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Abstract— Energy consumption accounts for a large percentage 
of the operational expenses in data centers that are used as 
backend computing infrastructure for cloud computing. Existing 
solutions for energy efficiency and job scheduling are focusing on 
job distribution between servers based on the computational 
demands, while the communication demands are ignored. This 
work emphases the role of communication fabric and presents a 
scheduling solution, named e-STAB, which takes into account 
traffic requirements of cloud applications providing energy 
efficient job allocation and traffic load balancing in data center 
networks. Effective distribution of network traffic improves 
quality of service of running cloud applications by reducing the 
communication-related delays and congestion-related packet 
losses. The validation results, obtained from the GreenCloud 
simulator, underline benefits and efficiency of the proposed 
scheduling methodology. 

Keywords—energy-efficient scheduling; cloud computing; load 
balancing; data centers. 

I. INTRODUCTION

Cloud computing is entering our lives and dramatically 
changing the way people parse information. Cloud provides 
platforms enabling a large variety of terminal devices owned 
by individuals to operate. There are about 1.5 billion computers 
[1] and 6 billion mobile phones [2] in the world today. The 
next generation of user devices [3] offers not only constant 
readiness for operation, but also constant information 
consumption. In such an environment, computing, information 
storage, and communication becomes a utility. Cloud 
computing is an effective way to offer manageable and secure 
infrastructure with reduced cost of operations [4]. 

Cloud computing relies on the data centers as their primary 
backend computing infrastructure. Currently, over 500 
thousand data centers are deployed worldwide [5]. The 
operation of large geographically distributed data centers 
requires a considerable amount of energy that accounts for a 
large slice of the total operational costs [6-7]. The Gartner 
group estimates that the energy consumption accounts for up to 
10% of the current data center operational expenses (OPEX), 
and this estimate may rise to 50% in the next few years [8]. 
The cost of energy for running servers may already be greater 
than the cost of the hardware itself [9], [10]. In 2010, data 
centers consumed about 1.5% of the world’s electricity [11]. In 

terms of CO2 emissions, it corresponds to more than 50 million 
metric tons annually. 

Energy efficient computing has never been the primary goal 
of the IT industry. Since the 1980s, the only target for the IT 
industry has been to deliver more and faster computational 
power, which was normally achieved by packing more 
electronics into a smaller space, and running the packaging at a 
higher frequency. Higher power consumption generates heat 
and requires an accompanying cooling system that costs in the 
range of $2 to $5 million per year for classical data centers [8]. 
In most cases, the cooling systems require more power than the 
core IT equipment [12], [13]. 

In data centers, to ensure high levels of reliability, there is 
an overprovision of computing, storage, power distribution, 
and cooling infrastructures [27]. Therefore, the energy 
consumption is not proportionate to the workload processing. 
To measure this inefficiency, the Green Grid Consortium [14] 
developed two metrics, the Power Usage Effectiveness (PUE) 
and the Data Center Infrastructure Efficiency (DCIE) [15]. 
Both PUE and DCIE account for the proportion of power 
delivered to the IT equipment relative to the total power 
consumed by the data center facility. Currently, roughly 40% 
of the total energy is consumed by the IT equipment [16]. 
Other systems contributing to the data center energy 
consumptions are cooling and power distribution systems that 
account for approximately 45% and 15% of total energy 
consumption, respectively. 

There are two main alternatives for making data center 
consume less energy: (a) shutting it down or (b) scaling down 
its performance. The former method, commonly referred to as 
Dynamic Power Management (DPM) results in most of the 
savings as the average workload often stays below 30% in 
cloud computing systems [17]. The latter corresponds to the 
Dynamic Voltage and Frequency Scaling (DVFS) technology 
that can adjust the hardware performance and power 
consumption to match the corresponding characteristics of the 
workload.  

In this paper, we design a scheduling approach for a cloud 
computing system that optimizes the energy consumption of 
the data center IT equipment while providing load balancing of 
traffic flowing within the data center network. An effective 
distribution of network traffic improves Quality of Service 
(QoS) of running cloud applications by reducing 
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communication-related delays and congestion-related packet 
losses. The validation results, obtained from the GreenCloud 
simulator [29], underline the benefits and efficiency of the 
proposed scheduling methodology. Specifically, the main 
contributions of the paper are the following: 

� Design of a scheduler which optimizes energy 
efficiency and load balancing of network traffic in 
cloud computing data centers; 

� Development of a formal model followed by the e-
STAB scheduler for the selection of a proper server, a 
rack and a module for each incoming to the data center 
workload in real time. 

� Comprehensive performance evaluation of the e-STAB 
scheduler and comparison with other consolidation-
based data center schedulers. 

The scheduler proposed in this work is different from our 
previously presented DENS scheduler [28] in the following: a) 
the way network traffic is analyzed, b) possibility to load 
balance the traffic and c) metrics used for the selection of the 
data center servers, racks and modules. 

The rest of the paper is structured as follows: Section II 
presents the design and operational strategy of the proposed 
scheduler outlining the motivation of different design choices. 
Section III presents the details of the simulation scenario and 
discusses the obtained evaluation results. Finally, Section IV 
concludes the paper with final remarks and objectives for 
future research on the topic. 

II. ENERGY-EFFICIENT SCHEDULING WITH TRAFFIC LOAD 
BALANCING

A. Motivation 
Job scheduling is at the heart of the successful operation of 

power management in data centers. Most of the existing 
approaches for job scheduling in data centers focus exclusively 
on the job distribution between computing servers [18]
targeting energy efficiency [19] or thermal awareness [20].
However, only a few approaches consider data center network 
characteristics [21-23]. 

As most of the energy savings come from DPM-like power 
management procedures [17], job schedulers follow workload 
consolidation policy by maximizing the load on the operational 
computing servers and increase the number of idle servers that 
can be put into the “sleep” mode. Such scheduling policy 
works well in systems that can be abstracted as a homogenous 
pool of computing servers. However, policies should be 
adapted to network topologies in real data centers. For 
example, considering the most widely used fat tree data center 
architecture [24] presented in Fig. 1, blind concentration 
scheduling may group all of the highly loaded computing 
servers on a few racks, which creates a bottleneck for network 
traffic at a rack or an aggregation switch. 

At the rack level, all of the servers are usually connected 
using Gigabit Ethernet (GE) interfaces. Typically, racks hosts 
up to 48 servers and have only two links of 10GE connecting 
them to the aggregation network. This corresponds to the 
mismatch of 48�� / 20�� = 2.4 between the incoming and 

the outgoing bandwidth capacities. Being implemented in a 
data center with cloud applications requiring communication, 
the scheduler should tradeoff workload concentration with the 
load balancing of network traffic. 

Figure 1. Three-tier data center architecture. 

B. e-STAB Scheduler 
The energy-efficient scheduler for cloud computing 

applications with traffic load balancing (e-STAB) is designed 
to optimize energy consumption of cloud computing data 
centers. The e-STAB scheduler treats communicational 
demands of the jobs equally important to that of the computing 
requirements. e-STAB is a scheduler aiming to: (a) balance 
communication flows produced by the jobs and (b) consolidate 
jobs on a minimum amount of the computing servers. As 
network traffic can be highly dynamic and often difficult to 
predict [31], the e-STAB scheduler analyses both the load on 
the network links and the occupancy of outgoing queues at the 
network switches. e-STAB allocates jobs favoring network 
resources that offer the most of the available bandwidth and 
penalizes resources for which the load approaches the available 
transmission capacity when the traffic queues growing in size. 
Queuing analysis aids in preventing a buildup of network 
congestion. Such techniques are already implemented in 
several transport-layer protocols [32] that estimate buffer 
occupancy of the network switches and can react before 
congestion related losses occur. 

The e-STAB scheduling policy can be defined with the 
following two steps executed for every incoming cloud 
computing data center workload: 

� Step 1: Select a group of servers � connected to the 
data center network with the highest available 
bandwidth, provided that at least one of the servers in �
can accommodate the computational demands of the 
scheduled job. The available bandwidth is defined as 
an unused capacity of the link or a set of links 
connecting the group of servers � to the rest of the data 
center network. 

� Step 2: Within the selected group of servers �, select a
computing server with the smallest available 
computing capacity, but sufficient to satisfy the 
computational demands of the scheduled task. 

In fat tree data centers (see Fig. 1), the servers are arranged 
into racks, forming a set of racks �. Subsequently, racks form 
the set of modules �. Therefore, to select the group of servers 
with the largest available bandwidth in Step 1, e-STAB must 
first find a module ��	� such that 

� 
�(m�) = max∀
∈��
�(�)�,� ����
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where 
�  is the available bandwidth of a module ��
computed on a per-server basis. For a module �� ∈ �  the 
available bandwidth can be computed as  

� 
�� = �� �������� �� �	��

where ���  is the transmission capacity of a module � ,
calculated as a sum of maximum transmission speeds of all 
links connecting a module � to the network of core switches,
��� is a currently effective transmission rate of the traffic, and ��� is a number of servers hosted in the module. 

Equation (2) provides an instantaneous measure of the 
available bandwidth. However, as most of the transmissions are 
bursty, which either use full network link capacity for a short 
time or leave the link unutilized. Therefore, the available 
capacity must be calculated as an average over the time interval 
T:

� 
��(�) = �� ∫ ��� �����(�)��� �  !��"�� =� �

� = ���� (�� � − �� ∫ ���(�) !��"�� )
� ����

Similar to the case of modules, for identifying a rack with 
the most of the available bandwidth, e-STAB must find a rack #$ ∈ � such that  

� 
#(r%) = max∀&∈'�
#(#)�,� ����

where 
# is the available bandwidth of a rack #$  computed 
on a per-server basis. For a module #$ ∈ �  the available 
bandwidth can be computed as 

� 
#$(�) = *+ ∫ ��- 1��-1(�)� 3�56+5 �-1 =� �

� = ��-1 (�# $ − �� ∫ �#$(�) !��"�� )�� ����

where �#$  is the transmission capacity of a rack 7, calculated as 
a sum of maximum transmission speeds of all links connecting 
a rack 7  to the network of aggregation switches, �#$  is a 
currently effective transmission rate of the traffic, and �#$  is a 
number of servers hosted in the rack. 

One of the main goals of the e-STAB scheduler is to 
achieve load balanced network traffic and prevent network 
congestion. A helpful measure is the available bandwidth per 
compute node within the data center. However, such a measure 
does not capture the system dynamics, such as sudden increase 
in the transmission rate of the cloud applications. 

To have a more precise measure of the network congestion, 
e-STAB scales the measures of the available bandwidth 
��(�) and 
#$(�) with the component related to the size of 
the bottleneck queue 

� 9(�) = 1 − �� ∫ ;<�(>∙(@(5)A*)BCDE )FG  !��"�� �� �
��

where H(�)  is an instantaneous occupancy of the queue 
measured either in bytes or packets at the time �, 9�IJ is the 
maximum allowed size of the queue, while parameters K and L
control the shape of the function and are explained in the 
following paragraph. 

Equation (5) is an integral version of the Weibull 
cumulative distribution presented in Fig. 2. It aims to favor the 
empty queues or queues with a minimum occupancy and 
penalize highly loaded queues that are on the threshold of 
buffer overflow (or on the threshold of losing packets). 
Parameter K controls the position of the falling edge of 9(�)
with the respect to the level of queue occupancy. Smaller 
values of K make e-STAB sensitive to even the smallest levels 
of congestion, while the larger values of K make e-STAB react 
only to the highly loaded queues and may lead to congestion-
related losses. As confirmed by the experiments, presented in 
Section III of the paper, typical values for K must be selected to 
locate the falling edge of 9(�)  in between 0.3-0.5 of the 
maximum size of the queue. Parameter L controls the shape of 
the falling slope of the 9(�) function. It determines the speed 
of reaction to the growing congestion and should be chosen not 
to be sharp for a smooth system behavior. 

Figure 2. Queue-size related component of the STUB scheduler. 

By utilizing the aforementioned information (Eq. (3) and 
eq. (5)), the available per-server bandwidth can be 
appropriately adjusted with the 9(�) metric. This will allow e-
STAB to select a module as: 

� M��(�) = 
��(�) ∙ 9��(�) =� ��

� = �� ∫ N(�� �����(�))∙OA( >∙@C�(5)BC�.CDE)F
��� P  !��"�� � �����

and a rack as

� M#$(�) = 
#$(�) ∙ 9#$(�) =� ��
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� = �� ∫ Q(�- 1��-1(�))∙OA( >∙@R1(5)BR1.CDE)F
�-1 S  !��"�� � �����

where 9��(�)  and 9#$(�)  are weights associated with 
occupancy levels of the queues, H��(�) and H#$(�) are sizes of 
the queues at time � , and 9��. �TU  and 9#$. �TU  are 
maximum allowed sizes of the queues at the module � and rack 7, respectively. 

Figure 3 presents the evolution of M��(�) and M#�(�) with 
the respect to different values of the network traffic and buffer 
occupancy. The function is insensitive to the level of utilization 
of the network links for highly loaded queues, while for the 
lightly loaded queues, the links with the lighter load are 
preferred to the heavily utilized links. 

Figure 3. Selection of racks and modules by the STAB scheduler. 

Having selected a proper module and a rack based on their 
traffic load and congestion state indicated by the queue 
occupancy, we must select a computing server for the job 
execution. To do so, we must analyze energy consumption 
profile of the servers. 

According to the basic model, an idle server consumes 
around two-thirds of its peak load to keep memory, disks, and 
I/O resources running, while the rest of the power is consumed 
by the CPU and scaled linearly with the offered computing 
load [25]. More precise models [6] suggest non-linear power 
consumption models. In this work, we rely on a more detailed 
energy consumption model, which is based on the energy-
consumption benchmarks for different severs from a number of 
manufactures [26]: 

� V(W) = V�3XO + Z[\D]�Z�^_\` (1 + W − <�_b)�� ����

where V(W) is the energy consumed by the server operating at 
the load level W ∈ [0,1] , V�3XO  and VeOIf  are a server 
consumptions at the minimum and the maximum load levels 
respectively, g is a scaling coefficient, that is typically in the 
range of [0.5, 0.8], and corresponds to the utilization level at 
which the server attains asymptotic power consumption. 

In DVFS is used, then the power consumption of a server 
can be reduced proportionally to i` ∙ j, where i is a voltage 

and j is a frequency of the chip. Voltage reduction requires a
frequency downshift, which implies a cubic relationship from j
in the CPU power consumption. As a result, for a DVFS-
enabled server Eq. (8) can be rewritten as follows: 

� V(W) = V�3XO + Z[\D]�Z�^_\` (1 + Wk − <�(_b)l)
� ����

Knowing the energy consumption of a server, we can 
derive a metric to be used by the e-STAB scheduler for server 
selection as follows: 

� Mnf(�) = �� ∫ ( �
�"OA*op �_](5)Apq� − �̀ ;1 − Z�^_\Z[\D]G�"�� �

� s1 + Wf(�)k − <��_](5)b �lt !�,� �����

where Wf(�) is an instantaneous load of server u at time � and v
is an averaging interval. While the second summand under the 
integral in Eq. (10) is a reverse normalized version of Eq. (9), 
the first summand is a sigmoid designed to penalize selection 
of idle servers for job execution. We must note that whenever 
possible, it is beneficial to maximize the number of idle servers 
to decrease energy consumption. This is due to the fact that 
even an idle server consumes around two-thirds of their peak 
energy consumption [25]. The parameter w corresponds to the 
CPU load of an idle server required to keep an operating 
system and virtual machines running. Figure 4 presents a chart 
for Mnf(�). 

Figure 4. Selection of computing servers by the STUB scheduler. 

Taking into account the metrics obtained for the selection 
of a module (Eq. (6)), a rack (Eq. (7)), and a server (Eq. (10)), 
we can define a joint metric calculated by the e-STAB
scheduler for every incoming workload as follows: 

� ��,$,f(�) = (M��(�), M#$(�), Mnf(�)).� �����

Then, for any two states, characterized by a unique 
combination of indexes �, 7 and u representing a module, a rack 
and a server, of the system yI = M�z(I), M#{(I), Mn|(I)  and y} = M�z(}), M#{(}), Mn|(}) , respectively, the following 
relation holds: 
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( ), if  ( ) ( )
( ),  if ( ) ( ) ( ) ( )

( , ) ( ),  if ( ) ( ) ( ) ( ) ,
    ( ) ( )
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b

�
�
�

�

��
� � � ���� � � � ��
� � ��
��

���	��

where ~(T) and ~(�) are indexes of computing servers for 
the state T and state � of the system, respectively. 

III. PERFORMANCE EVALUATION

Performance of the proposed e-STAB scheduling 
methodology was tested by implementing its functionalities in 
the GreenCloud simulator [29]. GreenCloud is a packet-level 
cloud computing simulator focusing on cloud communications 
and energy efficiency. It offers tools to monitor energy 
consumption in data center servers, switches and routers, while 
the power management solutions, such as DVFS and DPM 
[17], are implemented in both computing hardware and 
network equipment. The GreenCloud simulator is currently 
available for download under General Public License (GPL) 
agreement [30].

A. Simulation Scenario 
The most widely used three tier data center topology [24]

was selected for simulations. It comprised of 960 servers 
arranged into 20 racks interconnected by 4 core and 8 
aggregation switches. The network links interconnecting the 
core and aggregation switches as well as the aggregation and 
access switches of 10 Gb/s. The bandwidth of the access links 
connecting computing servers to the top-of-rack switches is 1 
Gb/s. The propagation delay of all links is set to 3.3 µs. Table I 
presents a summary of simulation setup parameters. 

TABLE I. SIMULATION SETUP PARAMETERS

Parameter Value

To
po

lo
gy

Core switches 4
Aggregation switches 8
Access switches 20
Servers 960
Access links 1 Gb/s, 3.3 µs
Aggregation links 10 Gb/s, 3.3 µs
Core links 10 Gb/s, 3.3 µs

D
at

a 
ce

nt
er Average load of data center 0.3

Simulation time 60 minutes
Distribution of job arrival Exponential
Power management in servers DVFS/DPM
Power management in switches DPM

TABLE II. POWER PROFILES OF DATA CENTER HARDWARE

Hardware
Power Consumption (W)

Chassis Line 
card Port Peak Idle

Core switches 1558 1212 27
Aggregation switches 1558 1212 27
Access switches 146 - 0.42
Servers 301 200

The process of job arrival is exponentially distributed to 
mimic realistic arrival of the customers to the system. The e-
STAB scheduler makes a resource allocation decision for every 

incoming task. Then, as soon the server for task execution is 
known the task description is fragmented into IP packets and 
sent over the data center network. The size of the task 
description is chosen to fit into three IP packets of 1500 bytes 
each. 

As soon as the task description is received at the server, the 
task execution is started. Upon completion, tasks generate an 
output destined to the end user, which is sent over the data 
center network up to the core switches. The path segment 
which corresponds to the wide-area network connection 
between the data center and the end user is modeled and left of 
scope of this paper. 

Task outputs are transmitted using Transmission Control 
Protocol (TCP). The TCP can control sending rate constantly 
attempting to match network path bandwidth (flow control) and 
resolve any congestion- or link-related data losses occurred in 
the network (error control). The competition among different 
data flows in topology multiplexing points, like a rack switch 
or an aggregation switch, can be resolved and congestion-
related packet drops can be recovered with retransmissions. 

Each simulation runs for 60 minutes, during which around 
30% of data center resources are utilized on average. All 
servers and switches which remain idle became a subject to 
enabling the sleep mode, or DPM. In addition, DVFS power 
management is used in servers to improve power consumption. 

B. Results 
The performance of e-STAB scheduler is compared against 

Green scheduler. The Green scheduler aims to consolidate all 
the incoming workloads in a minimum amount of computing 
servers based on the jobs’ computing requirements. This 
comparison aims to underline the advantages of considering 
traffic patterns of cloud applications and taking them into 
account, while allocating data center resources for their 
execution, implemented in e-STAB scheduler. The 
performance of both schedulers is compared in terms of the 
produced network load, time of job execution and impact on 
the energy consumption of the system. 

Figure 5 presents a distribution of server load for both 
schedulers. The Green scheduler consolidates execution of all 
the arriving workloads on servers numbered from 0 to 300. 
Having performed no analysis of the network traffic, the Green 
scheduler often selects multiple servers from the same rack. 
The e-STAB scheduler uses the same number of servers for 
serving computing demands in total. However, they are 
selected in bulks which distributed evenly through the whole 
pool of data center servers. The process of such selection is 
guided by the measure of per-server available bandwidth taken 
into account by the e-STAB scheduler. 

Figure 6 presents the distribution of the traffic load 
measured in the uplink at different racks. As expected, the 
consolidation policy of the Green scheduler cannot achieve a 
balance of the traffic in data center network. The racks number 
1-7 are overloaded, while the rest of the racks, numbered 8 
through 20, stay with almost no traffic load. On the contrary, 
the e-STAB scheduler can balance the jobs according to their 
traffic demands. It leads to almost equal distribution of traffic 
load among the racks in the data center. 
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Figure 5. Distribution of the workload processing among servers. 

Figure 6. Distribution of the traffic load among racks. 

Table III presents an analysis of energy consumption of the 
data center hardware under operating different power 
management policies for both of the schedulers. With no power 
management enabled, in both cases the data center consumes 
around 260 kWh. The major part of this energy (around 80%) 
is spent to power computing servers. 

TABLE III. ENERGY CONSUMPTION

Sc
he

du
le

r Power Management Energy Consumed (kW·h)

Servers Switches Servers Core
switches

Aggr.
switches

Access
switches Total

G
re

en

No No 221 11.9 23.9 3.8 260.8

DVFS/
DPM No 85.9 11.9 23.9 3.8 125.7

DVFS/
DPM DPM 85.9 6.0 11.9 1.4 105.2

e-
ST

A
B

No No 221 11.9 23.9 3.8 260.8

DVFS/
DPM No 85.9 11.9 23.9 3.8 125.7

DVFS/
DPM DPM 85.9 11.9 23.9 3.8 125.7

Enabling power management in computing servers with 
both DVFS and DPM schemes leads to the significant 
reductions of approximately 52% and brings the total 
consumed power down to 125.7 kWh for both e-STAB and 
Green schedulers. With power management enabled in both 
servers and switches, the Green scheduler shows even further 
reduction of approximately 16% or 20.5 kWh. However, 

enabling DPM power management in switches is not a 
common practice. Typically, data center switches operate 
continuously, especially in the core and aggregation networks, 
to provide stable connectivity. Therefore, in the most common 
setup the servers run DVFS/DPM, while the switches have no 
power management enabled. In such a setup, both schedulers 
lead to the same system-level power consumption of 125.7 
kWh. This fact confirms that e-STAB provides energy-efficient 
scheduling with traffic load balancing at the no expense in 
energy consumption. 

Figure 7 presents a record of task execution delay measured 
as a difference in time between when all computing work is 
finished at the server and the moment the task’s output is 
successfully directed out of the data center by the appropriate 
core switch. With the Green scheduler task completion delay 
experiences high variation and has an average of 78 
milliseconds, most of which corresponds to the time data 
packets wait in heavily loaded transmission queues. On the 
contrary, with e-STAB the delay is well bounded and stays at 
the minimum with an average of 50 milliseconds most of 
which corresponds to the propagation delay of the network 
links. 

Figure 7. Tasks completion delay. 

IV. CONCLUSIONS

In this paper we emphasize the role of communication 
fabric in modern cloud computing data centers and present a 
scheduling methodology e-STAB that while optimizing system 
energy consumption provides traffic load balancing in data 
center networks. Distribution of network flows produced by the 
running user applications helps to avoid congestion hotspots 
and packet losses due to the overflow in switches’ buffers. As a 
result, e-STAB improves quality of service of running cloud 
applications by reducing the communication-related delays and 
congestion-related packet losses. 

The validation results, obtained from the GreenCloud 
simulator for the three-tier data center architecture, underline 
benefits and efficiency of the proposed scheduling 
methodology and confirm that improvements come at no 
increase in the energy consumption for commonly power 
management schemes in data centers. 

Future work will focus on the e-STAB implementation in 
realistic testbeds and testing. 
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