
Computer Science Report No. UIUCDCS-R-2005-2622 (Engr. No. UILU-ENG-2005-1813), University of Illinois at
Urbana-Champaign, August 2005

1

Efficient Mutual Exclusion in Peer-to-Peer
Systems

Moosa Muhammad, Adeep S. Cheema, and Indranil Gupta

Abstract— Due to the recent surge in the area of Grid

computing, there is an urgency to find efficient ways of
protecting consistent and concurrent access to shared resources.
Traditional peer-to-peer (p2p) applications such as Kazaa and
Gnutella have been primarily used for sharing read-only files
(such as mpegs and mp3s). This paper introduces two novel
protocols, the End-to-End and Non End-to-End, for achieving
mutual exclusion efficiently in dynamic p2p systems. The
protocols are layered atop a distributed hash table (DHT),
making them scalable and fault-tolerant. The burden of
controlling access to the critical section is also evenly distributed
among all the nodes in the network, making the protocols more
distributed and easily adaptable to growing networks. Since the
protocols are designed independent of any specific DHT
implementation, they can be incorporated with any generic p2p
DHT, depending on the application requirements. We present
experiments comparing our implementations with existing
mutual exclusion algorithms. The significant reduction in overall
message overhead and better load-balancing mechanisms makes
the proposed protocols very attractive in being used for current
and future p2p and Grid applications.

Index Terms— Distributed algorithms, Distributed computing,
Resource management, Token networks

I. INTRODUCTION
HE problem of mutual exclusion can be described as a
collection of asynchronous processes, each alternately

executing a critical and a non-critical section that must be
synchronized so that no two processes ever execute their
critical sections concurrently. It was first described and solved
by Dijkstra in [2].

Even though mutual exclusion is a well-studied problem in
distributed systems, it is not possible to directly adapt the
proposed solutions into the p2p domain. This dilemma is
caused by the differences in the underlying system models,
one of which being the absence of a centralized index server

to keep track of membership and to ensure consistency. Also,
classical distributed algorithms use several rounds of all-to-all
communication which is unscalable.

Manuscript received June 3, 2005. This work was supported in part by the

NSF CAREER grant CNS-0448246 and in part by NSF ITR grant CMS-
0427089.

Moosa Muhammad was with the Computer Science Department,
University of Illinois at Urbana-Champaign, USA. He is now with Motorola,
Inc. (e-mail: mmuhamma@motorola.com).

Adeep S. Cheema was with the Computer Science Department, University
of Illinois at Urbana-Champaign, USA. He is now with Microsoft, Inc. (e-
mail: adeepc@microsoft.com).

Indranil Gupta is with the Computer Science Department, University of
Illinois at Urbana-Champaign, USA (e-mail: indy@cs.uiuc.edu).

The three most important characteristics that all mutual
exclusion protocols for p2p systems should demonstrate are:

 Scalability – Since 1000’s of nodes can be actively
participating at any given time, the protocol should be
scalable with system size.

 Fault tolerant – Failure of nodes should be gracefully
handled and should not pose a large background
overhead or break the correctness of the protocol.

 Churn resistant – The dynamic nature of p2p systems
should be taken into account when designing protocols.
Typical p2p systems experience high churn rate, i.e.,
nodes join and leave the network at a high rate.

Resources that are being shared can be either computational
resources or data, and access to them should be controlled in
an efficient and completely decentralized manner. Since each
resource can have multiple replicas, the problem in question
becomes even more challenging. Access to that resource is
controlled by its set of replicas.

The proposed mutual exclusion protocols combine token
and quorum-based approaches, to provide efficient and
reliable access to shared resources in dynamic p2p systems.
The algorithms demonstrate good load-balancing
characteristics and low message overhead, when acquiring
access to a resource. They utilize a route-based scheme such
that a quorum set is constructed for every replica, based on the
route traversed by a request to reach that replica. The replica’s
quorum set thus comprises of every intermediate node lying
on the DHT-based route between the requester and itself. This
translates to O(log n) quorum set nodes per replica and O(log
n) messages, where n is the number of nodes in the system,
using an underlying DHT routing scheme like Chord [23] or
Pastry [20]. The use of these quorum sets allow the protocols
to scale well with system size since a large number of
messages will be intercepted before reaching the replicas.

II. SYSTEM MODEL
The protocols presented in this paper are based on the

following system model representing a dynamic p2p DHT:
 The basic entities in the system are called nodes (or

peers).
 Each virtual resource (e.g., a file or a computational

T

Computer Science Report No. UIUCDCS-R-2005-2622 (Engr. No. UILU-ENG-2005-1813), University of Illinois at
Urbana-Champaign, August 2005

2

resource) corresponds to a set of nodes (i.e., replicas)
that are responsible for granting access to that resource.

 A node can access a resource if and only if each
responsible replica grants access to it.

 Nodes are connected over a p2p DHT that allows any
node to route a message to any other node.

 The replicas for a resource are always available, but
their internal states may be randomly reset due to a
crash-recovery failure. They rejoin the network with
the same nodeId.

 The number of clients is unpredictable and can be very
large. Clients are not malicious.

 There may be high churn in the system – nodes may
enter and leave the system anytime.

 Clients and replicas communicate via messages across
unreliable channels. Messages can be replicated, lost,
but never forged.

III. RELATED WORK

A. Mutual Exclusion
Distributed mutual exclusion protocols tend to fall into two

categories as detailed in survey papers [18] and [27]. These
include token based protocols [17] and quorum based
protocols [19] [24] [13], which intersect at completely
centralized exclusion. This study proposes a hybrid between
these two sets of protocols, with a competitive level of
performance and adherence to general guidelines established
for such protocols.

Previous work by researchers in the mutual exclusion
domain have set certain performance thresholds and presented
a few common tradeoffs. Maekawa’s algorithm [13] improves
upon Ricart and Agrwala’s [19] completely distributed
approach and Suzuki’s algorithm for instance, by grouping
nodes into overlapping sets (i.e., quorum sets) and reducing
the number of messages from O(n) to O(√n). Certain
assumptions on topology can be used to reduce this to O(log
n) messages [17]. [15] shows how quorum based protocols
can be analyzed for a random distribution of nodes. [11]
presents an initial attempt at an algorithm for achieving
mutual exclusion in dynamic p2p systems, but lacks a detailed
analysis of their work.

B. P2P Systems
Several applications have been built and deployed on p2p

DHTs, such as distributed file systems and various resource
sharing overlays such as POST [14], PAST [21],
SCRIVENER [16], and SQUIRREL [8]. In the physics and
medical communities for instance, large pools of networked
computing resources are needed to solve computationally
intensive tasks. Some currently active projects within these
domains include the Grid Physics Network [6] and the Human
Proteome Folding Project [26]. This gives rise to the challenge
of coming up with efficient resource management and sharing
mechanisms that scale appropriately. Some previous protocols

developed for this purpose include the Grid [3] and SHARP
[5].

Prior research conducted in efficiently routing messages to
the nodes holding a particular resource include, the Chord and
the Pastry protocols. Both are examples of structured p2p
DHTs and choose their neighbors intelligently to lower the
latency and message cost of routing (i.e., lookups and inserts)
to just O(log n). Pastry differs from Chord in that it arranges
its nodes based on their geographical locality. Kelips [7] is
another p2p DHT that makes a tradeoff by consuming greater
amount of memory and constant background communication
in order to reduce file lookup times and increase resistance to
failures and churn.

C. Sigma Protocol
Sigma [11] is the only currently existing protocol for

providing mutual exclusion in dynamic p2p systems. It is
implemented inside a p2p DHT and adopts queuing and
cooperation between clients and replicas, to enforce a quorum
consensus. It utilizes the fact that nodes in the DHT
collectively form a logical space that does not have holes,
institute a set of logical replicas upon which a quorum
consensus protocol grants access to the critical section. It
deals with failures using a combination informed back-off and
lease mechanisms.

IV. PROPOSED PROTOCOLS
The Sigma protocol is a step in the right direction, but it

does not fully utilize the decentralized nature of p2p domain.
It relies on the replica to maintain the queue of requests for the
resource, leading to a less fault tolerant system due to a central
point of failure and increased load on a few set of nodes.
Along with addressing these problems, the following
proposed solutions also achieve better performance and load
balancing characteristics, which play an integral part in p2p
systems.

The two protocols below differ in terms of how well they
conform to the End-to-End argument [22]. This metric helps
us to find the best placement for a mutual exclusion
mechanism, in a p2p system.

A. End-to-End Mutual Exclusion Protocol
In order to achieve better load-balancing characteristics,

this protocol maintains the queue of future requests at the
node that is currently in the critical section, instead of at the
replica (as was the case in the Sigma protocol). It defines the
quorum set for gaining mutually exclusive access to a
responsible replica R to be every node in the path from the
requesting node to R. Since all the nodes within the quorum
set maintain information regarding the current owner of the
replica, requests for a resource that is already being held by
another node can be satisfied by any of them, by means of an
ENQUEUE message being sent to the current owner. When
the node has finished using the resource and leaves the critical
section, it sends the queue of requests (i.e., token) to the node

Computer Science Report No. UIUCDCS-R-2005-2622 (Engr. No. UILU-ENG-2005-1813), University of Illinois at
Urbana-Champaign, August 2005

3

who requested the resource the earliest. This can easily be
determined from the request queue, which is kept sorted by
timestamps of request messages received.

This protocol primarily focuses on providing mutual
exclusion with a low message overhead, along with reducing
the burden on the replicas, for controlling access to the critical
section.

The internal state information maintained by each node is as
follows:

 A set of request queues (one for each resource
currently being accessed by this node). The queues
keep track of requesters’ nodeIds and are kept sorted
by Lamport timestamps [10], in order to maintain
fairness and avoid starvation.

 A replica list maintaining (Replica Id, Owner Id) pairs
to keep track of which replica is held by (i.e., voted
for) which node, for the active quorum sets that this
node is part of. Next and Previous node pointers are
also maintained for each replica list entry to aid during
node failures.

 List of resources this node currently has access to.
The description of this protocol is as follows:
1. When a node wants mutually exclusive access to a

particular resource, it sends requests to all the
responsible replicas of that resource, using the
underlying DHT routing mechanism. The set of
responsible replicas for a given resource can be found
using the Peer-to-Peer Replica Location Service (P-
RLS) [1].

2. Intermediate nodes lookup their replica list for the
intended resource id. If found, the REQUEST message
is stopped being forwarded and instead an ENQUEUE
message is sent directly to the node currently accessing
the resource in context. Otherwise, the REQUEST
message continues to be routed

3. Upon receiving the REQUEST message at the target
node, that replica will check if it has voted already or
not. A RESPONSE message is routed directly to the
original sender of the REQUEST message. The
RESPONSE message contains the id and timestamp of
the replica’s owner (i.e., the node this replica has voted
for). If the replica has not voted before, this
information would be that of the requesting node.

4. Whenever a requesting node receives a RESPONSE
message, it checks to determine if it has received a
majority of replica votes. If so, it sends an
IAMWINNER message to all the replicas, declaring
itself as the new owner of the resource. Next and
Previous node pointers (part of the replica list entry)
are updated as this message is routed to all the replicas.
If nobody has accumulated enough votes in a round,
the requesters send out a YIELD (i.e., RELEASE +
REQUEST) message to each of the replicas that voted
for it

5. When an ENQUEUE message reaches its destination
(i.e., reaches the owner of the resource that is being

requested), the owner adds the requester’s id to its
request queue.

6. In order to release a resource, a RELEASE message is
routed beginning at the current owner of the resource
and is targeted for all the responsible replicas for that
resource. The intermediate nodes that this message
traverses through depend on the Next pointers of each
node’s replica list entry. Clean-up occurs as this
message is being routed to the replicas. Once the
message reaches its target replica, owner information
of that replica is reset.

7. When the owner of the resource is done using that
resource and leaves the critical section, it sends a
TOKEN message to the node next in line, by removing
the head of the queue. The TOKEN message that is
sent contains the remainder of the request queue.

Figure 1 shows a snapshot of the E2E Protocol, where Req1
is currently in the critical section and Req2’s request to use
the same resource is queued up at Req1. When Req3 sends out
a request for the same resource, its request is intercepted by
quorum set nodes (before reaching the replica), and therefore
ENQUEUE messages are sent to Req1 and it adds Req3 to its
queue. The three quorum sets that exist in this scenario are
marked.

Fig. 1. A snapshot of the E2E Protocol

B. Non End-to-End Mutual Exclusion Protocol
The fundamental idea behind this protocol is to maintain a

partial queue of requests at all the nodes in the quorum set
rather than a complete queue at only the accessing node.
Information maintained in these partial queues can be
consolidated when the current node exits the critical section,
to determine the next node in line to use this resource.

The message overhead is low, so is the burden of achieving
mutual exclusion on the replicas (just like the E2E protocol).
Furthermore, this protocol is more distributed and fault-
tolerant, since the queue of requests previously being stored at
one node is now split among the quorum set.

The internal state information maintained by each node is as
follows:

Computer Science Report No. UIUCDCS-R-2005-2622 (Engr. No. UILU-ENG-2005-1813), University of Illinois at
Urbana-Champaign, August 2005

4

 A replica list maintaining (Replica Id, Node Id, Replica
Request Queue, Next, Previous) entries. Used to keep
track of which replicas are held and subsequent
requests for them, for the active quorum sets that this
node is part of.

 List of resources this node currently has access to.
The description of this protocol is as follows:
1. When a node wants mutually exclusive access to a

particular resource, it sends a REQUEST message to
all the responsible replicas of that resource.

2. Intermediate nodes lookup their replica list for the
intended replica id. If found then the request is queued
locally on the node and a GRANTREQ message is sent
to the requester, containing the current holder of the
replica. Otherwise, their replica list is updated and the
REQUEST message continues to be routed.

3. Upon receiving the REQUEST message at the target
node (i.e., a replica), the replica will check if it has
already granted access to the required resource or not.
If it has, the request is queued on the replica itself. In
either case, a GRANTREQ message is routed directly
to the requester, specifying the holder of the replica
(which will be the requester if the replica has not voted
before).

4. In order to release a resource, RELEASE messages are
routed to all the responsible replicas for that resource.
All quorum set members update their replica list by
deleting the respective entry from it and forward the
message together with a list of requests, sorted by
timestamp, seen so far by any of the nodes prior to
them in the sequence from the holder to the replica.
When this message reaches its target replica, it contains
every request seen so far for that replica, and is merged
with the local queue. The next owner of this replica is
then determined from this newly assembled queue and
GRANTREQ message is sent directly to that node.

5. When all GRANTREQ messages reach their
destination, the requester checks if it has attained
majority of the replica votes, to enter the critical
section. If no requester receives majority of the votes,
all of them propagate a YIELD message to the replicas.
Otherwise only one of the requesters will receive the
majority votes and can therefore access the resource.

6. The YIELD operation reflects the collaborative nature
of this protocol and is used to reshuffle the queue. The
fact that nobody wins indicates that contention has
occurred. The YIELD message allows all requesters to
try to acquire the resource again after a random time
period. Typically, this self-stabilization process will
quickly settle, as verified in [12].

Figure 2 shows the snapshot of the Non E2E protocol,
where Req1 is currently in the critical section. Req2 and
Req3 have issued REQUEST messages to also try to gain
access to the same resource. Their requests are queued by
the intermediate nodes of the respective quorum sets. When
Req1 has finished using the resource and leaves the critical

section, the partial queues will be merged (within each
quorum set) to form the complete queue of requests at the
replicas.

Fig. 2. A snapshot of the Non E2E Protocol

V. HANDLING FAILURES
The protocols described above work well under failure-free

environments. The types of failures that are being considered
in the analysis below include: (1) Failure of node currently
present in the critical section (2) Failure of node(s)
maintaining the queue of requests (3) Failure of intermediate
nodes of the quorum set.

A. E2E Protocol
Failure of the node that is currently in the critical section

and is therefore also holding the token (i.e., maintaining the
request queue), can have a devastating effect on the entire
system. A very clever scheme has been proposed to handle
this kind of failure. Since the request queue maintains
information for nodes that are waiting to use a particular
resource, why not replicate and maintain the same queue of
requests at the first n waiting requesters (based on timestamps
of the requests submitted)? These n+1 nodes (including the
node currently accessing the resource) can run a membership
protocol within themselves, to propagate updates and also to
determine if a particular node has failed. Whenever the
request queue is updated, this change is propagated to the
other n nodes of its membership. These updates are ordered by
sequence numbers so that, in case of failure, we can use the
most current copy of the request queue. “Ping” messages are
sent periodically from n waiting nodes to the node holding the
token, at a low frequency, for example 1 in every 10 minutes.
This means that the failure of that node can be detected in just
10/n minutes. When the node holding the token fails, among
the waiting nodes, the node with the highest sequence number
will have the most updated copy of the queue. This node
routes a message to all the replicas notifying itself as the
owner of the resource. This failure detection/correction
mechanism is tolerant to the failure of n waiting nodes, where
n is a parameter that can be set in order to come up with the
ideal tradeoff between extra bandwidth consumption and

Computer Science Report No. UIUCDCS-R-2005-2622 (Engr. No. UILU-ENG-2005-1813), University of Illinois at
Urbana-Champaign, August 2005

5

fault-tolerance, for a particular application criteria.
Failure of intermediate nodes within a quorum set is

detected using the Next and Previous pointers maintained by
each node, as part of its replica list entry. In case of failure,
queries are re-routed by the underlying Pastry layer using an
alternate set of nodes.

B. Non E2E Protocol
Since the request queue is being maintained by all the

intermediate nodes of the quorum set, the queue of requests
would not be lost by a single node failure. In case a node in
the path fails, its predecessor routes a new request message to
the replica, creating a new quorum path, and its successor
directs a cleanup message to clear the old quorum nodes from
the failed node to the replica.

During a RELEASE message sequence, it can happen that
the replica fails after receiving the partially assembled queue
from its predecessor. The failure of the replica can be detected
by the “Ping/Ack” mechanism between the replica and its
predecessors. In such a case, an alive predecessor would act as
the temporary token holder, where the new queue would be
rebuilt.

VI. EXPERIMENTAL RESULTS
The E2E, Non E2E, and Sigma mutual exclusion protocols

have been implemented over the FreePastry [4]
implementation of the Pastry routing substrate. This allows us
to accurately compare our proposed solutions against the
Sigma protocol in various different network scenarios, using a
virtual network simulation model with message-based
communication.

The test-bench code starts off by creating a set of nodes,
arranged according to the Pastry network topology. The
simulation then runs for a certain number of rounds and
derives the experimental results, by averaging over ten such
runs. In the simulation, the concept of a round is introduced in
order to describe the amount of work done by the nodes in the
network, which includes a certain number of requests for
resources being issued by a set of randomly chosen nodes.
Also in each round, a node releases one of its already held
resources, with a 50% probability. This means that the
average holding time of a critical section is 2 rounds. Below
are the default values for the simulation parameters, which
will be used to generate the plots in the following sections:

of

nodes
of

resources
of replicas

per
resource

of
rounds

of
requests

per round
6500 65 10 20 20

Table 1: Default values for parameters

A. Scalability
One of our initial goals behind the proposed protocols was

to come up with an efficient and scalable method for
achieving mutual exclusion. Figure 3a presents a comparison

of the three protocols. Even though all the plots are linear with
respect to number of nodes, the two proposed protocols
require 1.5 to 2.5 times less messages than the Sigma protocol,
which is a big improvement.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

15
50

21
00

26
50

32
00

37
50

43
00

48
50

54
00

59
50

65
00

Number of Nodes

N
um

be
r o

f M
es

sa
ge

s

Sigma
E2E
NonE2E

Fig. 3a. A lower increase in bandwidth consumption, as the network grows

Figure 3b shows the effect of increased network contention

on the amount of bandwidth consumed. The number of nodes
present is kept constant at 6500, but the rate of requests per
round is steadily increased from 10 to 100. This is a nice
measure as it demonstrates how the protocols would perform
under heavy loads.

0

50,000

100,000

150,000

200,000

250,000

300,000

10 20 30 40 50 60 70 80 90 100
Number of Requests

N
um

be
r o

f M
es

sa
ge

s

Sigma
E2E
Non E2E

Figure 3b: Effect of increasing the number of requests issued per round on
overall bandwidth consumption

B. Overall Load Distribution
In order to demonstrate the even load distribution of the

proposed protocols, the following plots show the Cumulative
Distribution Functions for them. The simulation parameters
being used to generate the plots are shown in Table 2. Two
CDF plots are generated for each protocol, which differ in the
number of replicas that are responsible for granting access to a
particular resource. The term load (as used in the plots below)
refers to the number of messages that a node has to process.

of

nodes
of

resources
of replicas

per
resource

of
rounds

of
requests

per round
1000 10 10, 40 20 20

Table 2: Default values for parameters

Computer Science Report No. UIUCDCS-R-2005-2622 (Engr. No. UILU-ENG-2005-1813), University of Illinois at
Urbana-Champaign, August 2005

6

0

10

20

30

40

50

60

70

80

90

100

0

20
0

40
0

60
0

80
0

10
00

Load

%
 o

f N
od

es

10 Replicas Per Resource
40 Replicas Per Resource

Figure 4a: In E2E, majority of the nodes have a load of 200 messages/round or
less, except for a few outliers. By increasing the number of responsible
replicas for a resource, the load on each node increases. This behavior is
expected since the number of request/response messages exchanged between
the replicas and the requesters would now be greater

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700
Load

%
 o

f N
od

es

10 Replicas Per Resource
40 Replicas Per Resource

Figure 4b: In Non E2E, majority of the nodes experience a load of less than
180 messages/round. Unlike the E2E CDF plot, this one has a slightly larger
number of nodes with loads in the range of 550-680 messages/round.
Increasing the number of responsible replicas per resource does not have any
effect on the load experienced by each node. This behavior is explained by the
fact that in the Non E2E protocol, request messages are intercepted and
stopped quicker than E2E (especially when number of replicas per resource is
increased)

0

10

20

30

40

50

60

70

80

90

100

0 600 1200 1800 2400 3000
Load

%
 o

f N
od

es

10 Replicas Per Resource
40 Replicas Per Resource

Figure 4c: In Sigma, majority of the nodes experience a load of 700
messages/round or less. Similar to the Non E2E CDF plot, this one has a
slightly larger number of nodes with loads in the range of 2500-3500
messages/round. Increasing the number of responsible replicas per resource
has similar effect, as was viewed for the E2E Protocol in Figure 4a

C. High Churn Rate
Rate of churn is defined as the sum of the number of nodes

that are in transition (i.e., are either leaving or joining the
system per round). In our simulation, n/2 randomly chosen
nodes are failed and n/2 new nodes are added to the system,
where n is the desired churn rate. The parameters used to
generate the following plots are consistent with Table 1.
Requesters are not churned in our experiments.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

0 500 1000 1500 2000 2500 3000
Rate of Churn

N
um

be
r o

f M
es

sa
ge

s

Non E2E
E2E

Figure 5: As the rate of churn is increased from 0 to 200, the change in
message overhead is shown in this plot. Both the protocols experience a
slightly higher increase in message overhead (at first), but then increase at a
much lower rate

VII. CONCLUSION
In this work, a couple of protocols for achieving mutual

exclusion in a p2p system were presented, one of which
conformed more to the End-to-End argument. Both protocols
can be easily configured to run on any DHT, therefore
providing a truly generalized solution to the addressed
problem. The purpose behind presenting two different
approaches to the same problem was to present the inherent
tradeoff that exists between the amount of bandwidth
consumed and better load balancing and fault-tolerance level
required. An educated decision, based on specific application
needs, must be made in order to fully utilize the potential of
the chosen protocol. The proposed protocols, through their
truly novel quorum and token-based schemes, were able to
keep the load on the replicas relatively low even in the
presence of a growing network and high churn rates.

VIII. FUTURE WORK
An important future direction of this research would be to

port some existing Grid or p2p applications to use these
protocols for handling their mutual exclusion needs. The ideal
goal would be to present a general set of APIs for our
protocols so that future applications can make use of our
algorithms in a modular fashion, without worrying about the
low-level mutual exclusion details.

Computer Science Report No. UIUCDCS-R-2005-2622 (Engr. No. UILU-ENG-2005-1813), University of Illinois at
Urbana-Champaign, August 2005

7

REFERENCES
[1] Cai, M., Chervenak, A., and Frank, M., A Peer-to-Peer Replica Location

Service Based on a Distributed Hash Table, Proceedings of the SC2004
Conference, November 2004.

[2] Dijkstra, E.W., Solution of a Problem in Concurrent Programming
Control, Communications ACM 8, 9 (Sept. 1965), 569.

[3] Foster, I., The Grid: A New Infrastructure for 21st Century Science,
Physics Today, 2002.

[4] FreePastry. http://freepastry.rice.edu/FreePastry.
[5] Fu, Y., Chase, J., Chun, B., Schwab, S., and Vahdat, A., SHARP: An

Architecture For Secure Resource Peering, SOSP 2003.
[6] GridPhyN, http://www.griphyn.org.
[7] Gupta, I., Birman, K., Linga, P., Demers, A., and Renesse, R., Kelips:

Building an Efficient and Stable P2P DHT Through Increased Memory
and Background Overhead, IPTPS, 2003.

[8] Iyer, S., Rowstron, A., and Druschel, P., SQUIRREL: A Decentralized,
Peer-to-Peer Web Cache, PODC, 2002.

[9] Kazaa. http://www.kazaa.com.
[10] Lamport, L., Time, Clocks and the Ordering of Events in a Distributed

System, Communications of the ACM 21, July 1978, 558-565.
[11] Lin, S., Lian, Q., Chen, M., and Zhang, Z., A Practical Distributed

Mutual Exclusion Protocol in Dynamic Peer-to-Peer Systems,
International Workshop on P2P Systems (IPTPS), 2004.

[12] Lin, S., Lian, Q., Chen, M., and Zhang, Z., A Practical Distributed
Mutual Exclusion Protocol in Dynamic P2P Systems, Microsoft
Research, Technical Report MSR-TR-2004-13.

[13] Maekawa, M., A √n Algorithm for Mutual Exclusion in Decentralized
Systems, ACM Transactions on Computer Systems (TOCS). 1985.

[14] Mislove, A., Post, A., Reis, C., Willmann, P., and Druschel, P., POST: A
Secure, Resilient, Cooperative Messaging System, USENIX HotOS IX,
2003.

[15] Naor, M., and Wieder, U., Scalable and Dynamic Quorum Systems,
Principles of Distributed Computing (PODC), 2003.

[16] Ngan, T., Wallach, D.S., and Druschel, P., Enforcing Fair Sharing of
Peer-to-Peer Resources, IPTPS'03, February 2003.

[17] Raymond, K., A Tree-Based Algorithm for Distributed Mutual
Exclusion, ACM Transactions on Computer Systems (TOCS). 1989.7.1.

[18] Raynal, M., A Simple Taxonomy for Distributed Mutual Exclusion
Algorithms, ACM SIGOPS Operating Systems Review. 1991.25.2.

[19] Ricart, G., and Agrawala, A.K., An Optimal Algorithm for Mutual
Exclusion in Computer Networks, Communications of the ACM. 1981.

[20] Rowstron, A., and Druschel, P., Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,
Middleware, 2001.

[21] Rowstron, A., and Druschel, P., Storage Management and Caching in
PAST, A Large-Scale, Persistent Peer-to-Peer Storage Utility, ACM
Symposium on Operating Systems Principles (SOSP), 2001.

[22] Saltzer, J.H., Reed, D.P., and Clark, D.D., End-to-End Arguments in
System Design, ACM Transactions in Computer Systems 2, 4,
November, 1984, 277-288.

[23] Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H.,
Chord: A Scalable Peer-to-Peer Lookup Service For Internet
Applications, Special Interest Group for Data Communications
(SIGCOMM), 2001.

[24] Suzuki, I., and Kasami, T., A Distributed Mutual Exclusion Algorithm,
ACM Transactions on Computer Systems (TOCS). 1985.3.4.

[25] The Gnutella protocol specification v0.4, Document revision 1.2,
www.clip2.com.

[26] The Human Proteome Folding Project, http://www.grid.org/projects/hpf.
[27] Velazquez, M.G., A Survey of Distributed Mutual Exclusion

Algorithms, Technical Report CS-93-116, Colorado State University,
1993.

	I. INTRODUCTION
	II. SYSTEM MODEL
	III. RELATED WORK
	A. Mutual Exclusion
	B. P2P Systems
	C. Sigma Protocol

	IV. PROPOSED PROTOCOLS
	A. End-to-End Mutual Exclusion Protocol
	B. Non End-to-End Mutual Exclusion Protocol

	V. HANDLING FAILURES
	A. E2E Protocol
	B. Non E2E Protocol

	VI. EXPERIMENTAL RESULTS
	A. Scalability
	B. Overall Load Distribution
	C. High Churn Rate

	VII. CONCLUSION
	VIII. FUTURE WORK

