and each coefficient are

automatically adjusted during the model fitting towards a
model in which the response can be the best predicted from
the predictor variables. To evaluate the goodness of the
prediction, we define the sum of the squared deviations of

the predicted response,),,...,(p0S  as below.

 


n

1i

2
iip0 yfyS))((),...,( (2)

During model fitting, we apply the least square method

[10] that minimizes the value of),...,(p0S  . The results of

the model fitting are presented in Section 4.2.

TABLE I. DESCRIPTION OF REGRESSION VARIABLES AND THEIR PREPROCESSING FUNCTIONS.

Hardware

Resource
Regression Variable jix , Preprocessing Function)(, jij xg Description

Processor 17 HPC-based event rates:

 

















,,

,_,

)..(

,

,

,

,

HPCsotherfor
c

c

CYCLESCPUfor
d

c

160jx

0i

ji

i

0i

ji

 (3)

where 0ic , is the increment in

CPU_CYCLES, and

   )..,..(, n1i161jc ji  is the

increment in any other HPC during the

same monitoring period id .

Normalization function:

)(

)(
)(

,

,,
,

ji

jiji
jij

xdeviationstandard

xmeanx
xg


 (4)

The mean and the standard deviation are calculated
from the data set used for model fitting.

HPCs available on ARM 1136:

CPU_CYCLES, DCACHE_MISS,

TLB_MISS, ITLB_MISS,

CYCLES_DATA_STALL,

INSN_EXECUTED, DTLB_MISS,

DCACHE_ACCESS,
DCACHE_MISS, EXP_EXTERNAL,

DCACHE_ACCESS_ALL,

IFU_IFETCH_MISS,
BR_INST_MISS_PRED,

CYCLES_IFU_MEM_STALL,
LSU_STALL, PC_CHANGE,

BR_INST_EXECUTED.

WLAN
Interface

Download data rate (KB/s) 17ix ,

Upload data rate (KB/s) 18ix ,

CAM switch  )..(,, 10xx 19i19i 

jijij xxg ,,)(

:, 1x 19i  CAM enabled AND

network data rate is lower than a

threshold [6];

 :, 0x 19i  Otherwise.

Display Brightness level  )..(,, 50xx 20i20i 
jijij xxg ,,)(

6 Brightness levels on a Nokia N810:

0: off;
1..5: brightness from low to high.

B. Regression Variables

We initially select 21 regression variables, which reflect
the power characteristics of the processor, the WNI and the
display respectively. The variables and their preprocessing
functions are described in Table I.

First, we use HPCs to estimate the power consumed by
the CPU processing and the memory access. As shown in [2,
3, 4, 5], HPCs reflect the activity levels of the hardware
components in a processor such as data cache and instruction
cache. In addition, monitoring some HPCs such as the L3
cache miss counter allows us to track the use of the off-chip
memory.

There are 17 HPCs available on our experimental
processor ARM 1136, as listed in Table I, whereas only the
CPU cycle counter CPU_CYCLES and any other two HPCs
can be monitored simultaneously during runtime. We define
an event rate for each HPC as shown in (3). HPCs are
aggregate counters. For CPU_CYCLES, we define its event
rate as the consumption rate of CPU cycles, which can be
calculated as the number of CPU cycles elapsed in a unit of
time. For the other HPCs, similarly with [2], we define the
event rate of each HPC as the increment in the HPC during a
CPU cycle. It can be calculated as a ratio of the increment in
the HPC to the corresponding increment in CPU_CYCLES
during the same monitoring period. The event rates are

normalized using (4). The statistics used for normalization
are calculated based on the data set used for model fitting.

Second, we select 3 network parameters based on the
knowledge gained from a previous study about power
modeling of data transmission [6]. The power consumption
of the data transmission through an 802.11 WLAN linearly
increases with the upload/download data rate. Hence, we
select the upload and download data rates as regression
variables because they reflect the workload of the WNI.
Moreover, the 802.11 power saving mode has impact on the
power consumption. For instance, when the data rate is lower
than a threshold such as 32KB/s [6], the power consumption
is higher if the Continuously Active Mode (CAM) is
enabled. Concerning the requirement of nonnegative
coefficients, we choose the CAM switch as a regression
variable. When the power saving mode is disabled, the value
of the CAM switch is set to 1. Otherwise, it is set to 0.

A mobile internet application can invoke the protocol
processing in a processor, the read/write operations in a
memory, and the receive/transmit operations on a network
interface. The first two types of operations can be reflected
by HPCs, and the last one can be measured by the network
parameters. Hence, with HPCs and the network parameters,
our model can be used for modeling the power consumption
of network applications, which has not been widely
discussed in previous work.

TABLE II. DESCRIPTIONS OF THE WORKLOADS USED IN OUR ENERGY BENCHMARK.

Category Description Test Case

Idle with Different
Brightness Levels

CPU and memory workload: Low
Wireless connection: No

Brightness level: 0~5

Keep the system idle without running any applications and set the
brightness level of the display to different values.

Audio/
Video Players

CPU and memory workload: Low ~ High
Wireless connection: No

Brightness level: 0 for audio player;

 5 for video player.

Media player on N810: mplayer4
Media file storage: Phone memory

Audio format: MP3, OGG, RM

Number of audio players in parallel: 1, 2, 3
Video format: AVI, MPEG

Number of video players in parallel: 1, 2

Audio/

Video Recorders

CPU and memory workload: Medium

Wireless connection: No

Brightness level : 5

Run an embedded audio recorder to record an audio file played on a

machine close to the experimental device.

Use the embedded camera to record a video.

File Download/

Upload at Different
Data Rates

CPU and memory workload: Low ~High

WLAN connection: On
Network data rate: 16KB/s ~ 400KB/s.

Brightness level: 0

N810: netcat5

Linux Server: netcat, Trickle6(bandwidth limiting utility)
Data rate limit: 16, 32, 128, 256, and 400KB/s.

CAM: On/off (data rate < 32KB/s); Off (data rate ≥32KB/s)
Download Storage: phone memory, /dev/null

Upload storage: phone memory

Streaming CPU and memory workload: High

WLAN connection: On
WLAN Power saving mode: Enabled

Brightness level: 5

Watch online TV programs transferred from www.itv.com.

Encoding rate: 16 ~ 72KB/s

Listen to radio programs from three different radio websites.

Download date rate: around 24KB/s.

Use web browser to watch YouTube videos online.

Download data rate: 46~136KB/s depending on the network
conditions.

4 http://mplayer.garage.maemo.org/
5 http://netcat.sourceforge.net
6 http://monkey.org/~marius/pages/?page=trickle

Third, similarly with PowerTutor, we use brightness
level to model the power consumption of the display.
Assuming that the resolutions of the displays are fixed
during runtime, we divide the workload of the display into 6
brightness levels, compatible with the screen configuration
on our experimental device.

C. Energy Benchmark

We develop a new benchmark to generate data for fitting
the regression-based power model, because the existing
system-level energy benchmarks such as JouleSort [12] do
not take the power consumption of the display and the WNI
into account [13]. Our benchmark captures the values of the
regression variables defined in Section 3.2 at a certain
sampling frequency when running the workloads. Each run
of the workload lasts for a certain monitoring period such as
60 seconds.

The workloads we use are categorized into five types,
namely, idle with different brightness levels, audio/video
players, audio/video recorders, file download/upload at
different network data rates, and streaming. In each category
there are multiple test cases as described in Table II. They
are chosen based on the following three principles.

First, similarly with the micro-benchmarks used in [4],
our benchmark stresses the selected variables and explores
the space of their cross product. The resource consumption
of a real-life mobile application can be described in terms of
four elements, CPU processing intensity, memory access
rate, network data rates, and the brightness level of the
display. Each element can be represented by one or multiple
regression variables. We define the values of the first three
elements to be low, medium and high, and the value of the
fourth element to be equal to the brightness level of the
display set in the screen configuration. We choose the test
cases in which the resource consumption corresponds to as
many different combinations of the values of the four
elements as possible, which makes it possible for our model
to be independent of usage scenarios.

Second, we choose the workloads with a fixed demand
on hardware resources over a sampling interval of the HPC
event rates. Accordingly, the power consumption is
considered to be stable during the sampling interval. A
monitoring period includes at least one sampling interval.
For the workloads with a fixed demand on the hardware
resources over a given monitoring period, the values of the
corresponding HPCs are increasing at a constant rate. For
example, in a case where a video playback with a fixed
frame rate is a workload with a fixed demand on the
hardware resources over the monitoring period, the
increment in the HPCs such as CPU_CYCLES is stable in
each sampling interval. In this case, we calculate the average
value of all the samples and consider it as one observation.

For the workloads with varying demand on the hardware
resources over the monitoring period, we try to divide the
monitoring period into several smaller periods in each of
which the demand can be considered to be stable. For
example, an internet radio test case can be divided into two
periods: downloading only, downloading together with
playback. To simplify the synchronization of the HPCs, the

network parameters and the power consumption during data
collection, we define the test cases in the way that the
demand of the hardware resources can be stable for a
relatively long time.

Third, we choose the applications that are typical on the
mobile devices in question. All the applications we use are
either embedded in our experimental device, or easy to
download and install from the support website of the device.
The detailed information about the applications we use is
listed in Table II.

IV. EXPERIMENTATION

A. Data Collection

Our experimental device, a Nokia Internet Tablet N810,
is equipped with an ARM 1136 processor at 330 MHz, an
802.11 WNI, and a high-resolution WVGA display
(800×480 pixels). It is running a Linux-based OS, Maemo.

Our benchmark ran oprofile
7

to access the HPCs from
user space, and logged the readings of HPCs every 1 second.
The sampling interval of the HPCs was set to 100000 CPU
cycles during the initialization of oprofile. During runtime, 3
HPCs at most can be accessed simultaneously on ARM
1136, and one counter is reserved to count the CPU cycles.
Similarly with the multiplexing technique presented in [14],
to get a full observation including all the 17 event rates, our
benchmark repeated the same test case for 8 times with two
different HPCs monitored each time. We used the CPU
cycles as timers to multiplex the event rates. In other words,
the 8 samples from different runs can be merged into one full
observation only when the event rate of CPU_CYCLES in
each sample is equal to each other.

In practice, we collected 60 samples continuously from
the beginning of a test case in each run except for the
streaming cases in which we started the monitoring when the
playback started. After 8 runs, we got 60 full observations.
According to our observation, in most of test cases, the
difference among the 60 samples in a line is close to 0. In
these cases, instead of importing 60 similar observations into
our data sets, we only imported one observation, which
included the average value of each HPC in the 60
observations. In total, our benchmark ran each test case for
48 times to get 6 full observations for each.

Our test cases can be divided into 5 categories as
described in Table II. We use different test cases to generate
two different data sets for model fitting and evaluation,
respectively. For example, we used the data collected from
three types of workload for model fitting, including idle with
different brightness levels, audio/video players, and file
download/upload at different network data rates. For model
evaluation, we used the data collected from streaming,
audio/video recorders, and file download/upload at different
network data rates. Even for the same type of workload, the
test cases used in model evaluation are different from those
in model fitting.

We connected the N810 to a sample multimeter to
measure the power consumption. The sampling frequency of

7 http://maemo.org/development/tools/doc/diablo/oprofile/

the multimeter was synchronized with that of the event rates
and was set to 1Hz. In the test cases with the N810
connected to an 802.11g network, the timeout of the 802.11
power saving mode was set to 100ms. The network data rates
in the file transmission cases were limited by a traffic shaper
running on a Linux server, and the data rates in the streaming
cases depended on the streaming protocols, the media
formats and the network conditions. We captured the
network traffic by running Wireshark

8
, a network analyzer,

on a laptop that was connected to the same WLAN. We
adjusted the CAM settings and the display brightness levels
through the user interfaces.

B. Model Fitting

We used a function called lsqnonneg in Matlab
9
, which is

meant for optimizing the least-square objectives with non-
negativity constraint. During model fitting, we ran this
function twice. In the first round, each observation included
17 HPC-based variables, 3 network parameters and 1 display
parameter. After executing lsqnonneg, we chose 3 HPC-
based variables with the biggest coefficient values. They
were the event rates of DCACHE_WB, TLB_MISS and
CPU_CYCLES. In the second round, we fitted the
observations including the three selected event rates, the
three network parameters and the one display parameter to a
regression model by running lsqnonneg again. Our final
power model is presented in (5).

).(.

)(.)(.

)(.)(.

)(.)(..)(

2020

19191818

171722

1100

xg1250

xg38220xg00150

xg00110xg06060

xg08150xg2474076550WPower









(5)

where )..,..)((201720jxg jj  is the preprocessing function

as described in Table I. Let 10 cc , and 2c be the increment in

CPU_CYCLES, DCACHE_WB and TLB_MISS in the

monitoring period ,d respectively.

.:,)(

,:,)(

,)/(:,)(

),/(:,)(

,,)(

,,)(

,,)(

.

.

.

.

.

.

levelbrightnessxxxg

switchCAMxxxg

sKBratedatauploadxxxg

sKBratedatadownloadxxxg

xxg

xxg

xxg

20202020

19191919

18181818

17171717

0
c

2
c

222

0
c

1
c

111

d

0
c

000

0003650

0005130x

000450

0009010x

4231349

841316x

2

1

0





















(6)

8 http://www.wireshark.org
9 http://www.mathworks.com/access/helpdesk/help/toolbox/optim/

ug/lsqnonneg.html

We define the IDLE mode of a mobile device as the
status when there is no application running. The value of the
intercept, 0.7655, is close to the power consumption in the
IDLE mode with the display turned off. Among the three
HPC-based variables, the event rate of CPU_CYCLES
describes the general workload of the processor, which takes
a big part of the total power consumption. The event rates of
TLB_MISS and DCACHE_WB reflect the memory access
efficiency in a CPU cycle. The coefficient values of the non-
HPC variable show an increase in the power consumption of
the WNI or the display when the corresponding variable
increases by one unit. For example, an increase of 1 KB/s in
the upload data rate costs on average 1.5mW more power,
and the network transmission with CAM enabled costs on
average 0.3822W more when the network data rate is less
than 32KB/s on the experimental device.

C. Model Evaluation

We used our testing data set to evaluate the regression
model obtained in Section 4.2. Although we computed the
prediction values offline, the computation followed the same
steps and gained the same results as the online computation
for runtime power estimation. First, we calculated the event
rates based on the collected HPC values. Second, we
normalized the event rates based on the statistics of the data
set used for model fitting. Third, we obtained the
upload/download data rates from traffic traces, and the
display settings from the user interface. The data rates can
also be monitored during runtime through networking APIs.
Fourth, we estimated the power consumption following (5)
and compared the estimates to the physical measurement.

For the data set used for model evaluation, the median
percentage error in power estimation is 2.62%, and the
standard deviation of the error rate is 0.0376. Compared to
[4] whose median percentage error is 3.9% ~7.2% depending
on the testing data sets, our model still provides adequate
accuracy while using fewer HPCs and extending the power
estimation to network applications.

To analyze the prediction accuracy for different
workloads, we calculated the median error for each category
of workload. As shown in Fig. 1, our power model tracks the
power consumption in each category fairly well. Only in the
cases of video recorder is the error a little bigger. We
attribute the error in the power estimates for the video

Figure 1. Median percentage error in the power estimates of different test

cases.

4.8

2.0
3.7

0.2

13.7

3.8

0.8

0
2
4
6
8

10
12
14

Radio LiveTV YouTube Audio
recorder

Video
recorder

upload download

Median Error(%)

recorder to the usage of the camera, which could not be
monitored through our variables. In future we will consider
the power consumption of the camera in different operating
modes, such as standby and capturing, in our model.

V. DISCUSSION

Our model can be used for power simulation at the
system level when the regression variables are available. The
HPCs are available on the performance simulators such as
Wattch [9], and the network transmission parameters can be
found from network simulators such as NS-2. However, to
the best of our knowledge, no prior simulator can provide
both the HPCs and the network transmission parameters. In
large-scale distributed computing networks, both
computational and communication workload consumes high
power consumption on a mobile device. Hence, for future
work it is worth developing a mobile device simulator,
which combines performance and network simulators, and
supports power simulation at the system level.

Dynamic power management on a mobile device requires
knowledge about the power consumption at different
granularities depending on the policies it uses. For example,
total power consumption is required for estimating the
remaining battery lifetime, while the power breakdown of
processes is needed for task scheduling in OS. Although we
only showed the estimation of total power consumption in
this paper, our model can also be used for more detailed
power analysis.

Because the HPCs can be monitored for each process, we
propose to estimate the computational power consumption of
each process based on the per-process HPC values. Assume
that there are N processes contributing to the HPCs during a

monitoring period .d For process  ),..(1N0ii  the

increments in DCACHE_WB, TLB_MISS, and

CPU_CYCLES are defined as ii mw , and ,iu respectively.

The total number of CPU cycles elapsed in d is defined as

.



1N
0i i0 uc We reform the preprocessing functions of the

HPC-based regression variables defined in (6) as below.









1N

0i 4231349

841316du
00

ixg ,)(
.

./









1N

0i 000450

0009010cw
11

0ixg ,)(
.

./

 (7)









1N

0i 0003650

0005130cm
22

0ixg .)(
.

./

It is possible to estimate the computational power

consumption of process i as shown in (8). However,

because there is no power meter available for measuring the
power consumption of each process, we have not been able
to validate our power breakdown of the processes.

..

.

..)(

.

./

.

./

.

./

0003650

0005130c
i

m

000450

0009010c
i

w

4231349

841316d
i

u

0

0

06060

08150

2474076550WPower













 (8)

The power consumption of a WNI is estimated based on

the aggregate data rates in our model. It is derived from the
model basing on the operating mode of the WNI and the
802.11 power saving mode [6]. For example, the WNI is in
TRANSMIT or RECEIVE mode when it is transmitting or
receiving data, and it is in either IDLE or SLEEP mode
during traffic intervals depending on the settings of the
802.11 power saving mode. The power consumption of a
WNI includes the power consumed in each operating mode.
When there are multiple flows sharing a WNI, the traffic
intervals can be inside a flow or between flows, and there is
no common rule in assigning traffic intervals to each flow. If
the power consumption during the traffic intervals is ignored,
the power consumed by each flow depends on how much
data rate it contributes to the aggregate data rate. For
example, if a flow contributes 50% of the data rate, this flow
consumes 50% of the power consumption in TRANSMIT
and RECEIVE modes.

In this paper we present a regression-based method of
building a system-level power modeling. When a new
hardware component is installed into the mobile device,
there are two ways to update the system-level power model.
One way is to add regression variables, which describe the
activity levels of the new hardware component, define new
test cases to stress the new variables, and fit the new data
sets to a regression model. The other way is to directly add
an analytical power model of the new hardware component
to the existing system-level model. For the latter method, an
analytical power modeling of the hardware component must
be built and validated beforehand. In future we will compare
these two methods by adding more hardware resources such
as 3G interface and GPS receiver in the system.

VI. CONCLUSION

We have proposed a power model for mobile internet
devices taking the major hardware resources such as the
processor, the WLAN interface and the display into account.
We showed how to build such a system-level power model
using linear regression with nonnegative coefficients. The
model we built can be used for runtime power estimation and
offline power simulation, with a median error of 2.62%,
which can help improve the efficiency of power management
during runtime.

ACKNOWLEDGMENT

This work was supported by TEKES as part of the Future
Internet program of TIVIT (Finnish Strategic Centre for
Science, Technology and Innovation in the field of ICT). We
thank Khaled Chowdhury for his help in data collection.

REFERENCES

[1] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in USENIXATC’10: Proceedings of the 2010 USENIX
conference on USENIX annual technical conference. Berkeley, CA,
USA: USENIX Association, Jun. 2010, pp. 21–34.

[2] K. Singh, M. Bhadauria, and S.A. McKee, “Real time power
estimation and thread scheduling via performance counters,”
SIGARCH Comput. Archit. News, vol. 37, no. 2, Jul. 2009, pp.46–55.

[3] B. C. Lee and D. M. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power prediction,”
in ASPLOSXII: Proceedings of the 12th international conference on
Architectural support for programming languages and operating
systems , New York, NY, USA: ACM, Oct. 2006, pp. 185–194.

[4] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: methodology and empirical data,” in MICRO-36:
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, IEEE Press, Dec. 2003, pp. 93–104.

[5] B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M.
Cesati, “Portable, scalable, per-core power estimation for intelligent
resource management,” in IGCC’10: Proceedings of the 2010
International conference on Green Computing, IEEE Press, Aug.
2010, pp. 135 –146.

[6] Y. Xiao, P. Savolainen, A. Karppanen, M. Siekkinen, and A. Ylä-
Jääski, “Practical power modeling of data transmission over 802.11g
for wireless applications,” in e-Energy’10: Proceedings of the 1st
International Conference on Energy-Efficient Computing and
Networking. New York, NY, USA: ACM, Apr. 2010, pp. 75–84.

[7] M. Onouchi, T. Yamada, K. Morikawa, I. Mochizuki, and H. Sekine,
“A system-level power-estimation methodology based on ip-level

modeling, power-level adjustment, and power accumulation,” in ASP-
DAC’06: Proceedings of the 2006 Asia and South Pacific Conference
on Design Automation, IEEE Press, Jan. 2006, pp. 547–550.

[8] V. Tiwari, S. Malik, A. Wolfe, and M.-C. Lee, “Instruction level
power analysis and optimization of software,” VLSI Signal
Processing, vol. 13, 1996, pp. 1–18.

[9] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in ISCA’10:
Proceedings of the 27th Annual International Symposium on
Computer Architecture, New York,NY, USA: ACM, 2000, pp. 83–
94.

[10] C.Lawson and R. Hanson. Solving Least Squares Problems.
Englewood Cliffs, NJ: Prentice-Hall, 1974.

[11] F.I. Kushnirskii and M.E. Primak, “Regression with nonnegative
coefficients,” Cybernetics and Systems Analysis, vol. 9, no. 1,
Springer New York, Jan. 1973.

[12] S.Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis, “Joulesort:
a balanced energy-efficiency benchmark,” in SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM, Jun. 2007, pp.
365–376.

[13] S. Rivoire, M. A. Shah, P. Ranganathan, C. Kozyrakis, and J. Meza,
“Models and metrics to enable energy-efficiency optimizations,”
Computer, vol. 40, no. 12, 2007, pp. 39–48.

[14] R. Azimi, M. Stumm, and R. W. Wisniewski, “Online performance
analysis by statistical sampling of microprocessor performance
counters,” in ICS’05: Proceedings of the 19th annual international
conference on Supercomputing. New York, NY, USA: ACM, Jun.
2005, pp. 101–110.

http://www.amazon.com/exec/obidos/ASIN/0898713560/ref=nosim/weisstein-20

