THE UNIVERSITY OF

WARWICK

Original citation:

Lim Choi Keung, H.N, Dyson, J. R. D, Jarvis, Stephen A., 1970- and Nudd, G. R. (2003)
Predicting the performance of globus monitoring and discovery service (MDS-2) queries.
In: 4th International Workshop on Grid Computing, Phoenix, AZ, 17 Nov 2003. Published
in: Fourth International Workshop on Grid Computing, 2003. Proceedings. pp. 176-183.

Permanent WRAP url:
http://wrap.warwick.ac.uk/9040

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:

“© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your research

http://wrap.warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/9040
mailto:publications@warwick.ac.uk

Predicting the Performance of Globus Monitoring and Discovery Service
(MDS-2) Queries

Hélene N. Lim Choi Keung, Justin R.D. Dyson, Stephen A. Jarvis, Graham R. Nudd
High Performance Systems Group
Department of Computer Science, University of Warwick
Coventry, UK
hlck@dcs.warwick.ac.uk

Abstract

Resource discovery and monitoring in a distributed Grid
environment gives rise to several issues, one of which is the
provision of reliable performance and hence, the quality-of-
service delivered to Grid users. This performance require-
ment brings about the necessity to know how the Monitor-
ing and Discovery Service (MDS) would respond to var-
ious queries. This paper focuses on the performance of
the MDS as part of the knowledge needed by a Grid en-
tity, to choose a Grid Index Information Service (GIIS) for
discovering resources. Several performance metrics are de-
fined and the performance achieved by a GIIS is evaluated
against that obtained by a GRIS [15]. Based on the GIIS
performance data collected, the values for the performance
metrics are predicted using different algorithms. Thus, past
performance observations can be used to qualitatively char-
acterise the future performance of the GIIS, allowing Grid
middleware built on these services to be more predictable.

1. Introduction

Grid computing [12] enables collaborations amongst sci-
entists in the form of data sharing and remote process-
ing [13]. End users expect a reliable quality-of-service from
Grid middleware and from continually improving network
bandwidths. End-to-end quality-of-service depends on the
reliable performance [6] obtained from each component of
Grid middleware; an integral part of these being the Grid In-
formation Service. This is an important component of Grid
middleware since it enables the discovery and management
of resource entities on the Grid. The contribution made
by this paper is the characterisation of the performance ex-
pected from the Globus [3] Monitoring and Discovery Ser-
vice (MDS) [9] which is a widely deployed reference im-
plementation of a Grid information service.

Making use of a Grid Information Service like the MDS
raises questions about the efficiency with which the service
can be accessed. The answer depends on many factors, in-
cluding the physical features of the machine on which the
MDS is running, the load on the machine, and the char-
acteristics of the resources on which information providers
are running. This paper investigates the behaviour of the
GIIS in responding to a query via several typical scenarios,
and will focus on its end-to-end efficiency from the point
where the query reaches the MDS, to when the client re-
ceives the response. Consequently, whilst network moni-
toring is indeed part of this resource discovery process, this
paper analyses whether the behaviour of the MDS itself can
be characterised and predicted. Therefore, a LAN is used to
minimise external conditions affecting the performance of
the MDS. Performance prediction of the network compo-
nent of Grid computing has already been carried out [19].

The performance obtained from a GIIS depends on the
performance of the GRISes which are registered with it.
The performance is also dependent on the time-to-live
(TTL) [11] of the information the GRISes return to the
GIIS. Usually, a quick response can be expected when the
data is cached. However, when the requested data has
expired in the cache, the GIIS will query the lower-level
GRISes which supply the data. The performance of this
sub-query is equivalent to a client directly querying the
GRIS; an analysis of the performance obtained with various
information providers and GRIS back-end implementations
has been reported in a previous paper [15].

Since the observable performance of a query to a GIIS
relies on the complexity of the GIIS hierarchy, it is cru-
cial to analyse and understand the performance of a simple
GIIS hierarchy. This paper investigates the observable per-
formance obtained when a user-level application queries a
GIIS which has a single GRIS registered to it. Both the GIIS
and GRIS are on the same server machine. Furthermore, the
GRIS has the default core information providers supplying

information to it [15]. As a consequence, specific GIIS and
GRIS implementations can be recommended, based on the
performance prediction for MDS2 as derived from past ob-
served performance data. Several different predictors are
discussed and the way they are applied to previous perfor-
mance data is analysed.

The rest of this paper is organised as follows; related
work on which this paper builds, is presented in Section
2. Section 3 explains the experimental set up for gathering
GIIS performance data. The experiments and their results
are shown in Section 4, and Section 5 focuses on the var-
ious performance evaluation and prediction techniques ap-
plied to the MDS. The paper concludes with future work in
Section 6.

2. Related work

The work in this paper builds on [15, 16] where the per-
formance achievable from querying a GRIS with different
back-end implementations, was analysed. A number of
performance metrics were defined for the characterisation
and comparison of performance. Results were obtained and
conclusions drawn from them; here, the performance of a
GIIS is evaluated, where the GIIS is located on the same
machine as the GRIS. Results will show the difference in
querying the GIIS using a number of evaluation methods.

Grid Information Service (GIS) performance had been
previously examined. For example, security-enabled
queries were sent to the MDS and compared to queries
with no security involved [5]. Moreover, the performance
of the MDS with different versions of LDAP [14] has also
been investigated [17]. The results from [17] have con-
tributed to the more recent MDS architecture. Furthermore,
Schopf [20] examined the difference in scalability obtained
from three information and monitoring systems: MDS2.1,
R-GMA and Condor’s Hawkeye system; scalability results
are obtained when various system components are subjected
to increasing user loads.

3. Experimental Setup

The experiments were carried out on a Grid testbed at the
University of Warwick and were based on MDS 2.1. This
particular version of the MDS was chosen because MDS
2.x is currently utilised in the majority of UK e-Science
projects [4] and US testbeds including NASA’s Information
Power Grid [2]. Across the various experiments, the fol-
lowing agent setup was maintained where the agents were
written using the Java CoG Kit libraries [18]. Agents make
request queries to the MDS which are sent from a set of
ten machines (mscs-02 to mscs-11). With a maximum of
500 agents simultaneously making queries over a period

of ten minutes, the desired effect was to load-balance the
queries and to sustain the MDS querying. The maximum
number of agents attributed to one machine is therefore 50.
The mscs machines each has the Linux operating system in-
stalled with kernel 2.4.18-27.7.x, a 2.4 GHz processor and
512 MB RAM. The mscs machines are also on an Ethernet
LAN and are connected to the GIIS host by a 100 Mb link.
The time taken for each request to be serviced is measured
and an average response time is calculated. Moreover, every
agent sleeps for one second before sending the next request.

To test the scalability of the MDS, a GIIS and a GRIS
were both set up on a Linux kernel 2.4.18-14 machine (M)
which has a 1.9 GHz processor and 512 MB RAM.

In these sets of experiments, complex searches on data
objects are not being performed. Subsequently, queries
should return all the data available, thus allowing the sta-
tus of the Grid to be discovered.

3.1. Evaluation Methods

Different implementations for the GRIS back-end and
information providers were used in the experiments. Three
definitions are given to the different GRIS evaluation meth-
ods [1]:

1. Lazy evaluation: Obtain freshly generated information
on receiving a search request.

2. Eager evaluation: Obtain freshly generated informa-
tion on receiving the first search request, and cache
it in the GRIS. Thereafter, check the cache to see if
the subsequent search requests can be serviced. If the
cache TTL (time-to-live) has not been reached, then
the requests are serviced out of the cache. Otherwise,
obtain freshly generated information (lazy evaluation)
and cache the information.

3. Speculative evaluation: Information is generated fre-
quently and placed in a recognised location. On re-
ceiving a search request, service is provided from in-
formation in that location. There is no caching in the
GRIS in this method. Here, the information being re-
turned for the search request may not be fresh (as in
the lazy evaluation), but it is readily available and is
frequently updated.

3.2. GRIS Back-end Implementations

Using the evaluation methods discussed above, a number
of implementations were set up for the GRIS back-end and
a series of experiments carried out. These back-end imple-
mentations are:

e Lazy evaluation (LE)
The GRIS cache TTL is equal to zero. On the receipt

of each query, the GRIS launches its core information
providers.

e Eager evaluation (EE)
The GRIS cache TTL is not equal to zero (default val-
ues) and the information providers are invoked when
the cache is expired. Moreover, the cache is filled with
the new generated data.

e Java speculative evaluation (SE) The GRIS cache
TTL is equal to zero and the information providers
write their data to a relational database on average ev-
ery minute. The frequency at which these informa-
tion providers write to the database is set to emulate
the GRIS cache TTL. The information provider acces-
sors are written in Java and two databases are used for
this evaluation method, PostgreSQL and MySQL. The
version of PostgreSQL used is 7.2.3 with no extra fea-
tures such as caching enabled. Moreover, the version
of MySQL used is 4.0.1 and caching is disabled.

o Eager & Java speculative evaluations
The GRIS cache TTL is not equal to zero and the
information providers write their data to a relational
database on average every minute. The information
provider accessors are written in Java and the same two
relational databases are used.

o Perl speculative evaluation

The GRIS cache TTL is equal to zero and the informa-
tion providers write their data to a relational database
on average every minute. This implementation is sim-
ilar to the Java speculative evaluation method with the
difference lying in the information provider accessors
which are written in Perl. The same two relational
databases are used.

When speculative evaluation is used as the GRIS back-
end implementation, the database does not contain any other
records apart from the output from the core information
providers.

3.3. Performance metrics

The same performance metrics as in [15] are used for
consistency and comparison. They are:

e Average response time in seconds (R);

Average throughput in terms of the number of queries
answered per second (7);

Total number of successful query responses (R.);

1-minute load average (L£1);

S-minute load average (Ls).

GIIS average response time vs No. of concurrent agents

EE

Java SE

EE Java SE
Perl SE

oo ¥ X+

Average Response Time (s)

0.01 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

No. of Concurrent Agents

Figure 1. Experiment average response time.

4. Experiment Results

4.1. GIIS Results

This experiment examines the change in the scalability
of a GIIS with an increase in the number of agents.

The timeout on the GIIS has been set to 600 seconds to
allow time for any query response to return to the agent.
Also, the GIIS cache TTL has been set to 3600 seconds to
simulate the overhead of querying a GIIS as compared to a
GRIS.

It has been found that when the GIIS cache TTL is set
to zero and the GRIS works by lazy evaluation, poor per-
formance is obtained from the GIIS for more than 10 con-
current agents. Similarly, when the GIIS cache TTL is in-
creased to 60s, the GIIS performance declines with more
than 100 concurrent agents. Increasing the GIIS cache TTL
further to 1800s, allows up to 200 agents to concurrently
query the GIIS with adequate performance. Therefore, to
obtain an acceptable level of performance from the GIIS
and to stretch its resource discovery behaviour, its cache
TTL has been set to 3600s throughout this experiment.
This cache TTL value is reasonable because the nature of
the resource information provided by the core information
providers is rather static, for instance the type of operating
system, the total memory available and the CPU model.

Up to 500 agents queried the GIIS simultaneously, with a
waiting period of one second between receiving a query re-
sponse and issuing the next query. There were a maximum
of 50 concurrent agents on each of the ten mscs machines,
issuing queries over a period of ten minutes. The results
from the experiment are shown below.

Figure 1 shows that all five implementation methods al-
lowed relatively consistent average response time to be ob-
tained when 1 to 150 agents simultaneously query the GIIS.
For clarity, only the results for PostgreSQL are shown, as

the results with MySQL are similar. Lazy evaluation has
the highest R with an average of 0.03s; the four other
GRIS back-end implementation methods have much lower
Rr. EE displays the least Rt and the relatively sharp in-
crease in R for Java SE and, for EE and Java SE, can be
attributed to database communication and the overhead of
the JVM. When the number of concurrent agents increase
beyond 100, the R of all the methods are comparable and
increase quadratically up to about 3.7s. This effect is the re-
sult of caching in the GIIS; the extra overhead on the GIIS
when there are more agents, is handled uniformly by the
GIIS cache as the data is almost always in cache.

The corresponding throughput graphs, which are not
shown, are the inverse of those in Figure 1 and they indicate
that caching data or updating it periodically in a database at
the GRIS backend, enables the GIIS to handle more queries
per second. The throughput levels at 3.0 queries/s when
150 agents concurrently query the GIIS; it further drops to
around 0.3 queries/s for 500 agents.

GIIS total no. of responses vs No. of agents
70000

LE

EE

Java SE

EE Java SE
Perl SE

60000 b

oo¥ X+

50000 ~

40000 b

30000 ~

Total No. of Responses

20000 b

10000 A

0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

No. of Concurrent Agents

Figure 2. Experiment total number of re-
sponses.

Figure 2 shows that all evaluation methods return very
similar numbers of query responses for the various numbers
of agents. The R, for 1 to 10 agents increases slowly to just
over 5000 and it increases sharply to around 65000 at 150
agents. As the number of agents keeps increasing, the R,
stays stable at 65000. If less than 150 agents simultaneously
query the GIIS, R, is increasing because more queries can
be answered per second. Nevertheless, as more agents hit
the GIIS, the latter reaches its saturation point and cannot
process more than 65000 requests over an average of 10
minutes.

In Figure 3, the 1-minute load average of Perl SE, EE
and LE start off at about 0.2 and they almost quadratically
increase to 8.0 for 100 agents. From that point, Perl SE
L1 increases to about 40.0 while EE and LE L stabilise at

GIIS 1-min load average vs No. of concurrent agents
100

Java SE
EE Java SE
Perl SE

oo ¥ X+

1-min Load Average

0.01 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

No. of Concurrent Agents

Figure 3. Experiment 1-min load average.

around 11.0. This is because of the communication which
Perl SE has with the PostgreSQL database. On the other
hand, Java SE and, EE and Java SE £; decrease slightly
as the number of agents increases from 1 to 5. This is due
partly to the GRIS caching effect and to the low number
of queries received. But with an increase in the number of
agents, their £; increases from about 0.3 to 40.0. This in-
crease stops with the number of agents rising from 150 to
500. The overhead from the Java language and the peri-
odic writing to the PostgreSQL database raises the load to
a relatively higher number. The curves on the 5-min load
average graph are not shown because they follow the same
trend, with the exception that the minimum load average is
0.1. On average, L5 will be greater than L;.

4.2. Comparison of GIIS and GRIS Performance

Figures 4 to 7 show the differences in the performance
of a GRIS and GIIS with increasing concurrent requests.
Figure 4 shows that GIIS LE is more efficient than GRIS
LE throughout the whole of the experiment. The GIIS R+
remains relatively constant as the number of agents query-
ing the GIIS increases from 1 to 100, but there is a sharp
increase in R thereafter. With EE, the GIIS R is only
slightly better than that for the GRIS as the number of
agents increases from 1 to 100. However, as this number
increases to 500, the GRIS and GIIS R are very similar.
These observations can be explained by the caching effect
in both the GRIS and the GIIS. Similar results are seen with
Java SE (PostgreSQL) where R stays relatively constant
as the number of agents increases to about 100. Then, there
is an increase to around 3.5s at 500 agents. The GRIS and
GIIS R for EE and Java SE (PostgreSQL) closely follow
that for EE. Moreover, the Perl SE experiments show that
R is lower than for EE and Java SE (PostgreSQL). How-
ever, it is similar to that for Java SE (PostgreSQL), indicat-

Average Response Time

3z T T 0 g J=—cRISLE
[=== GIISLE
E = GRIS EE
[= GIIS EE
a
c
o
Q
@
D
i
[}
(=]
[
[}
>
<
1 50 100 150 200 250 300 350 400 450 500
No. of Concurrent Agents
L B M B S s s p
1000 ¢ 4 =—= GRIS Java SE
=== GIIS Java

§3 === GRIS EE & Java SE
O 100 | mmmmm GIIS EE & Java SE
g = GRIS Perl SE
e 10 | e GIS Perl SE
3
2
2 1
o)
o
o 0.1
o
g
< 0.01

0.001

1 50 100 150 200 250 300 350 400 450 500
No. of Concurrent Agents

Figure 4. Comparison of GIIS and GRIS aver-
age response times.

ing that caching in the GIIS levels out any differences in Rt
from the GRIS. Figure 5 is related to Figure 4 and is shown
for reference.

The total number of responses with GIIS LE sharply in-
creases with the number of agents, and starts to stabilise
for a number of agents greater than 100 at around 66000.
Moreover, querying the GIIS instead of the GRIS allows
more responses to be serviced. The GRIS and GIIS values
of R, for EE are very similar, indicating that caching in
both the GRIS and GIIS can allow for a maximum number
of simultaneous queries to be serviced. Similar results are
found for both Java SE and Perl SE as for LE. The results
for EE and Java SE (PostgreSQL) are similar to those with
EE. All these results also show a constant R, across the
different experiments, suggesting that there is a maximum
number of queries which the GIIS can handle under its set
conditions.

The GIIS 1-minute load average with LE steadily in-
creases as the number of agents increases from 1 to about
150, and thereafter it stabilises at around 13.0. When the
number of agents is less than 50, the load with only the
GRIS on the node is higher than that with both the GRIS
and the GIIS. However, as the number of agents keeps in-
creasing, £1 for the GIIS becomes greater than that for the
GRIS. Results which are not shown here, indicate a similar
behaviour for LE L£5. With less than 50 agents, caching in
the GIIS allows the load on the node to be low but a larger
number of agents causes the load to increase as more infor-
mation providers have to be executed. In EE, £1 for both
the GRIS and the GIIS closely follow each other; the same

. Throughput
2 100
8 —— GRISLE
5] === GIIS LE
a 10 = GRIS EE
= = GIIS EE
g 1 1
=
2
3 0.1
s
=
[} 0.01
(=
o
£ 0.001
< 1 50 100 150 200 250 300 350 400 450 500
No. of Concurrent Agents
100
—= GRIS Java SE
& === GIIS Java
g 10 F ==== GRIS EE & Java SE
2 = GIIS EE & Java SE
g m— GRIS Perl SE
<] 1k mmmm GlIS Perl SE
=
=
g 0.1 F
3
e
S 0.01 |
(o}
o
o
] 0.001 F
<
0.0001

1 50 100 150 200 250 300 350 400 450 500
No. of Concurrent Agents

Figure 5. Comparison of GIIS and GRIS
throughputs.

results occur with L. For Java SE, similar results are ob-
tained as for LE, with the difference that the load stabilises
at about 40.0; SE places a much higher load on the node. In
addition, Perl SE places a slightly higher load on the node,
and EE and Java SE produces higher £, and L5 due to the
overhead incurred by SE.

5. Performance Evaluation and Prediction
5.1. Predictive Methods

It is difficult to observe a trend in the behaviour of the
GIIS; therefore, a number of predictive methods are ap-
plied to past GIIS data. In addition, the characterisation
of the performance of the MDS does not take into account
the network load or the Grid topology. The approach taken
is to formulate a prediction for the GIIS performance, for
the benefit of a Grid application. A performance method-
ology is therefore developed to choose the most appropri-
ate GRIS evaluation method and for predicting the cost of
queries. The performance prediction of a query from obser-
vations of past queries can be used by the end user, that is
the agent, which is interested in the resource discovery end-
to-end performance. This performance information can be
used in its other functionalities, including metascheduling
and contributing to the guarantee of quality-of-service con-
tracts.

The performance prediction of a query to the MDS is
based on collecting performance information for each query
that is made to the GIIS and then applying predictive meth-
ods to the previous observations. The gathering of per-

Total Number of Responses
100000 F——7—T——T—T——T—T—T—T— 1T

10000 = GIIS EE

1000

Total No. of Repsonses

100

50 100 150 200 250 300 350 400 450 500
No. of Concurrent Agents

100000 g— T T T T T T T T
—— GRIS Java SE
=== GIIS Java

==== GRIS EE & Java SE
== GlIS EE & Java SE
_| mmm GRIS Perl SE

10000 = GIS Perl SE

1000

Total No. of Repsonses

100

1 50 100 150 200 250 300 350 400 450 500
No. of Concurrent Agents

Figure 6. Comparison of GIIS and GRIS total
number of responses.

formance information does not affect the behaviour of the
MDS in any way. The different predictors [10] used to esti-
mate future query times are:

o Last observation The most recent, single performance
observation value is taken as the prediction. The last
performance value is most likely to reflect the be-
haviour of future queries.

P,=V ey

e Sample average The prediction is the mean average of
the past performance values within a sample set. This
set is defined by a sliding window of size x, which cor-
responds to the most recent observations. Not all the
performance values are used for the average as old val-
ues become less relevant. This predictor is used when
performance information is produced on a regular ba-
sis. However, given a fixed performance data set, an
average can be used with a maximum window size.

YL
xr

P, 2

e Low pass filter Recent performance data constitutes
a better predictor than older data. Subsequently, this
predictor uses an exponentially degrading function to
obtain an average of the recent performance behaviour
of the MDS. This is achieved by using the low pass
filter formula:

P,o=(weP,_ 1)+ ((1—w)eV) 3)

1-minute Load Average

1-minute Load Average

1-Minute Load Average

= GIIS EE

1 50 100 150 200 250 300 350 400 450 500
No. of Concurrent Agents

——= GRIS Java SE
=== GIIS Java

==== GRIS EE & Java SE
= GIIS EE & Java SE
= GRIS Perl SE
= GlIS Perl SE

1 50 100 150 200 250 300 350 400 450 500
No. of Concurrent Agents

Figure 7. Comparison of GIIS and GRIS 1-
minute load average.

where

P, is the prediction and the new value of the low
pass filter

P,,_1 is the previous filter value

V is the most recent performance observation
value

w is the weighting parameter and is a value
between 0 and 1

z is the size of the sliding window

The value of w is 0.95 [10], thus decreasing the value
of the weight as observation values grow older and in-
creasing the prediction accuracy.

o ARIMA models Due to the fact that the observed data

is stationary i.e it varies about a fixed level, ARIMA
(autoregressive integrated moving average) [7, 8] mod-
els are used to project the data to produce forecasts.
The two most adequate models have been identified
and are the AR(1) and AR(2) models. In the AR(1)
model, forecasts for the next value depend on the ob-
servations in the previous time period; whilst in AR(2)
models, forecasts of the next value depend on observa-
tions in the two previous time periods.

5.2. Query Performance Prediction Results

Figures 8 and 9 show the results obtained when the av-

erage time for a query is predicted using the different pre-

Predictions and Observed Performance
0.0135 T T T T T T

Current Observation
Last Observation
Sample Average
Low Pass Filter

0.013

O*o+

0.0125 -

0.012 B

0.0115 T k.

0.011 B

Performance Observation Value (s)

0.0105 4

0.01 L L L L L
100 110 120 130 140 150 160 170 180 190

Elapsed Time from Experiment Start (mins)

Figure 8. Actual observed data and predic-
tions.

ARIMA Forecasts
0.0135 T T

+ Actual
o AR(1) Forecast
* AR(2) Forecast

0.013
0.0125
0.012
0.0115

0.011

Performance Observation Value (s)

0.0105

0.01 L L L L L L
100 110 120 130 140 150 160 170 180 190

Elapsed Time from Experiment Start (s)

Figure 9. Actual observed data and ARIMA
forecasts.

dictive methods. In addition, the actual performance ob-
servation data is also shown. In the experiment, one agent
repeatedly queries the GIIS using the EE implementation,
and the average response times collected. A sliding win-
dow of ten performance observation values are used for the
sample average predictor. Moreover, the mean of the sam-
ple data set is used as the initial prediction for the low pass
filter predictive method. Query performance prediction is
started when 100 minutes have elapsed since the beginning
of the experiment.

The one-step ahead AR(1) and AR(2) forecasts which
are made over an increasing time series, are shown in Fig-
ure 9. These two models have been checked for residuals
and are considered adequate for forecasting. The graphs
show that the two kinds of predictions closely fit the actual
observed time series.

The predicted and actual values for R at each recorded
time, which are shown in Figures 8 and 9, indicate various
levels of prediction accuracy. For instance, after 120 mins
have passed since the start of the experiment, the observed
data is 0.012s, last observation predicts 0.010s, and sample
average, low pass filter and both ARIMA methods predict a
time of 0.011s. Furthermore, since the observed data tends

2.4e-06

2.2¢-06

20-06 |-

1.8¢-06

1.6e-06 -

Mean Square Erfor

1.4e-06 -
1.20-06 -

16-06 [

N mE .

Last Observation Sample Average Low Pass Filter AR(1) AR(2)
Prediction Method

Figure 10. Mean square error of predictions.

to vary greatly from one value to the next, the last observa-
tion prediction which follows it, is rather inaccurate. On the
other hand, the sample average and low pass filter predict
values which fluctuate rarely.

To compare the prediction efficiency of the different pre-
dictors, their mean square error (MSE) is calculated, using
the equation below:

1
MSE = Ng:(oi - P)? “)

where

N is the data sample set size
O is an observation value
P is a prediction

Figure 10 shows the resulting MSE values of the pre-
dictions with respect to the observed performance values.
The bar chart shows that last observation has the highest
MSE, and that low pass filter has the lowest. These results
are expected because the last observation does not neces-
sarily guarantee that the actual observed value would be the
same. The prediction is improved by 54% with the sample
average predictor which takes into account previous perfor-
mance observations. There is a further 4% improvement in
prediction with the low pass filter as it considers only the
average recent behaviour of the MDS. The low pass filter
equation exponentially decays the significance of older data
and it is slightly more accurate than the ARIMA models.

6. Conclusions and Future Work

The approach taken by this paper is to predict the be-
haviour of the MDS from a Grid application’s point of view,
based on past performance data. These predictions are used
to help the application decide which GIIS to choose for
sending queries. This informed choice further contributes to

guarantee quality-of-service in the use of Grid middleware.
To do so, the performance achievable when queries are sent
to a GIIS, has been analysed and compared with that of a
GRIS. Several scenarios have been set up with different in-
formation providers and GRIS back-end implementations.
The experiment results demonstrate that caching i.e EE, is
required at the higher levels of the MDS hierarchy for an
acceptable level of performance to be obtained. It has also
been found that GIIS caching can annul the benefit of us-
ing GRIS caching. Furthermore, a better performance is
obtained when a GIIS is queried, rather than a GRIS when
caching is enabled in the GIIS and is at least 60s. The value
of the cache TTL depends on the expected number of users
concurrently querying the GIIS.

Using past MDS performance observation data, several
predictive algorithms are implemented and the experiment
results analysed. It has been found that the accuracy of the
predictors were clearly different. The low pass filter pre-
dictive algorithm was the most accurate method, with the
sample average predictor being only slightly less accurate.
Even though the last observation method was the least ac-
curate, its MSE was of the order of 2x10~7, which is very
low. More sophisticated forecasting models have also been
applied to the observed data using AR(1) and AR(2).

Future work will include applying the predictive mech-
anisms of the MDS to other higher-level Grid middleware
components, for example Grid agents. The aim will be to
ascertain quality-of-service characteristics of Grid middle-
ware in its promise to deliver computational power to geo-
graphically distributed locations.

7. Acknowledgements

This work is sponsored in part by funding from
the EPSRC e-Science Core Programme (contract no.
GR/S03058/01), the NASA AMES Research Centres (ad-
ministered by USARDSG, contract no. N68171-01-C-
9012) and the EPSRC (contract no. GR/R47424/01).

References

[1] Globus: Extending GRIS Functionality.
http://www.globus.org/mds/extending-gris.html.

[2] NASA’s Information Power Grid (IPG).
http://www.ipg.nasa.gov/.

[3] The Globus Project. http://www.globus.org.

[4] UK eScience Programme. http://www.research-
councils.ac.uk/escience/.

[5] G. Aloisio, M. Cafaro, 1. Epicoco, and S. Fiore.
Analysis of the globus toolkit grid information ser-
vice. GridLab-10-D.1-0001-GIS_Analysis, GridLab Project.
http://www.gridlab.org/Resources/Deliverables/D10.1.pdf.

[6] F.Berman, G. C. Fox, and A. J. G. Hey, editors. Grid Com-
puting: Making the Global Infrastructure a Reality. Wiley,
2003. page 557.

[7] G.E.P. Box and G. M. Jenkins. Time Series Analysis Fore-
casting and Control. San Francisco: Holden-Day, 1st edi-
tion, 1970.

[8] G.E.P.Box, G. M. Jenkins, and G. C. Reinsell. Time Series
Analysis: Forecasting and Control. Englewood Cliffs, N.J.:
Prentice-Hall, 3rd edition, 1994.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid information services for distributed resource
sharing. In Proc. 10th IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10),
pages 181-194, 7-9 August 2001. IEEE Press.

[10] N. Dushay, J. C. French, and C. Lagoze. Predicting indexer
performance in a distributed digital library. Third European
Conference on Research and Advanced Technology for Dig-
ital Libraries (ECDL’99), Paris, France), September 1999.

[11] S. Fitzgerald, I. Foster, C. Kesselman, G. Laszewski,
W. Smith, and S. Tuecke. A directory service for configur-
ing high-performance distributed computations. In Proc. 6th
IEEE International Symposium on High-Performance Dis-
tributed Computing (HPDC-6), pages 365-375, 5-8 August
1997. IEEE Press.

[12] I. Foster and C. Kesselman. The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers,
Inc., 1999.

[13] I Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. Int. J. Super-
comput. Appl., 15(3):200-222, 2001.

[14] T. Howes and M. Smith. LDAP: Programming Directory-
Enabled Applications with Lightweight Directory Access
Protocol. Macmillan Technical Publishing, 1997.

[15] H. N. Lim Choi Keung, J. R. D. Dyson, S. A. Jarvis, and
G. R. Nudd. Performance evaluation of a grid resource mon-
itoring and discovery service. IEE Proc.-Software, 150(4),
August 2003.

[16] H.N.Lim Choi Keung, L. Wang, D. P. Spooner, S. A. Jarvis,
W. Jie, and G. R. Nudd. Grid resource management infor-
mation services for scientific computing. International Con-
ference on Scientific & Engineering Computation (IC-SEC)
2002, Singapore, 3-5 December 2002.

[17] W. Smith, A. Waheel, D. Meyers, and J. Yan. An evaluation
of alternative designs for a grid information service. In Proc.
9th IEEE International Symposium on High-Performance
Distributed Computing (HPDC-9), pages 185-192, 1-4 Au-
gust 2000. IEEE Press.

[18] G. von Laszewski, 1. Foster, J. Gawor, and P. Lane. A Java
Commodity Grid Kit. Concurrency Comput. Pract. Exp.,
13(8-9):643-662, 2001.

[19] R. Wolski. Dynamically forecasting network performance
using the network weather service. Journal of Cluster Com-
puting, 1:119-132, January 1998.

[20] X. Zhang, J. Freschl, and J. M. Schopf. A performance
study of monitoring and information services for distributed
systems. In Proc. 12th IEEE International Symposium
on High-Performance Distributed Computing (HPDC-12),
pages 270-281, 22-24 June 2003. IEEE Press.

