
Resource Scheduling for Parallel Query Processing on Computational Grids

AnastasiosGounaris RizosSakellariou NormanW. Paton AlvaroA.A. Fernandes

Department of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
E-mail:

�
gounaris,rizos,norm,alvaro � @cs.man.ac.uk

Abstract

Advances in network technologies and the emergence
of Grid computing have both increased the need and pro-
vided the infrastructure for computation and data inten-
sive applications to run over collections of heterogeneous
and autonomous nodes. In the context of database query
processing, existing parallelisation techniques cannot op-
erate well in Grid environments because the way they se-
lect machines and allocate tasks compromises partitioned
parallelism. The main contribution of this paper is the pro-
posal of a low-complexity, practical resource selection and
scheduling algorithm that enables queries to employ parti-
tioned parallelism, in order to achieve better performance
in a Grid setting.

1. Introduction

Grid technologies have enabledthe development of
novel applicationsthatrequire closeandpotentiallysophis-
ticatedinteractionanddatasharingbetweenresourcesthat
may belongto differentorganisations. Examples include
bioinformaticslabsacrossthe world sharingtheir simula-
tion tools, experimental results,anddatabases;aswell as
the useof the donatedsparecomputer time of thousands
of PCsconnectedto the Internet in orderto solve compu-
tation intensive problems. The maturity of databasetech-
nologiesandtheir widespreadusehasled to many propos-
als that try to integrate databaseswith Grid applications
(e.g., Spitfire (http://eu-datagrid.web.cern.ch/eu-datagrid/),
OGSA-DQP[1]). In particular, queryprocessorsfor Grid-
enableddatabases,suchas[1], canprovideeffectivedeclar-
ativesupport for combiningdataaccesswith analysistoper-
form non-trivial tasks,andarewell suitedfor intensive ap-
plications asthey naturally provide for parallelism.This is
dueto thefactthatmany complicatedtasksor subtasksin a
workflow canbeeffectively encapsulatedandspecifiedby
databasequeries. However, for theefficient exploitation of
parallelism in suchqueryprocessors, oneof themostchal-
lenging problemsto besolvedis theselectionandschedul-

ing of theresources thatwill participatein apotentially par-
allel query evaluationfrom a vastandheterogeneouspool.

In queryprocessing,a query in a declarative language
(typically SQL or OQL) is transformed into a queryplan
by successive mapping stepsthrough well-establishedcal-
culi andalgebras.A query planis representedby a tree-like
directedacyclic graph(DAG), whoseverticesdenote basic
query operatorsand its edgesrepresent dataflow. Evalu-
ation can be speededup by processingthe query plan in
parallel,usually transparently to the user. The threeclas-
sical formsof parallelismin databasequery processingare
independent, pipelined andpartitioned (or intra-operator).
Independent parallelismcanoccurif therearepairsof query
subplans, in which onedoesnot usedataproducedby the
other. Pipelinedparallelism covers thecasewheretheout-
put of anoperator is consumedby another operator asit is
produced,with thetwo operatorsbeing,thus,executedcon-
currently. In partitionedparallelism,a physicaloperator of
thequeryplanhasmany clones, eachof themprocessinga
subsetof the wholedata. This is the mostprofitableform
of parallelism,especiallyfor dataand/orcomputationinten-
sivequeries.

The resource scheduling problem in databasesfor the
Grid is theproblemof (i) choosingresourcesand(ii) match-
ing subplanswith resources.Theproblemsof definingthe
execution orderof subplans andexploiting pipelinedparal-
lelismareaddressedby adoptingwell-establishedexecution
models, suchasiterators[5], andthus,neednot bepartof
query schedulers.Existingscheduling algorithmsandtech-
niques,eitherfrom thedatabaseor theGrid or theparallel
researchcommunities,seeminadequate for parallelquery
processingon the Grid basicallybecausethe way they se-
lect machines and allocatetaskscompromisespartitioned
parallelismin a heterogeneousenvironment. For example,
generic DAG schedulers(e.g., [11, 9]), andtheir Grid vari-
ants tend to allocatea graphvertex to a single machine,
whichleadstonopartitionedparallelism.Morecomprehen-
sive proposals(e.g.,GrADS [3]) still rely on application-
dependent “mappers” to mapdataand tasksto resources,
and thus come short of constituting complete schedul-
ing algorithms. Excellent proposalsfor mixed-parallelism

scheduling (e.g.,[7]) andparalleldatabasescheduling (e.g.
[4]), arerestrictedto homogeneoussettings.Our proposal
effectively addressesthe resourceschedulingproblem for
Grid databasesin its entirety, allowing for arbitrarily high
degreesof partitioned parallelismacrossheterogeneousma-
chines, by leveraging andadjustingexisting proposalsin a
practical way. The practicality of the approachlies in the
fact that it is not time-consuming, it is effective in envi-
ronmentswherethe number of availableresourcesis very
large, it is dependable,andminimisesthe impactof slow
machinesor connections.

The remainder of the paper is structured as follows:
Firstly, we present the problem followed by our proposed
solutionin Section2. Thissolutionis thenevaluatedin Sec-
tion 3. We concludein Section4.

2. A practical query scheduler for the Grid

2.1. Problem Description

It is well understoodthat, even in homogeneous sys-
tems,choosingthemaximumdegreeof parallelism notonly
harms theefficiency of resourceutilisation,but canalsode-
grade performance. This holdsfor heterogeneous systems
aswell. However, the problem of resource schedulingon
the Grid is actually more complicated than choosing the
correct degreeof parallelism. Grid schedulersshouldde-
cidenot only how many machinesshouldbeusedin total,
but exactly which these machines are, andwhichpartsof the
query planeachmachineis allocated.Notethattherelated
andcommonproblem of devising optimalworkload distri-
bution amongtheselectedmachinesis out of thescopeof
thispaper. Another difficulty hastodowith theefficiency of
parallelisation,whichis of significantimportanceespecially
whentheavailablemachinesbelongto multipleadministra-
tivedomainsand/orarenotprovidedfor free.Thus,theaim
is, on onehandto provide a scheduler that enablesparti-
tionedparallelismin heterogeneousenvironmentswith po-
tentiallyunlimited resources,andon theotherhandto keep
a balancebetweenperformance andefficient resourceutili-
sation.As theproblem is theoretically intractable,effective
andefficientheuristicsneedto beemployed.

2.2. Solution Approach

Thecomplexity of theproblemof resourceselectionand
scheduling on Grids justifies resorting to heuristics,asan
exhaustive searchfor all thepossiblecombinationsof ma-
chines,workload distributionsandquerysubplansis anob-
viously inefficient solution. An acceptable solutionwill be
onethat canscalewell with the number of machinesthat
areavailable. The algorithmproposedherestartsfrom a
valid query planwith minimum partitionedparallelism,and

thus,suchaqueryplanis unlikely to perform well for inten-
sive computations.Traditionally, performance is improved
by increasingthepartitioned(or intra-operator) parallelism.
This algorithmincreasesthat by onedegree (i.e., onead-
ditional machine) for onepartof the queryplanat a time,
in line with [7]. After eachstep,it selectsanavailablema-
chine,allocatesit to a particularquery subplanandchecks
the predictedimprovement in performance. If thereis no
improvement, or theimprovement is below acertainthresh-
old, it stops. The threshold is of considerable importance.
The smallerthe threshold, the closerthe final point to the
optimal point will be. However, this comesat theexpense
of highercompilation time. A bigger thresholdmay force
thealgorithm to terminatefaster, but alsoto stopreturning
a number of nodes,which yieldsa final responsetime that
canbe improvedmuchmore,although it canstill bemuch
smallerthantheinitial.

Theschedulerproposedrequiresadecoupledcostmodel
which (i) assignsa costto a parallelqueryplan,and(ii) as-
signsa cost to every physical operator of that query plan.
Any suchcost model is suitable,as the scheduler is not
basedon any particularone,following theapproachof [3].
By decoupling thecostmodelandthescheduler algorithm,
enhancementsin boththesepartscanbedevelopedandde-
ployed independently. The costmodel is alsoresponsible
for definingthecostmetric,with query completion timebe-
ing a typicalchoice.

2.3. The algorithm

Thealgorithm receives aquery planwhich is partitioned
into subplans that canbe evaluatedon differentmachines.
Eachof the operatorsof the queryplan is scheduled on at
least one machine. After this initial resourceallocation,
which is at the lowestpossibledegreeof partitionedparal-
lelism,it entersa loop. In thatloop, thealgorithmestimates
thecostof thequeryplanandof eachphysicaloperator of
thequeryplan individually. Then,it takesthe mostcostly
operator that canbe parallelised,and increasesits degree
of parallelismif that increaseimprovestheperformanceof
the queryplan above a certainthreshold. Whenno more
changes can be madefor that operator, the algorithm re-
estimatesthecostof theplanandtheoperatorsin order to
dothesamefor thenew mostcostlyoperator. Theloopexits
whennochangesin theparallelismof themostcostlyopera-
tor canbemade.Exchange operatorsencapsulatetheparal-
lelism andinvolve communication[5], andoperation-calls
areusedto encapsulate userdefinedfunctions [1]. Scans
entail I/O cost, projects denote datapruning, and the rest
of operators, suchas joins, incur computationcost. Thus,
all kinds of cost(i.e., CPU,I/O, communication)andtheir
combinationscanbeconsidered.

Theinputsto thealgorithm are:

t.term = GO:0008372

where p.proteiID=t.proteinID and

from proteins p, proteinTerms t

select p.proteinID,

 blast(p.sequence)

�������� ����
��		

����

������������ ������������������������ ������������

exchange

(p.proteinID=t.proteinID)

project

operation_call
(blast(p.sequence))

join

exchangeexchange

(p.proteinID, blast)

project
(t.proteinID)

project
(p.proteinID, p.sequence)

scan
(proteins p)

scan
(proteinTerms t)
(term=GO:0008372)

Figure 1. An example quer y plan.

� A partitioned single-node optimised plan, with ex-
changes placed before attribute sensitive operators
(e.g., joins) andoperation-calls (seeFig. 1). Attribute
sensitive operators are thosethat, when partitioned
parallelismis applied,thedatapartitioning amongthe
operatorclonesdependsonvaluesof specificattributes
of thedata.

� A setof candidatemachines. For eachnode,certain
characteristicsneedto beavailable. Thecomplete set
of thesecharacteristicsdependson thecostmodel and
its ability to handlethem. However, a minimum set
that is requiredby thealgorithm consistsof theavail-
ableCPUpower, theavailablememory, theI/O speed,
theconnection speed,andproximity informationwith
regard to the data and computational resources em-
ployed in the query. Suchmetadatacanbe provided
by MDS [2] andNWS [12], asin GrADS.

� A threshold � , referring to the improvementin per-
formance. This improvement is causedby transfor-
mations of the query plan. The improvement ratio
is given by �������! "�$#&%('� ����� , where)+*-,/. and)103254 are the
time costsbefore andafter the transformationrespec-
tively. The cost model is responsible for computing
thesecosts. The partitioned parallelismis increased
only whentheimprovement ratio is equal to or greater
thanthethreshold.

Thealgorithm consistsof two phases.In thefirst phase,
a queryplanwithout partitionedparallelismis constructed.
The resourceallocationin this phaseis mostly driven by
datalocality. E.g., the scans areplacedwheretherelevant
dataresideandthejoins areplacedonthenodeof thelarger
input, unlessmore memory is required [8]. As thereal-
ready existsa significantnumber of proposalsfor resource
scheduling without partitioned parallelism(e.g., [6]), this
phaseis notcoveredin detail.

In the secondphase,which is the main contribution of
thiswork in its ownright, themostcostlyoperatorthathasa
nonemptysetof candidatemachinesis selected.Thesetof
candidatemachinesconsistsof thenodesthat(i) arecapable

repeat687:9<; �=)-> ;?687A@CBD9)1EF>HG&)-I$J 9<;LK � ; �DI�I 9 I$J-G<�DMNI 9L687PORQE ; J�) 9&; J5�TS UWV @CBD9)1E ; J�) 9&; J5� O(687TQX I�>L�=)Y� @ZB[9)5\^] ;L9 G_]`>LI(a ORQ
repeatb �=c&]WJ�d 9 G=S U b @CBD9)-egfD�=J5I b �Dch]`JRd 9 G O(Qch] 9 chi b > ;_9_K � ; �DI�I 9 I�J5G&j O(687Pk b k V k � Q
until nochanges

until nochanges

Figure 2. The steps of the scheduling algo-
rithm after the initial resour ce allocation.

of evaluating therelevant operator, (ii) havenotyetbeenas-
signedto thatoperator, and(iii) haveeitherbeenstartedup,
or have a start-upcost that permits performanceimprove-
mentlarger thanthe relevant thresholds. For this operator
thecheckMoreParallelism function is repeatedly calleduntil
thequeryplancannot bemodified any more.Eachcall can
increasethepartitionedparallelism by onedegreeat most,
asonly onemachine canbeaddedto anoperator ata time.

checkMoreParallelism() is thebasicfunctionthatchecks
whetherthe additionof onemachinefor a specificopera-
tor in the query plan is profitable. The list of choicecri-
teria for machines,which is oneof the function’s param-
eters,defineswhich machine is checked first. V symbol-
ises the list of choicecriteria for machines. The criteria
caneitherbein theform of thestandardmachineproperties
(e.g., availableCPU) or combinationsof them. For exam-
ple, if V @ S j 9 j k E Kmlon EF>_d�p 7:9_9 aqU , this corresponds
to two criteria. The first is the availablememory, andthe
secondis the productof theavailableCPU speedwith the
availableconnectionspeed.The machines with high disk
I/O ratearepreferredfor retrieving data,themachineswith
high connectionspeedsarepreferred whenthe query cost
is network-bound, themachineswith largeavailablemem-
ory arechosenfor non-CPU intensive tasks,like unnests,
andthemachineswith high CPU capacityareselectedfor
therest,CPU-intensiveoperations.checkMoreParallelism()
also evaluatesthe achieved improvement ratios with the
helpof thecostmodel. If theimprovement ratiosareabove
the threshold, thenthequery plan is modified accordingly.
Otherwise,thefunctioniteratesafterremoving thefirst ele-
mentof thelist of choicecriteriafor machines.

Thealgorithm comprisestwo loops. Theouterloop can
berepeatedup to d times,where d is thenumberof phys-
ical operatorsin thequery plan. The inner loop canbere-
peatedup to j times,where j is thenumber of available
machines.So,theworst-casecomplexity of thealgorithm is
of

6"O d n j Q
, which makesit suitablefor complex queries

andwhenthesetof availablemachinesis large.

3. Evaluation

In this section we evaluate the scheduler proposed
against existing andothercommon-sensetechniquesfrom
distributeddatabasesthat do not employ, or employ only
limited, partitioned parallelism, and against techniques
from paralleldatabasesthatuseall theavailablenodes.We
wantto comparetheefficiency of ourproposalfor resource
selectionandallocationto subplans. Theresultsenableus
to claim that thescheduling proposalcansignificantly im-
prove the performance of distributedqueriesevaluatedin
heterogeneousenvironments.

For the evaluation of the proposedscheduler we use
simulation; we built the simulatorby extending the Grid-
enabledquery compiler in [1]. Queriesareexecutedaccord-
ing to the iterator model[5], which minimisestheamount
of intermediate data that needsto be storedand enables
theoperatorscomprising thequeryplanto runconcurrently
throughpipelined parallelism.Theparallelexecution of op-
erators is always load balanced. The cost model in [10],
which is adetailedandvalidatedonedevelopedfor parallel
object databasesystems,hasbeenadaptedto operatein a
distributedandautonomousenvironment andhasbeenin-
corporatedin the query engine. This model estimatesthe
query completiontime,by estimatingthecostof eachoper-
atorseparatelyin timeunits.

Two intensive querieswith one and five joins, respec-
tively, areusedfor the evaluation. Thesequeriesretrieve
datafrom two andsix remote tables,respectively. Eachta-
blecontains100,000tuples.Weusetwodatasets.In thefirst
one, setA, theaveragesizeof a tuple is 100bytes,whereas
in thesecond, setB, it is 1Kbyte. All thejoinshavealow se-
lectivity of r&s ut . Thejoinsareimplementedby single-pass
hash joins, whichis themostefficientjoin algorithm for this
case.Theinitial machinecharacteristicsaresetasfollows:
thosemachinesthathold data(2 in thefirst query and6 in
the second)are able to retrieve datafrom their storeat a
1MB/secrate.Theaverage time,over all machinespartici-
patingin theexperiment,to join two tuplesdependson the
CPUpower of themachinesandit is 30 microseconds. On
average,datais sentat aconnection speedof 600KB/sec.

For such configurations and datasets,the two queries
arecomputationally intensive. Also, we assumethat there
areno replicas,so the scans cannotbeparallelised.These
queriesareessentiallyCPU-bound. Similarexperimentsfor
network anddisk I/O-boundqueriesin presenceof replicas,
and differentquery operators and datasizesare not pre-
senteddueto spacelimitationsandbecausetheirresultsnei-
thercontradictnor contributesignificantlymorethanthese
results.

3.1. Performance evaluation

In this experiment,we evaluate thetwo example queries
whenthenumberof extra nodes(i.e., themachinesthatdo
not storeany basedata)variesbetween0 and20. We ex-
pectresultsnot to varysignificantlyif this numberis much
higher; however, typical databasequerieson the Grid do
not require to contact that many remotemachines, espe-
cially if someof themhave multiple processors.Fromthe
extra machines,25%have double theCPUpower andcon-
nectionspeedof the average (i.e., they evaluatea join be-
tweentwo tuplesin 15 microsecondsandtransmitdataat
1.2MB/sec),25% have double CPU power and half con-
nectionspeed(i.e., they evaluatea join betweentwo tuples
in 15 microsecondsandtransmitdataat 300KB/sec),25%
have half CPU power and double connection speed(i.e.,
they evaluatea join betweentwo tuplesin 60microseconds
andtransmitdataat 1.2MB/sec),and25% have half CPU
power andconnection speed(i.e., they evaluatea join be-
tweentwo tuplesin 60 microsecondsandtransmitdataat
300KB/sec). We compare two configurationsof our pro-
posal,onewith lower improvement ratio threshold andone
with higher, against six othersimplerapproaches:(i) using
all theavailablenodesaswe tendto do in parallelsystems;
(ii) not employing partitioned parallelismandplacing the
hash joins onthesitewherethelarger input residesin order
to save communicationcost; (iii) employing limited parti-
tionedparallelismandplacingthe hash joins on thenodes
thatalreadyholddataparticipatingin thejoin, i.e.,not em-
ploying nodes that have not beenusedfor scanningdata
from store;(iv) usingonly thetwo mostpowerful from the
extramachinesto paralleliseall thequery operators;(v) us-
ing all machinesevenly, which is the only casewherethe
number of tuplesassignedto eachmachineis equal(i.e.,
theworkloadis not inverselyproportional to its CPUpower
andhash join evaluation speed);and(vi) fully parallelising
themostcostlyoperator(this appliesonly to themulti-join
query). Figures3a-dshow theresultswhenthetwo queries
are appliedto the two datasets.Note that the thresholds
are different in the two queries. The dashedlines in the
chartsdepict thenonparallelisablecostof thequeries, i.e.,
thecostto retrieve datafrom thenon-replicatedstores.The
numbersabovethebarsrepresenting theperformanceof our
algorithm, show how many machinesarechosen.In all the
othercases,thenumberof machinesusedis a resultof the
approachapplied.

Our scheduling approachis tunable, andwe canalways
achievebetterexecution timesby usingasmallerthreshold.
However, this benefit comesat the expenseof employing
moremachines.Fromthefigureswecanseethat(i) thepro-
posedschedulermanagesto reducetheparallelisablecost;
(ii) techniqueswith no, or limited, partitioned parallelism
(e.g., employing only themachinesthatstorethedatabases,

2 6 10 14 18 22
0

53.3

100

200

300

400

500

600

700

800

900

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

thresholds=0.01
thresholds=0.03
use all machines with workload balancing
no intra−operator parallelism
use only the machines that hold data
use only the two most powerful machines
use all machines evenly

2 2

6 6

10 8
14

8
14

6
17 7

2 6 10 14 18 22
0

200

400

533.3
600

800

1000

1200

1400

1600

1800

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

thresholds=0.01
thresholds=0.03
use all machines with workload balancing
no intra−operator parallelism
use only the machines that hold data
use the two most powerful machines
use all machines evenly

2 2

5 4

8
3

8 4
6 5 7 5

(a) (b)

6 10 14 18 22 26
0

160

500

1000

1500

2000

2500

3000

3500

4000

4500

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

thresholds=0.01
thresholds=0.001
use all machines with workload balancing
no intra−operator prallelism
use only the machines that hold data
use only the two most powerful machines
use all machines evenly
use all machines with balancing distribution for the most expensive operator

6 6
8 10 9 12 9 18 9

18
6

26

6 10 14 18 22 26
0

1000

1600

2000

3000

4000

5000

6000

7000

8000

number of machines available
re

sp
on

se
 ti

m
e

(in
 s

ec
on

ds
)

thresholds=0.01
thresholds=0.001
use all machines with workload balancing
no intra−operator parallelism
use only the machines that hold data
use only the two most powerful machines
use all machines evenly
use all machines with workload balancing for the most expensive operator

6 6 7

9
6 12 5 15 5

18 6
20

(c) (d)

Figure 3. Comparison of diff erent schedulings for (a) the 1-join quer y for setA, (b) the 1-join quer y
for setB, (c) the 5-join quer y for setA, (d) the 5-join quer y for setB.

parallelising only the most costly operator) yield signifi-
cantly worseperformancethanour proposal; (iii) policies
thatuseonly a smallsetof powerful nodesor do not try to
performworkloadbalancing (i.e., theworkloaddistribution
is notaccording to themachinecapabilities)arealsoclearly
outperformedby theschedulerproposed,providedthat the
threshold is notrelativelyhighfor complex queries;(iv) rel-
atively high thresholds canoperatewell when the costof
thequeryis concentratedonasinglepoint in thequeryplan
(Fig. 3a,b); (v) asexpected,usingall nodesandapplying
workloadbalancing canoperatevery well for specificma-
chine configurations,provided that it is easyto calculate
theappropriateworkloaddistribution asin thequeriesover
setA. In suchcases,employing all nodesgives a very good
indication of the lower bound on the performance. How-
ever, sucha policy hassevere drawbackswhich are pre-
sentedlater.

3.2. Presence of slow connections

In Figures4a,bwe compare our approachwith the ap-
proachof employing all the nodes whenthe two queries,
which have oneandfive joins, respectively, run over setA,

andthereis just onemachine with a slow connection.Two
casesareconsidered:in thefirst, theslow connection is ten
timesslower thantheaverage(i.e., 60 KB/sec);andin the
second, it is 100 timesslower. All the otherresources are
homogeneous,i.e., thehash join evaluationspeedis 30mi-
crosecondsfor eachmachine, andthe connectionspeedis
600 KB/secfor eachmachineapartfrom the onewith the
slow connection. In anhomogeneous setting,usingall the
machinesandapplying workload balancing yields the op-
timal performance,provided that the workload granularity
is largeenough so that start-upcostsareoutweighed. Our
approachhashigh dependability andis not affectedby the
presence of a slow connection.Fromthefigure,we cansee
that our algorithm behavesexactly the samein both cases
anddoesnotemploy themachinewith theslow connection.
Moreover, it is very closeto theoptimalbehaviour (i.e., the
behaviour if all machinesareusedandthereis no machine
with slow connection- seedottedline in thefigures). To the
contrary, the performancedegrades significantlywhenall
nodesareused.Theseresultsshow themeritof approaches
thatavoid utilisationof all theavailablenodesasthey allow
the performanceto degrade gracefully whenthe available
machinesareslow or they haveslow connections.

2 4 6 8 10 12 14 16 18 20 22
0

200

400

600

800

1000

1200

1400

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

thresholds=0.01, 1 connection is 10 times slower
use all machines, 1 connection is 10 times slower
thresholds=0.01, 1 connection is 100 times slower
use all machines, 1 connection is 100 times slower
use all machines, no slow connection

6 8 10 12 14 16 18 20 22 24 26
0

500

1000

1500

2000

2500

3000

3500

4000

4500

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

thresholds=0.001, 1 connection is 10 times slower
use all machines, 1 connection is 10 times slower
thresholds=0.001, 1 connection is 100 times slower
use all machines, 1 connection is 100 times slower
use all machines, no slow connection

(a) (b)

Figure 4. Comparison of diff erent scheduling policies in the presence of a slo w connection for (a)
the single-join quer y, and (b) the 5-join one .

4. Conclusions

Current distributed databaseapplications operating in
heterogeneous settings,like computationalGrids, tend to
run queries with a minimal degree of partitioned paral-
lelism, with negative consequencesfor performancewhen
thequeriesarecomputationanddataintensive. Also, naive
adaptationsof existingtechniquesin theparallelsystemslit-
eraturemaynotbesuitablefor heterogeneousenvironments
for thesamereasons. Themaincontribution of this work is
the proposal of a low complexity resourcescheduler that
allows for partitionedparallelismto be combinedwith the
otherwell-establishedforms of parallelism(i.e., pipelined
and independent) for usein a distributedqueryprocessor
over theGrid. To thebestof ourknowledge,this is thefirst
suchproposal. The evaluation showed that the approach
yieldsperformanceimprovementswhenno,or limited, par-
titioned parallelismis employed, and can outperform ex-
tensions from paralleldatabasesthat useall the resources
available. It canalsomitigatetheeffectsof slow machines
andconnections.Thispaperhascontributed:(i) ananalysis
of the limitations of existing parallel database techniques
to solve the resourcescheduling problem in Grid settings;
(ii) analgorithmthataimsto addressthelimitationscharac-
terisedin (i); and(iii) empiricalevidencethatthealgorithm
in (ii) meetstherequirementsthatledto its conception in an
appropriatemannerandis thusof practicalinterest.

References

[1] N. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson,
A. A. A. Fernandes, A. Gounaris,and J. Smith. Service-
baseddistributedqueryingon the grid. In Proc. of ICSOC,
pages467–482,2003.

[2] K. Czajkowski, S. Fitzgerald,I. Foster, andC. Kesselman.
Grid informationservicesfor distributed resourcesharing.
In 10th IEEE Symp. On High Performance Distributed Com-
puting, 2001.

[3] H. Dail, O. Sievert, F. Berman,H. Casanova, A. YarKhan,
S. Vadhiyar, J. Dongarra,C. Liu, L. Yang,D. Angulo, and
I. Foster. Schedulingin the grid applicationdevelopment
softwareproject. In J.Nabrzyski,J.Schopf,andJ.Weglarz,
editors,Grid resource management: state of the art and fu-
ture trends. Kluwer AcademicPublishersGroup,2003.

[4] R.Epstein,M. Stonebraker, andE. Wong.Distributedquery
processingin a relationaldatabasesystem.In Proc. of the
1978 ACM SIGMOD Conf., pages169–180,1978.

[5] G. Graefe.Queryevaluationtechniquesfor largedatabases.
ACM Computing Surveys, 25(2):73–170,1993.

[6] L. F. Mackert andG. M. Lohman. R* optimizervalidation
andperformanceevaluationfor distributedqueries.In Proc.
of the 12th VLDB Conf., pages149–159, 1986.

[7] A. Radulescuand A. van Gemund. A low-cost approach
towardsmixedtaskanddataparallelscheduling. In Proc. of
2001 International Conference on Parallel Processing (30th
ICPP’01), Valencia,Spain,2001.

[8] E. RahmandR. Marek. Dynamicmulti-resourceload bal-
ancingin paralleldatabasesystems. In 21th VLDB Conf.,
pages395–406,1995.

[9] R. Sakellariou and H. Zhao. A hybrid heuristicfor DAG
schedulingon heterogeneoussystems.In 13th HCW Work-
shop. IEEEComputerSociety, 2004.

[10] S.Sampaio,N. W. Paton,J.Smith,andP. Watson.Validated
costmodelsfor parallelOQL queryprocessing.In Proc. of
OOIS, pages60–75, 2002.

[11] T. Tannenbaum,D. Wright,K. Miller, andM. Livny. Condor
– a distributedjob scheduler. In T. Sterling, editor, Beowulf
Cluster Computing with Linux. MIT Press,2002.

[12] R. Wolski, N. T. Spring,andJ.Hayes.Thenetwork weather
service:a distributedresourceperformanceforecastingser-
vice for metacomputing. Future Generation Computer Sys-
tems, 15(5–6):757–768, 1999.

