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Abstract

Advances in network technologies and the emergence
of Grid computing have both increased the need and pro-
vided the infrastructure for computation and data inten-
sive applications to run over collections of heterogeneous
and autonomous nodes. In the context of database query
processing, existing parallelisation techniques cannot op-
erate well in Grid environments because the way they se-
lect machines and allocate tasks compromises partitioned
parallelism. The main contribution of this paper isthe pro-
posal of a low-complexity, practical resource selection and
scheduling algorithm that enables queries to employ parti-
tioned parallelism, in order to achieve better performance
ina Grid setting.

1. Introduction

Grid techrologies have enabledthe development of
novel applicdionsthatrequre closeandpotentiallysophs-
ticatedinteractionanddatasharingbetweerresourceshat
may belongto differentorganisations. Exanplesinclude
bioinformaticslabs acrossthe world sharingtheir simula-
tion tools, expeiimental results,and databaes;as well as
the use of the donatedsparecomputer time of thousand
of PCsconnetedto the Intemetin orderto solve compu-
tation intensve prablems. The maturity of databaséech-
nologiesandtheir widespreadisehasled to mary propos-
als that try to integrate datalaseswith Grid applicatiors
(e.g, Spitfire (http://eudatagridwehcean.ch/eudatagid/),
OGSA-DQP[1]). In particdar, queryprocessordor Grid-
enalbled datalasessuchas|[1], canprovide effective declar
ative suppat for combining dataaccessvith analysigo per
form nonfrivial tasks,andarewell suitedfor intensie ap-
plicatiors asthey natually provide for parallelism.Thisis
dueto thefactthatmary complicdedtasksor subtasksn a
workflow canbe effectively encapslated andspecifiedby
datalasequeies. However, for the efficient exploitation of
pardlelism in suchqueryprocessa, oneof the mostchal-
lengirg problemsto be solvedis the selectionandschedul-

ing of theresourcethatwill participatdn apoterially par
allel quey evaluationfrom avastandhetergeneais pod.

In query proessing,a queryin a declaratve langlage
(typicdly SQL or OQL) is transfamedinto a queryplan
by successie mappimg stepsthrough well-establishecatal-
culi andalgebrasA quey planis repesentedy atree-like
directedagyclic graph(DAG), whosevetticesdende basic
guel opertorsandits edgesrepresendataflav. Evalu-
ation can be speededip by processinghe queay planin
parallel,usually transpagntly to the user The threeclas-
sicalforms of parallelismin databasejuey processingare
independent, pipelined andpartitioned (or intra-operator).
Independenparallelismcanoccurif therearepairsof quey
subplas, in which onedoesnot usedataproducedby the
other Pipelinedpardlelism covers the casewherethe out-
put of anoperato is consuned by anothe operato asit is
produced with thetwo opeatorsbeing,thus,executedcon-
currently. In partitiored parallelism,a physicaloperato of
the queryplanhasmary clones, eachof themprocessinga
subsetof the whole data. This is the mostprofitableform
of parallelism gspeciallyfor dataand/orcompuationinten-
sive queries.

The resoure schedling prodem in databasegor the
Gridistheprodemof (i) choosingesouresand(ii) match-
ing subpanswith resouces. The prodemsof definingthe
exeaution orderof subplas andexploiting pipelined paral-
lelismareaddessedy adoping well-establishe@xecuion
mockls, suchasiterators[5], andthus,neednot be part of
guel schedlers. Existingscheduliig algoithmsandtech-
nigues, eitherfrom the databaser the Grid or the parallel
researctcomnunities, seeminadeqate for parallelquay
processingon the Grid basicallybecauseahe way they se-
lect machine and allocatetaskscompgomisespartitiored
parallelismin a hetepgeneas ervironment. For exanple,
geneit DAG schedlers(e.g, [11, 9]), andtheir Grid vari-
antstendto allocatea graphvertex to a single machne,
whichleadsto nopartitioredparallelism.More compehen-
sive proposals(e.g., GrADS [3]) still rely on application-
depewent“mappes” to map dataandtasksto resources,
and thus come short of constituting comgete schedul-
ing algorithns. Excellent proposalsfor mixedparallelism



schediling (e.g.,[7]) andparalleldatabasschedulig (e.g.
[4]), arerestrictedto honpgen®ussettings. Our propaal
effedively addressesthe resourceschedulingprodem for
Grid database its entirety allowing for arbitrarily high
degreesof partitional parallelismacroshetergeneasma-
chines, by leveragng andadjustingexisting proposalsin a
pradgical way. The practicdity of the appoachlies in the
factthatit is not time-corsuming, it is effective in ernvi-
ronrmentswherethe numker of availableresoucesis very
large, it is dependble, and minimisesthe impactof slow
machnesor conrections.

The remairder of the paperis structued as follows:
Firstly, we presehthe prodem followed by our proposed
solutionin Section?2. Thissolutionis thenevaluatedin Sec-
tion 3. We concludein Sectiord4.

2. A practical query scheduler for the Grid
2.1. Problem Description

It is well uncerstoodthat, even in homayeneos sys-
tems,choosinghemaxinumdegreeof pardlelism notonly
harns the efficiency of resouce utilisation,but canalsode-
grack periormane. This holdsfor heterogneos systems
aswell. However, the problam of resouce schedulingon
the Grid is actually more comgicated than chaosing the
correct degree of parallelism. Grid schedulershouldde-
cide not only haw mary machiresshouldbe usedin total,
but exactly which these machines are, andwhich partsof the
guey planeachmachineis allocated.Notethattherelated
andconmon prodem of devising optimal workload distri-
bution amongthe selectednachiresis out of the scopeof
thispaper Anothe difficulty hasto dowith theefficienay of
pardlelisation,whichis of significanimportanceespecially
whentheavailablemachnesbelongto multiple administra-
tive domainsand/orarenotprovidedfor free. Thus,theaim
is, on one handto provide a schedier that enablesparti-
tionedparallelismin heterogneousrnvironmentswith po-
tentially unlimited resouces,andon the otherhandto keep
abalancenetweemerformane andefficient resourcautili-
sation.As the prodem is theoreticlly intractableeffective
andefficient heuristicsneedto beemployed.

2.2. Solution Approach

Thecompgexity of theproblemof resourceselectiorand
schedling on Grids justifiesresortirg to heuristics,asan
exhaustve searchfor all the possiblecombnationsof ma-
chines, workload distributionsandquerysubplansgs anob-
viously inefficient solution An accepthle solutionwill be
onethat canscalewell with the numbe of machineghat
are available. The algorithm proposedhere startsfrom a
valid quey planwith minimum partitioredparallelismand

thus,suchaqueryplanis unlikely to perfom well for inten-
sive compuations. Tradtionally, performarce is improved
by increaingthe partitiored (or intra-gperatoy parallelism.
This algorithmincreaseghat by one degree (i.e., one ad-
ditiond machiné for one partof the queryplanat a time,
in line with [7]. After eachstep,it selectsanavailablema-
chine,allocatest to a particularquel subplanandchecls
the predictedimprovemert in perfamance. If thereis no
improvemert, ortheimprovemern is belov acertainthresh-
old, it stops. Thethreshdd is of considerale importarce.
The smallerthe threshdd, the closerthe final poirt to the
optimd point will be. However, this comesat the experse
of highercomplation time. A bigger thresholdmay force
the algoilithm to termiratefaster but alsoto stopreturring
a numker of nodeswhich yieldsa final respoisetime that
canbeimproved muchmore,althowghiit canstill be much
smallerthantheinitial.

Theschedulepropsedrequiesa decaipledcostmodel
which (i) assignsa costto a parallelqueryplan,and(ii) as-
signsa costto every physical opeaator of that quey plan.
Any suchcost modelis suitable,as the schedler is not
basedon ary particularone,following the appoachof [3].
By decouwling the costmodelandthe schedler algoritim,
enharcementsn boththesepartscanbe developedandde-
ployed independetly. The costmodelis alsoresponsible
for definingthe costmetric,with quey completian time be-
ing atypical choice.

2.3. Thealgorithm

Thealgotithm receves aquel planwhichis partitiored
into subplas that canbe evaluatedon differentmachines.
Eachof the opeatorsof the queryplanis schedled on at
leastone machine. After this initial resourceallocation,
whichis at thelowestpossibledegree of partitiored paral-
lelism, it entersaloop. In thatloop, thealgorithmestimates
the costof the queryplan andof eachphysical operato of
the queryplanindividually. Then,it takesthe mostcostly
opeator that can be parallelised,and increasesits degree
of parallelismif thatincreaseimprovesthe performarce of
the query plan above a certainthreshéd. Whenno more
changes can be madefor that operato, the algorittm re-
estimateghe costof the planandthe opertorsin order to
dothesamefor thenew mostcostlyoperaor. Theloopexits
whennochangesin theparallelismof themostcostlyopaa-
tor canbe made.Exchange operateos encapsulatéhe paral-
lelism andinvolve comnunication[5], andoperation-calls
are usedto encapslate userdefinedfunctions [1]. Scans
entail I/O cost, projects dende datapruning, andthe rest
of operates, suchasjoins, incur computationcost. Thus,
all kinds of cost(i.e., CPU, /O, commuication)andtheir
combnationscanbeconsideed.

Theinputsto the algoiithm are:



proj ect
(p.proteiniD, blast)
operation_call
(blast(p.sequence))

sel ect p.proteinlD,

bl ast (p. sequence)
fromproteins p, proteinTerns t
where p.proteilD=t.proteinl D and
t.term = GO 0008372

exchange
join
(p.proteiniD=t.proteinlD)

exchange exchange
proj ect
(p.proteiniD, p.sequence)
scan

(proteins p)

proj ect
(t.proteiniD)

scan
(proteinTermst)
(term=G0:0008372)

Figure 1. An example query plan.

e A partitioned single-nale optimised plan, with ex-
changes placed before attribute sensitive operatos
(e.g, joins) andoperation-calls (seeFig. 1). Attribute
sensitive operators are thosethat, when partitioned
parallelismis applied,the datapartitioning amongthe
opeartorclonesdependonvaluesof specificattributes
of thedata.

e A setof canddate machires. For eachnode,certain
charateristicsneedto be available. The complde set
of thesecharactestics depels onthe costmocel and
its ability to handlethem. However, a minimum set
thatis requiredby the algoiithm consistsof the avail-
ableCPU power, theavailablememoy, thel/O speed,
the connetion speedandproximity informationwith
regard to the dataand compuational resouces em-
ployed in the quey. Suchmetadatacanbe provided
by MDS [2] andNWS [12], asin GrADS.

e A threshdd a, refering to the improvementin per
formance. This improvemert is causedby transfor
matiors of the quey plan The improvemern ratio
is given by % wheret,;g andt,., arethe
time costsbefore andafterthe transfamationrespec-
tively. The costmockl is respmsible for compuing
thesecosts. The partitiored parallelismis increased
only whentheimprovemen ratiois equéa to or greater
thanthethrestold.

Thealgoiithm consistsof two phasesin thefirst phase,
aqueryplanwithout partitioned parallelismis constructed.
The resourceallocationin this phaseis mostly driven by
datalocality. E.g.,the scans areplacedwheretherelevart
dataresideandthejoins areplacedonthenock of thelarger
input, unlessmore memay is requiled [8]. As thereal-
read exists a significantnumkber of propalsfor resoure
schedling without partitiored parallelism(e.qg.,[6]), this
phaseis notcoveredin detail.

In the secondphase which is the main contritution of
thisworkin its own right, themostcostlyopeatorthathasa
nonemptysetof candicatemachiness selectedThe setof
canddatemachnesconsistof thenodeghat(i) arecapale

repeat
Operator Op = getCostlier ParallelisableOp()
Criteria[] L = getCriteria(Op)
float a = getT hreshold()
repeat
Machines[] M = getAvail M achines()
checkMoreParallelism(Op, M, L, a)
until nocharges
until nocharges

Figure 2. The steps of the scheduling algo-
rithm after the initial resour ce allocation.

of evaluatirg therelevart operato, (ii) have notyetbeenas-
signedto thatopeator, and(iii) have eitherbeenstartedup,
or have a start-upcostthat pernits perfamanceimprove-
mentlarger thanthe relevart threshdds. For this operaor
thecheckMoreParallelismfundionis repeately calleduntil
thequeryplancanna be modfied any more. Eachcall can
increasethe partitiored pardlelism by onedegreeat most,
asonly onemachire canbeaddedo anoperato atatime.

checkMoreParallelism() is the basicfunctionthatchecls
whetherthe additionof onemachinefor a specificopea-
tor in the quey planis profitade. Thelist of choicecri-
teria for machnes, which is one of the function’s param-
eters,defineswhich machire is checled first. L symbol-
isesthe list of choicecriteria for machins. The criteria
caneitherbein theform of thestandardnachire properties
(e.g, available CPU) or comhbnationsof them. For exam-
ple, if L =[mem,CPU x ConSpeed], this correspads
to two criteria. Thefirst is the available memay, andthe
seconds the product of the available CPU speedwith the
available comectionspeed. The machins with high disk
I/O ratearepreferedfor retrieving data,the machineswith
high conrectionspeedsare prefered whenthe quey cost
is network-bourd, the machireswith large availablemem-
ory are chosenfor nonCPU intensie tasks,like unnests,
andthe machineswith high CPU capacityare selectedor
therest,CPU-intensie operations.checkMoreParallelism()
also evaluatesthe achieved improvemen ratios with the
helpof thecostmockl. If theimprovemen ratiosareabove
thethreslold, thenthe quel planis modfied accordimly.
Otherwisethefunctioniteratesafterremaing thefirst ele-
mentof thelist of choicecriteriafor machires.

The algoithm compriseswo loops. The outerloop can
berepededup to n times,wheren is the number of phys-
ical opertorsin the queay plan. Theinnerloop canbere-
peatedup to m times,wherem is the numkber of available
machires. So,theworst-caseomgexity of thealgoithmis
of O(n x m), which malkesit suitablefor complex quefes
andwhenthesetof availablemachiresis large.



3. Evaluation

In this section we evaluate the schedler proposed
aganst existing and othercomma-sensdechniqiesfrom
distributed datalasesthat do not emplgy, or employ only
limited, partitioned parallelism, and aganst techniqes
from paralleldatabasethatuseall the availablenoces. We
wantto comparethe efficiency of our proposalfor resoure
selectionandallocationto subplais. Theresultsenableus
to claim thatthe schedulilg proposalcansignificarly im-
prove the performarce of distributed queriesevaluatedin
hetergeneaiservironmerts.

For the evaluation of the proposedschedier we use
simulation we built the simulatorby extendirg the Grid-
enalted quely compler in [1]. Queriesareexecuedaccord-
ing to the iterator model[5], which minimisesthe amoun
of intermedate datathat needsto be storedand enables
theopeaatorscompising thequeryplanto runconcurently
throughpipelined parallelism.Theparallelexecuion of op-
eratos is alwaysload balanced The costmodé in [10],
whichis adetailedandvalidatedonedevelopedfor parallel
objed databasesystemshasbeenadaptedo operatein a
distributed and autonenousenvironmen andhasbeenin-
corporatedin the quel engire. This mocel estimateghe
gqueay completiontime, by estimatinghe costof eachoper
atorseparatelyn time units.

Two intensive querieswith one andfive joins, respec-
tively, are usedfor the evaluation. Thesequeriesretrieve
datafrom two andsix remde tables respectiely. Eachta-
ble contairs 100,000tuples.We usetwo datasetsln thefirst
ong setA, the averagesize of atupleis 100 bytes,whereas
in thesecondsetB, it is 1Kbyte All thejoinshavealow se-
lectivity of 10~5. Thejoins areimplementedby single-pass
hash joins, whichis themostefficientjoin algorithm for this
case.Theinitial machinecharateristicsaresetasfollows:
thosemachiresthathold data(2 in thefirst quey and6 in
the second)are able to retrieve datafrom their storeat a
1MB/secrate. The average time, over all machinegartici-
patingin the expeiment,to join two tuplesdepemnlson the
CPU power of the machinesandit is 30 microsecods. On
avergye,datais sentataconnetion speecbf 600KB/sec.

For such configuations and datasetsthe two queies
arecompuationally intensive. Also, we assumehatthere
areno replicas,so the scans cannotbe parallelised. These
gueiesareessentiallyfCPU-bound. Similar expeimentsfor
network anddisk I/O-boundqueriesn presencef replicas,
and differentquery operates and data sizesare not pre-
senteddueto spacdimitationsandbecausé¢heirresultsnei-
thercortradict nor contrikute significantlymorethanthese
results.

3.1. Performance evaluation

In this experiment,we evaluae thetwo examge quefles
whenthe nurnber of extra nodes(i.e., the machiresthatdo
not storeary basedata)variesbetween0 and20. We ex-
pectresultsnot to vary significantlyif this nunberis much
higher; however, typical databasejuerieson the Grid do
not requre to conta¢ that mary remotemachires, espe-
cially if someof themhave multiple processors.Fromthe
extramachires,25%have dowble the CPU power andcon-
nectionspeedof the average (i.e., they evaluatea join be-
tweentwo tuplesin 15 microsecads andtransmitdataat
1.2MB/sec), 25% have dowble CPU power and half con-
nectionspeedi.e., they evaluatea join betweerntwo tuples
in 15 microsecods andtransmitdataat 300KB/sec),25%
have half CPU power and doulle conrection speed(i.e.,
they evaluatea join betweertwo tuplesin 60 microsecods
andtransmitdataat 1.2MB/sec),and 25% have half CPU
power and connetion speed(i.e., they evaluatea join be-
tweentwo tuplesin 60 microsecads andtransmitdataat
30KB/sec). We compae two configuationsof our pro-
posal,onewith lowerimprovemet ratio threshéd andone
with higher, agairst six othersimplerappoaches{i) using
all theavailablenodesaswe tendto doin parallelsystems;
(i) not employing partitiored parallelismand placing the
hash joins onthesitewherethelarger inputresidesn order
to save communicationcost; (iii) employing limited parti-
tionedparallelismandplacingthe hash joins on the nodes
thatalreadyhold dataparticipatingin thejoin, i.e.,notem-
ploying nodes that have not beenusedfor scanningdata
from store;(iv) usingonly thetwo mostpowerful from the
extramachnesto paralleliseall the quel opegators;(v) us-
ing all machinesavenly, which is the only casewherethe
nunber of tuplesassignedo eachmachineis equal(i.e.,
theworkloadis notinverselypropationalto its CPUpower
andhash join evaluaion speed)and(vi) fully parallelising
the mostcostly opeator (this appliesonly to the multi-join
quer). Figures3a-dshav theresultswhenthetwo queres
are appliedto the two datasets. Note that the threshold
are differert in the two queries. The dashedines in the
chartsdepct the nonparallelisablecostof the queres,i.e.,
the costto retrieve datafrom thenon+eplicatedstores.The
nunbersabove thebarsrepresentig theperfamanceof our
algoithm, shav how mary machiresarechosen.n all the
othercasesthe nunberof machinesusedis a resultof the
appoachapplied

Our schedling appoachis tunalde, andwe canalways
achieve betterexecution timesby usingasmallerthreshdd.
However, this bendit comesat the expenseof employing
moremachnes.Fromthefigureswe canseethat(i) thepro-
posedschedulemanagsto reducethe parallelisablecost;
(i) techniqeeswith no, or limited, partitiored parallelism
(e.g, emplgying only themachineghatstorethedatabaes,
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of different schedulings for (a) the 1-join query for setA, (b) the 1-join query

for setB, (c) the 5-join query for setA, (d) the 5-join query for setB.

pardlelising only the most costly operaor) yield signifi-

cantly worse perfamancethanour proposal; (iii) policies
thatuseonly a smallsetof powerful nodesor do nottry to

performworkloadbalancim (i.e.,theworkloaddistribution

is notaccordng to themachne capabilitiesarealsoclearly
outperformed by the schedulepropesed,provided thatthe
threshdd is notrelatively highfor comgex queies;(iv) rel-

atively high threshdds can opeate well whenthe cost of

thequeryis concetratedonasinglepoirt in thequeryplan
(Fig. 3a,h; (v) asexpected,usingall nodesand applying

workioad balancig canoperatevery well for specificma-
chine configuations, provided that it is easyto calculate
the appopriateworkload distribution asin the queies over
setA. In suchcasesemploying all nocesgives a vely good
indicatian of the lower bowund on the performane. How-

ever, sucha policy has severe dravbackswhich are pre-
sentedater.

3.2. Presence of slow connections

In Figures4a,bwe compae our appr@achwith the ap-
proach of emplagying all the nodes whenthe two queres,
which have oneandfive joins, respectiely, run over setA,

andthereis just onemachire with a slow conrection. Two
casesarecorsidered:in thefirst, theslow connetion is ten
timesslower thanthe average(i.e., 60 KB/sec); andin the
secondit is 100timesslower. All the otherresourcs are
honogeneas,i.e.,thehash join evaluation speeds 30 mi-
crosecadsfor eachmachine andthe comectionspeeds
600 KB/secfor eachmachineapartfrom the onewith the
slow comection. In anhomaeneos setting,usingall the
machires and applying workload balancimg yields the op-
timal perfamance provided that the workload grandarity
is large enoudn so that start-upcostsare outweigted. Our
appoachhashigh depemability andis not affectedby the
presene of aslow conrection. Fromthefigure,we cansee
that our algoritthm behaes exactly the samein both cases
anddoesnotemplg/ themachine with theslow comection.
Moreover, it is vely closeto theoptimalbehaviour (i.e.,the
behaiour if all machnesareusedandthereis no machine
with slow conrection- seedottedline in thefigures) To the
contiary, the perfamancedegraces significantly whenall
nocesareused.Theseresultsshav the merit of appraches
thatavoid utilisationof all theavailablenodesasthey allow
the perfamanceto degrace gracdully whenthe available
machiresareslow or they have slow connetions.
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Figure 4. Comparison of different scheduling policies in the presence of a slow connection for (a)

the single-join query, and (b) the 5-join one.

4. Conclusions

Current distributed databaseapplicatiors opeating in
hetergeneass settings,like comptational Grids, tend to
run queies with a minimd degree of partitiored paral-
lelism, with negaive conseqgencesfor perfamancewhen
the queresareconputationanddataintensie. Also, nave
adapationsof existingtechniquesin theparallelsystemdit-
eratue maynotbesuitablefor hetergeneos ervironments
for thesamereasos. Themaincontritution of thiswork is
the proposal of a low comgexity resourceschedier that
allows for partitionedparallelismto be combned with the
otherwell-establishedorms of parallelism(i.e., pipelined
andindepemlent) for usein a distributed query processor
overthe Grid. To thebestof ourknowledge thisis thefirst
suchpropaal. The evaluation shaved that the apprach
yieldsperformarceimprovementswhenno, or limited, par
titioned parallelismis employed, and can outperform ex-
tensiors from parallel databaseshat useall the resouces
available. It canalsomitigatethe effectsof slow machires
andconrections.This papethascontrituted: (i) ananalysis
of the limitations of existing parallel databae techniqes
to solve theresourceschediing problemin Grid settings;
(il) analgorithmthataimsto addessthelimitationscharac-
terisedin (i); and(iii) empiricalevidercethatthealgorithm
in (ii) meetgherequrementghatledto its concepionin an
appopriatemannerandis thusof practicalinterest.
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