

1

Policy and Enforcement in Virtual Organizations

Glenn Wasson and Marty Humphrey
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

wasson@virginia.edu, humphrey@cs.virginia.edu

Abstract
Arguably, the main goal of Grid Computing is to facilitate
the creation of Virtual Organizations (VOs); however, to
date, not enough attention has been placed on the policies
and mechanisms by which these VOs will operate. The
core of the VO--roughly, the responsibility of each
Physical Organization (PO) in the VO to contribute and
not unjustly consume resources in achieving the overall
goal of the VO--is at best service-level agreements (SLAs)
that lack a concrete connection to the underlying Grid
software and at worst an implicit "in-spirit" agreement.
Unfulfilled expectations and obligations on the part of
each PO can have dire consequences and can ultimately
lead to the demise of the VO itself. This paper identifies
three general policies regarding resource utilization by
which VOs might operate and presents the ramifications
of each policy on the VO's day-to-day operations and the
VO's ability to actually enforce the policy. A prototype
implementation of a VO with the "you-get-what-you-give"
policy is the basis of a concrete cost/benefit analysis of
policy enforcement for this type of VO.

1. Introduction

A Virtual Organization (VO) is a dynamic collection of
distributed resources that are shared by a dynamic
collection of users from one or more Physical
Organizations (POs). Many of today’s virtual
organizations [2][4][14][16][17] are formed to tackle
large-scale scientific problems. Large computing centers
typically provide the resources and domain scientists are
selected as users. The emerging approach in Grid
Computing [13] is essentially to define the VO as a
particular set of users, whereby the equivalent of a “VO
server” issues tokens to humans attesting to their
membership in the VO (e.g., GroupMan [7], VOMS [26]
and arguably CAS [18]). These tokens are then presented
to the individual resources.

However, as VOs grow in scale, their creators will need
to define their VOs in more complex and comprehensive
ways than via low-level membership descriptors alone.
Formal policy for VOs is becoming more realistic with
the rise of specifications such as WS-Policy [5] and WS-

PolicyAssertion [6] (and other languages, e.g. Ponder
[12]). However, policy syntax will only be of limited use
until the semantics of expressible policies are more
understood.

There are many types of policies in Virtual Organizations.
One of the most common uses of policy in grid
computing to date has been security policy (either
explicit, e.g. WS-SecurityPolicy [9] or implicit). Security
policies typically express the type (or types) of tokens that
a client needs for authentication with a particular
resource. In some cases, the token used can be negotiated
based on this policy. Security policies (e.g. “this service
accepts only Kerberos tickets”) are enforced “at the
edges” of the VO by denying access to any client whose
credentials do not take the correct form. Another common
use of policy is for network configuration. The IETF’s
PCIM [19] provides syntax for specifying how network
QoS should be altered based on the state of the network
and a set of policy rules. Enforcement of network QoS
characterization is well-defined via mechanisms such as
DiffServ and support from network hardware.

Other types of policy for grid computing, however, may
be more operationally complex. These policies may make
assertions about users or resources outside the scope of a
single domain or about interactions beyond a single
client/server pair. Examples include:

• “There must always be at least 2 copies of the
raw data from the linear accelerator kept
somewhere in the VO.”

• “Machines in the VO must be patched with the
latest security bug fixes.”

• “Sufficient attention must be devoted to making
and keeping the VO survivable.”

Clearly, as these examples are meant to show, some
policies are extremely challenging to implement;
however, there are other policies that can be implemented
via information about the dynamic state of the system as
well as historical data. Still, ensuring compliance with
such policies (i.e., enforcing them) is difficult because
there is not necessarily a single, obvious point-of-
enforcement or a well-understood enforcement model.

2

This paper concentrates on policies that describe the
distribution of utilization of resources across the VO. For
example, a policy might state that the disk utilization at
site 1 and site 2 must be equal (in order to prevent the
resources at either site from being unduly loaded). We
refer to this type of policy as the VO Resource
Provisioning Policy, and discuss this in more detail in
Section 2. In Section 3, we discuss the issues of enforcing
a VO Resource Provisioning Policy. In Section 4, we
present the results from a prototype implementation of a
VO (based on .NET) in which there is an explicit resource
provisioning policy. This section provides a concrete
cost/benefit analysis of the value of making such resource
provisioning policy explicit. Overall, the value of this
work is that it provides a novel treatment—both through a
general discussion and through a concrete prototype—of
the previously-neglected issues of VO-wide resource
provisioning policy creation, monitoring, and
enforcement.

2. VO Resource Provisioning Policy

The resource provisioning type of policy describes the
VO-wide distribution of resource utilization. For
example, a policy that states “the compute load of the
virtual organization is to be divided equally among all
member sites” describes the VO’s intended steady-state.
Other policies might include:
• “All work is to be performed on large queuing

systems from 9 am – 5 pm and on PC clusters after
hours.”

• “75% of data stored in the VO’s data will be in the
VO archive. The remaining 25% will be evenly
distributed across the VO’s storage resources.”

In general, in order to be operational, policies must be
more concrete—in effect, dictating policy by describing
actions that will be taken to maintain the desired VO-
state. For example, a policy such as “if any site is
performing less than 25% of the work of the other sites,
all new work will be scheduled on that site until the work
load is equalized” describes an explicit trigger condition
and an action that will be taken if that condition is met.
Note that while such statements may allow for automated
policy enforcement, the VO’s response need not be “fully
automated”. That is, the appropriate administrator could
be alerted to the relevant condition and/or a set of
corrective actions might be suggested, allowing the
human to make the final decision.

Note that VO-wide operational policy is different than
policies used in [15], [18], [20], and [21]. These systems
make permit/deny decisions based on (potentially
multiple) access control policies and the accessor’s
identity / group membership. VO-wide resource
provisioning policy refers to how a VO will allocate its

resources given its workload. The policy service of [23] is
primarily concerned with how local administrators can
control the way in which their resources are used by the
VO. In that system, VO policy covers the same scope as
local resource policy and the policy actually used is a
“least privilege” combination of the two. We believe that
VO creators and administrators will want to express
policies that are fundamentally different than those used
by local administrators. This work concentrates on policy
at the VO level, but we believe that the combination of
VO and local policy is an important area of research and
will be more difficult than simple combination.

2.1. Representative VO policies

We believe that there are three VO-wide resource
provisioning policies that are implicit in today’s virtual
organizations. The policies differ in both their resulting
resource usage patterns and the implications on
enforcement of such a policy.

Policy 1: Each PO member opportunistically gives
what it can to the VO [the you-give-what-you-can
(ygwyc) policy]
We believe that this is the dominant policy implicit in
many of today’s scientific VOs1. But we also note that
this is probably not the desired policy, but rather the only
policy that is easily implemented (primarily because there
is no required enforcement for this policy). The purpose
of this paper is to propose alternatives to this implicit
policy, which has been thrust upon users and resource
providers by default, and so this policy will not be
addressed in the remainder of this paper.

Policy 2: Resource utilization is divided equally among
member resources [the 1/N policy]
We refer to this policy as the “1/N policy” because each
resource in the VO is to perform 1/Nth of the total work of
the VO (non-equal variations of this theme exist as well).
This policy can apply to any resource that is distributed
throughout the VO’s member organizations: cycles, disk
space, or other specialized resources. A 1/N policy is a
common implicit desire in VOs where a PO’s users are
allowed to join a VO because it is assumed that the PO’s
resources will “pull their own weight”. Typically, this
policy is neither explicitly stated nor enforced.

Policy 3: Each PO member receives VO utilization
credit for the resource utilization their PO provides to
other VO users outside the PO [the you-get-what-you-
give (ygwyg) policy]

1 Although resource providers in scientific VOs are funded to provide
resources to a grid user community, there is often no formal statement of
how resources are divided between a provider’s grid and non-grid users.
Resources are provided as they are available.

3

Instead of requiring an equal distribution of resource
utilization throughout the VO, this policy allows for users
to utilize as much of the VO’s resources as they wish
provided they “repay” the VO by providing access for
other members to resources they control. We contend
that, arguably, this policy and policy 2 (1/N) are the
desired policies in many emerging VOs.

2.2. Utilization measurement

How can a policy enforcement service determine if a
VO’s policy is being fulfilled by the VO’s member
resources? To measure utilization for a 1/N policy, a
service must be able to assess the total resource demands
on the VO and the current utilization at each member
resource. To measure utilization for a ygywg policy, a
service must determine the resources being consumed by
a particular user and the resources being provided to other
VO members by that user’s PO.

Depending on the situation, measuring resource
utilization can be performed via resource-centric
mechanisms or via some measurement made at the time
of the Grid Service request. For some resources requests
(e.g., storing a file) the most effective way to determine
the total demand throughout a VO is to have a single VO-
wide interface by which users access that resource (e.g., a
web-based portal by which users “upload files to the VO”
from their desktops). Since all resource requests flow
through this portal, total resource utilization is easily
calculated as the sum of all granted requests. Constraining
all Grid usage to be performed through a small collection
of portals is unrealistic, so there must also be “daemons”
monitoring and reporting resource usage, irrespective of
how the grid work originated. This is particularly
attractive for legacy applications that must “run in the
VO” but cannot be (or should not be) modified to
accommodate measurement. Work in the DMTF, such as
the Common Information Model (CIM) [10] and the
Desktop Management Interface (DMI) [11], provide a
mechanism for utilization measurement by defining a
common description language and a set of APIs for
resources and clients to publish and receive resource
information. Many queuing system support various
processor usage statistics and tools such as NWS [25]can
collect utilization data for resources including networks.

However, VO resource consumption can be more
complicated than a simple sum over all resources. For
example, it might be necessary to measure the
coordinated usage over multiple resources, if the VO’s
policy is to “reward” such efforts (under the assumption
that the VO’s mission is being accomplished under such
conditions). For example, assume that UVa is
contributing part of one of its clusters to a VO that’s

trying to solve some large Physics problem. At a
particular time, the non-UVa users want to use the UVa
cluster as part of a coordinated VO-wide experiment.
UVa suspends current jobs on its cluster that are being
executed by UVa biologists to contribute to this VO-wide
experiment. In this case, the UVa scientists should be
granted comparable privilege across the VO at a later
date.

Actual resource utilization may not be the only parameter
that must be measured. For example, in a desktop PC grid
VO with a ygwyg policy, does a user providing access to
his PC actually need other users to run on the PC in order
to receive credit or can they receive credit merely by
making the PC available? Clearly time of day and length
of contiguous availability are important also. Perhaps a
VO also cares about reliability or security of the
resources. In general, many parameters could be
measured. It is useful to think of resources as providing a
certain quality of service (QoS) to the VO’s users, with
the VO policy dictating how this is to be measured.

2.3. Accounting

We distinguish the measurement of resource consumption
from the recording of such measured consumption (i.e., in
some database). For any VO policy, some form of
accounting service is needed to record the utilization data.
The collection of the distributed resource utilization
information can be handled by services such as the
Globus project’s MDS [8]. The accounting service then
compiles the utilization information so that the
enforcement system can check for enforcement conditions
(discussed in Section 3).

One important accounting issue is the “exchange rate” for
various resources. How can the utilizations of CPU time
on various processors be compared? How much disk
space does a user in a ygwyg VO need to donate to get 3
CPU hours on another machine? While VO policy needs
to specify this, it is beyond the scope of this work. It is
however being addressed by other projects in the Global
Grid Forum [22]. Work on grid economies [1][24] is
valuable here, particularly with respect to the ygwyg
policy. Grid economic work concentrates on using
economic models to determine the current “price” for a
resource and mechanisms for brokering that resource to
clients. The VO-wide resource provisioning policies
presented here are complementary in that they specify the
VOs “coin of the realm” (the resources themselves, i.e.
utilization is paid for by providing utilization) and an
enforcement model (see below).

It is worth noting that each VO needs some minimum
standard that each member resource must meet in order to

4

join. If a resource is sub-standard compared to others in
the VO, no user will want to use that resource, and so its
owner, will be unable to receive credit for its use. Again,
the exchange rate is important because the providers of a
large tape archive will not necessarily need to have
processors competitive with those of a compute farm
provider.

3. Enforcement of VO Resource
Provisioning Policy

Of course, having a policy means having to enforce that
policy. Where policies are implicit, they are usually
enforced by site administrators, often through the
configuration of site-specific security infrastructure.
Explicit policies allow enforcement to be automated, and
thus provide more fine-grained detail than a human would
be able or interested in enforcing “by hand”. We divide
policy enforcement into enforcement conditions and
enforcement actions.

An important issue in policy enforcement is determining
which entities (i.e. principals) will be effected by the
enforcement. In other words, who gets credit/punishment
for complying/not complying with VO policy? A
supercomputer centers provides many resources and users
to any VO to which it participates. If one such VO had a
1/N policy, who would see the effects of a supercomputer
center’s resources not being used as defined in the policy?
Would it be all of that supercomputer center’s users (or a
subset)? Or would it be users from other POs who are
affected by some automatic reconfiguration of the grid
resources? In a ygwyg VO, there must be an association
between users and resources whereby utilization of the
resource provides “credit” to one or more users. However,
since policy enforcement is based on the credit (or lack
thereof) of a particular user, the issue of how to divide the
credit for use of the resources of a super-computing center
(or any similar organization) among its users is an
important one.

3.1. Enforcement Conditions

Enforcement conditions describe the situations under
which the VO should take some action to enforce its
policy. The simplest conditions are based on tolerances
from some nominal distribution of projected resource
utilization. For example, for a 1/N policy, this might be
whenever the difference between the most and least
utilized resource exceeds some limit. For a ygwyg policy,
this might be when a VO member has used a fixed
amount more than their associated resources have
provided.

In the event that some corrective action must take place,
there is an issue regarding in-progress operations. Should
an ongoing user operation be immediately terminated or
allowed to complete when an appropriate enforcement
condition is detected? What should be done with the
(possibly partial) results of that operation? Should they be
returned to the user, removed or held in escrow until the
enforcement condition no longer exists?

Another matter is how conditions in the VO at startup
affect enforcement conditions. In a 1/N VO, policy should
specify some minimum VO-wide workload below which
the policy is not enforced. This prevents enforcement
actions from being taken when there is not yet enough
demand to warrant a change in the utilization distribution.
In a ygwyg VO, the policy must specify the initial credit
that is given to a new user. Such a VO depends on each
user both consuming resources and providing them. If a
user only provides resources that other VO members use,
but the user does not consume any herself, eventually that
user will receive a disproportionate amount of the total
“credit” in the system. This can have the effect of starving
out other users. Initial credit must be carefully selected to
not allow users to perform large amounts of work without
having to contribute resources, but not so small as to
allow the VO to easily bog down when one user does not
currently require resources.

It is interesting to note that ygwyg VOs have an inherent
“risk”. The VO’s enforcement conditions must define a
maximum possible “debt” that a VO member can
accumulate before being completely denied access to VO
resources. The virtual organization “risks” this much
resource utilization whenever a new member joins the
VO. If the user then leaves the VO (with their associated
resource), the VO has lost the ability to collect service
back from that user (see section 4.3 for a discussion of
another similar kind of risk). Obviously decisions on
membership in large VOs that span many POs must be
made carefully.

3.2. Enforcement Actions

The two basic questions for a VO’s enforcement actions
are precisely what those actions are and who performs
them. There are two types of actions that can be taken:
punitive and corrective.

Punitive actions are those that reduce the quality of
service that the VO provides to a user or set of users. The
idea is to cause those users to enact a change in a
particular resource’s compliance (either directly for self-
administered resources or through their local system
administrators). Assume that UVa contributes 1 TeraByte
of file space to a 1/N Physics VO. If a UVa system

5

administrator for the cluster repeatedly removes files that
have originated outside of UVa, then a punitive action
might be for “the VO” to send all UVa computational
jobs to a slow machine, until UVa proves that it is willing
to let non-UVa files reside at UVa.

Corrective actions are actions in which the system
attempts to alter the VO’s distribution of resource
utilization to achieve compliance. Assume UVa agrees to
contribute part of one of its clusters to a 1/N VO. If there
is a disproportionate amount of non-UVa jobs being
executed on the UVa cluster, then jobs may be redirected
to other resources in the VO to attempt to achieve the 1/N
goal. It is important to note that in this context,
“disproportionate” refers to the distribution of work
across the VO, not some measure of UVa jobs to non-
UVa jobs on the UVa cluster. Corrective actions are not
meant to “punish” underutilized resources, but to alleviate
the load on over utilized ones (and thus the amount of that
resource available for local non-VO projects).

In general, whether a policy specifies punitive or
corrective actions will depend on the ability of the VO to
affect the individual member resources. The more
independent the member resources are, the less likely it is
that an enforcement service can correct for policy non-
compliance. For example, if VO members can directly
submit jobs to VO resources (as opposed to using a
centralized scheduler), then those compute resources must
be willing to accept a directive from an enforcement
service to re-route submitted jobs to an under utilized
resource. Corrective actions will also be limited by the
requirements of any particular resource request. For
example, not all compute nodes in a VO will have the
same processor/OS and so it is not generally possible to
route job requests to arbitrary nodes, even if they are
under utilized.

VO policy will likely have multiple levels of enforcement
actions depending on how far a particular resource is from
compliance. Corrective actions in a 1/N VO will depend
on the resource that must be equally distributed. To more
evenly distribute compute cycle use, new scheduling
approaches can be used to direct jobs to resources that
must perform more work. To move evenly distribute
space utilization, files can be migrated between storage
resources after they are initially placed. In ygwyg VOs,
corrective actions will typically involve some form of
scheduling as various resources will need to receive use
for their owners to receive credit. Some resources may
require assistance from a VO level scheduler to prevent
starvation. While the most obvious punitive action is to
outright restrict a particular user’s (or set of users’) access
to other resources in the VO if their associated resource is
non-compliant, less stringent punitive actions include
sending email to administrators or users merely alerting

them to the problem (and thus give the opportunity for the
end-users to correct the problem themselves).

The final issue is the identity of the entity that actually
performs the enforcement actions. While an explicit VO
policy in the long-term facilitates automated enforcement,
in many cases, a human will be in the loop to
authorize/schedule an enforcement action. No matter how
humans are involved, there may be multiple enforcement
services. Policy may specify that there is one per
resource, one per user, one per action, or some other
measure. For example, every time a UVa scientist
attempts to submit a job to the Physics VO, it may be
appropriate to “intercept and evaluate” the submission for
proposed compliance with the VO policy. The selection
of the number of independent enforcement services will
depend on which method will most effectively scale with
the virtual organization.

3.3. Security

An important issue is how all of the components that
process and implement VO policy can ensure the veracity
of the information they consume. As VOs grow larger and
contain more members, there is a greater chance for
accounting services to receive bogus utilization
information or for enforcement services to receive bogus
instructions to execute enforcement.

One scalable solution that we have been pursuing is to use
digital signatures on messages exchanged between
services. The WS-Security specification [3] defines a
standard technique for signing XML messages. PKI
cryptography and X.509 certificates can be used to
generate signatures and different portions of the same
message can even be signed by different entities. For
example, any resource utilization report sent to the
accounting system by a resource should be signed by that
resource’s private key. Note that this implies that each
resource has its own certificate. While this signature
would prevent a third party for modifying the utilization
report on the wire, the resource itself may receive bogus
user requests. This requires that all user requests be
signed by the user, enabling the resource to verify that
they are a member of the VO. Timestamps can be used to
prevent third parties from artificially inflating a resource’s
utilization by replaying valid user request messages.
There is a similar problem with messages sent to the
VO’s enforcement service. Any data that this service
receives from the accounting service must be signed by
the accounting service. Any resources contacted by an
enforcement service to alter a member’s privilege on that
resource must similarly expect those messages to be
signed by the enforcement service.

6

4. A Prototype Policy-based Virtual
Organization

In order to further refine the issues and approach
suggested thus far in this paper, we have implemented a
policy-based VO prototype using Microsoft’s .NET and
Web Service Extensions (WSE). We chose .NET because
of its proposed role in OGSA/OGSI, its extensive support
of Web Services and its support of the emerging Web
Services security specifications (we decided that
evaluating this in the context of Globus directly was too
difficult). This grid-system is composed of a set of web
services that act as access points to resources, handle
resource utilization accounting, and enforce the virtual
organization’s policy. The prototype system described
here implements the ygwyg policy.

The policy-based VO prototype consists of 3 types of web
services: GateKeepers that represent access points for
resources in the VO, Enforcers that are in charge of
carrying out the VO’s enforcement actions, and a Bank
that collects resource utilization data and holds
information about member users and resources. All of
these services are stateful and expect any request
messages sent to them to be digitally signed by an
authorized entity.

4.1. The GateKeeper service

The GateKeeper service is similar in spirit to the Globus
Gatekeeper and provides access to a resource for VO
members. In this prototype, members can request use of
processor and/or disk resources and when the request is
completed, the resource utilization (size of file or runtime
of job) is sent to the Bank. The resources in this VO, a
pool of PC-class machines, each “credit” one user for
their utilization (the owner of the machine).
The GateKeeper interface provides a number of important
methods with the Register and RunJob methods
being the most interesting (WriteFile is another
method similar to RunJob, but for accessing the disk
resource). The Register method is used when joining
the VO. When a GateKeeper service is started, this
method is invoked to tell the Bank which user should
receive credit for work done by this GateKeeper’s
resources. The message sent to the Bank contains the user
DN to be credited and information about the resources of
the GateKeeper’s local machine (i.e. processor speed and
disk capacity). The latter information is used by the Bank
to a) determine if this resource meets the VO’s minimum
standards and b) calculate how much a user is debited for
using the resources (better resources “cost” more). The
GateKeeper signs all outgoing messages with the local
machine’s certificate.

The RunJob method provides access to the GateKeeper
machine’s processor resource. RunJob is invoked via a
signed SOAP message from the user wishing to execute
on the machine. If the GateKeeper recognizes the DN
(Distinguished Name) in the signature as belonging to one
of the current VO members, the invocation is allowed
(see below for why a request from a VO member might
also be disallowed). RunJob takes the name of a
Windows executable and job arguments and executes that
job on the local processor. (For simplicity and to satisfy
certain trust issues, the Windows executables are already
installed on the machines.) When execution completes, a
resource utilization report is sent to the Bank. This report
contains the original, signed request message from the
user and the job’s total processor time (in ms) all under
the GateKeeper’s signature. This prevents rogue
GateKeepers from altering the credit/debt of users who
did not request use of their resource (although a user must
trust GateKeeper’s they do use to produce correct
utilization information).

4.2. The Bank Service

The Bank service contains information on every VO user
and resource. For users, this information consists of their
DN, the DN of the GateKeeper (i.e. of the machine’s host
certificate) whose utilization provides them credit and
their current credit/debit for using resources in the VO.
The Bank’s resource information consists of resource
statistics (processor speed and disk size), and well as the
resource’s DN and the DN of its associated user.

The most important method the Bank exposes is
UtilizationReport. UtilizationReport is
called by GateKeepers after they have served a user’s
request for resources. The requestor is debited and the
resource owner is credited with an amount based on the
utilization information (e.g. processor time) and the
resource statistics (e.g. speed).

The Bank is also in charge of the Enforcement service,
which carries out the VO’s enforcement actions. For each
new member that joins the VO, the Bank creates a new
Enforcer (see below). As utilization reports arrive, the
Bank monitors for the VO policy’s enforcement
conditions and instructs the appropriate Enforcer (via a
signed message), to take a particular enforcement action
on its associated user.

4.3. The Enforcement Service

The Enforcement service contains a set of “enforcer
threads”, which handle enforcement actions on particular
users. There are two kinds of enforcement actions in the
VO, one punitive (“cutoff”) and one corrective

7

(“redirect”). The “cutoff” action is when the enforcer
contacts one or more GateKeepers and instructs them to
deny access to their resources to the enforcer’s associated
user. The “redirect” action involves the enforcer
contacting one or more GateKeepers to ask that resource
requests they receive be re-directed to the enforcer’s
user’s resource. This has the effect of providing more
credit to a needy user. Space limitations prevent a
discussion of the redirection mechanism, but it is a simple
matter of forwarding SOAP messages.

Each enforcement action is taken by sending a signed
message to a set of GateKeepers. The GateKeeper may
reject the message if it is a redirect request and that
GateKeeper is already redirecting. If the Bank has
triggered an enforcement action, it will direct the enforcer
to undo that action when the associated condition is no
longer met. The enforcer will then recontact the necessary
GateKeepers. Currently, the Bank initiates a redirect
action when a user is below 15000 credits and a cutoff
action when they reach 0 credits. Admittedly, these values
are somewhat arbitrary and the subject of future research.

The current Enforcement service design provides
GateKeepers with all the information necessary to make
policy-compliant access control decisions. This has the
benefit of allowing VO users to communicate directly
with VO resources using no central mediating authority.
However, it does allow for resources to get “out of sync”
with the Bank, as enforcement actions propagate through
the VO. The prototype does not address this issue because
highly-sychronized VOs are beyond our current scope.

4.4. Evaluation

In order to evaluate our prototype VO, we performed an
experiment to measure the cost of conforming to the
ygwyg policy. The VO enforcers use the “redirect”
enforcement strategy and thus redirects jobs to resources
whose associated users have low (or no) credit. Because
the resources in the VO had different performance
characteristics, redirecting a job to a different resource
than originally targeted can result in decreased
performance in terms of the turnaround time for the user’s
requests (recall that the VO’s policy does not attempt to
optimize user’s turnaround time, but rather a particular
distribution of resource utilization).

In the remainder of this section, we focus on a
representative scenario that illustrates the cost and
benefits of the prototype implementation. We chose the
following parameters to be representative of current Grid
operations today. A single, representative case was
chosen so that we could more concretely explain the
details/issues regarding the prototype.

Our experimental VO consisted of 4 GateKeepers
(referred to as A, B, C and D) representing hosts with
relative processor speeds of A=2, B=1, C=1.5 and D=1.2.
The user associated with each host ran a specific job, a
certain number of times, on VO resources other than the
one they control. To simplify the experiments, users
launched jobs at a specific rate such that there was no
contention for processors. Four work-sets of 10, 5, 7 and
6 jobs were used. For each experimental run, each work-
set was mapped to specific user, e.g. the user associated
with GateKeeper A (user A) runs 10 jobs, user B runs 7
jobs, user C runs 5 and user D runs 6 jobs. All possible
mappings of work sets to users (24) were run. For the jobs
in a user’s work-set, the user alternates between executing
on the two fastest resources other than their own (e.g. user
A runs on resources C and D, user B runs on resources A
and C, etc.). This scheduling pattern was chosen because
it approximates the “hand scheduling” common among
VO users today. Since B is the slowest resource, none of
the other users will choose to schedule on it. However, in
each run user B executes enough jobs that the Bank will
detect the redirect condition (user B credit < 15000) and
begins diverting jobs to resource B. These redirections
(and similar redirections to resource D) cause reduced
response time compared with the response times that
would have been produced by the originally requested
resource.

Table 1 and Table 2 show the result of running the 24
mappings of work-sets to users. Results both with and
without policy enforcement are shown. Table 1 shows the
absolute difference between the number of jobs run by a
resource and the number requested of others by that
resource’s associated user (e.g. the difference between the
number of jobs run on resource A and the number of jobs
run by user A). Totals for all 24 runs are shown. There are
two interesting effects to notice in Table 1. First, the
policy enforcement mechanism has not reduced the
difference between jobs run by a resource and jobs
requested by a user to 0. This is because of the specific
redirection strategy, in which only the resource with the
most credit is selected to redirect jobs to other resources.
If more resources were used to redirect jobs to low credit
resources, the policy can be complied with more closely.
However, the possibility of over-compensating (due to the
time needed send messages to more GateKeepers to
disable the redirection) and sending too many jobs to the
resource increases. The second is that user D is actually
further from compliance with the policy. This is due to
redirection of jobs (mostly to resource B) which would
have been run on D and kept it in closer compliance.
Table 2 displays the average turn-around time of all the
jobs run by each user in all 24 runs. This table shows the
cost of policy enforcement in terms of the performance
seen by the users. The decrease in performance seen in
the policy-based VO is due to the redirection of jobs to

8

resources B and D (which are slower). This redirection is
necessary because of the number of jobs run by user B
and user D requires the redirection to bring up the credit
of those users.

 user A user B user C user D
No policy 3.75 7.00 3.75 0.25
YGWYG 1.63 1.33 1.67 1.33

Table 1. Average difference between number of jobs
run on a resource and run by that resource’s

associated user

resource A B C D
No policy 15.83 11.80 13.91 11.96
YGWYG 16.25 13.59 16.53 14.30
% slow down 2.7% 15.2% 18.8% 19.6%

Table 2. Average turn-around times for jobs run by
each user (in seconds)

5. Conclusions

As grid computing evolves, virtual organizations will
become more important, have more resources and
members and be more difficult to administrate. Virtual
organization policy assists the creators and maintainers of
a VO by allowing them to specify a set of rules governing
the virtual community. This work describes issues
involved in policy specification and enforcement as well
as a prototype implementation. In future work, we plan to
expand the deployment and evaluation of the prototype in
the context of our continuing work in supporting OGSI-
compliant services in the .NET framework (and thus all
OGSI-compliant services).

6. References

[1] Abramson, D., Buuya, R., and Giddy, J. 2002. A

Computational Economy for Grid Computing and its
Implementation in the Nimrod-G Resource Broker.
Future Generation Computer Systems. Vol. 18(8).

[2] Alliance: National Computational Science Alliance.
2002. http://www2.ncsa.uiuc.edu/About/Alliance/

[3] Atkinson, B., et. al. 2002. Web Services Security (WS-
Security). http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnglobspec/html/ws-security.asp

[4] ATLAS Grid. 2002. http://www.usatlas.bnl.gov/
computing/grid/

[5] Box, D. et. al. 2002. Web Services Policy Framework
(WS-Policy). http://msdn.microsoft.com/library/default.a
sp?url=/library/en-us/dnglobspec/html/ws-policy.asp

[6] Box, D. et. al. 2002. Web Services Policy Assertion
Language (WS-PolicyAssertions). http://msdn.
microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-policyassertions.asp

[7] CalTech Virtual Organization Group Manager
(“GroupMan”). http://groupman.sourceforge.net/

[8] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman,
C. 2001. Grid Information Services for Distributed
Resource Sharing. Proceedings of the Tenth IEEE
International Symposium on High-Performance
Distributed Computing (HPDC-10)

[9] Della-Libera, G. et. al. 2002. Web Services Security
Policy Language (WS-SecurityPolicy).
http://msdn.microsoft.com/library/default.asp?url=/librar
y/en-us/dnglobspec/html/ws-securitypolicy.asp

[10] Distributed Management Task Force (DMTF). 1999.
Common Information Model (CIM). v. 2.2.
http://www.dmtf.org/standards/cim_spec_v22.

[11] Distributed Management Task Force. 1998. Desktop
Management Interface Specification (DMI). v. 2.0.
http://www.dmtf.org/standards/
documents/DMI/DSP0001.pdf.

[12] Dulay, N., Lupu, E., Sloman, M. and Damianou, N. 2001.
A Policy Deployment Model for the Ponder Language.
Proc. IEEE/IFIP International Symposium on Integrated
Network Management (IM’2001)

[13] Global Grid Forum. http://www.ggf.org.
[14] GriPhyN: The Grid Physics Network. 2002.

http://www.griphyn.org/index.php.
[15] Keahey, K and Welch, V. 2002. Fine-Grained

Authorization for Resource Management in the Grid
Environment. Proceedings of Grid2002 Workshop.

[16] NASA Information Power Grid. 2002.
http://www.ipg.nasa.gov/

[17] NPACI: National Partnership for Advanced Computing
Infrastructure. http://www.npaci.edu

[18] Pearlman, L., Welch, V., Foster, I., Kesselman, C. and
Tuecke, S. 2002. A Community Authorization Service
for Group Collaboration. Proceedings of the IEEE 3rd
International Workshop on Policies for Distributed
Systems and Networks.

[19] Strassner, J., Ellesson, E., Moore, B. and Westerinen, A.
2001. Policy Core Information Model -- Version 1
Specification. RFC 3060.

[20] Sundaram, B., and B. Chapman. XML-Based Policy
Engine Framework for Usage Policy Management in
Grids. Proceedings of the Third International Workshop
on Grid Computing (Grid 2002). Baltimore, MD,
November 2002.

[21] Thompson, M. 2001. Akenti Policy Language.
http://www-itg.lbl.gov/security/Akenti/Papers/
PolicyLanguage.html

[22] Usage Record Working Group. Global Grid Forum.
2002. http://www.gridforum.org/3_SRM/ur.htm

[23] Verma, D., Sahu, S., Calo, S., Beigi, M. and Chang, I.
2002. A Policy Service for GRID Computing. GRID
2002, LNCS 2536. Springer: 243-255.

[24] Wolski, R., Plank, J., Brevik, J. and Bryan, T. 2001.
Analyzing Market-based Resource Allocation Strategies
for the Computational Grid. Intl. Journal of High-
performance Computing Applications. Vol. 15(3).

[25] Wolski, R., Spring, N., and Hayes, J. 1998. The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Journal of
Future Generation Computing Systems.

[26] Virtual Organization Membership Service. http://grid-
data-management.web.cern.ch/grid-data-
management/security/

