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Abstract— Due to the recent surge in the area of Grid 

computing, there is an urgency to find efficient ways of 
protecting consistent and concurrent access to shared resources. 
Traditional peer-to-peer (p2p) applications such as Kazaa and 
Gnutella have been primarily used for sharing read-only files 
(such as mpegs and mp3s). This paper introduces two novel 
protocols, the End-to-End and Non End-to-End, for achieving 
mutual exclusion efficiently in dynamic p2p systems. The 
protocols are layered atop a distributed hash table (DHT), 
making them scalable and fault-tolerant. The burden of 
controlling access to the critical section is also evenly distributed 
among all the nodes in the network, making the protocols more 
distributed and easily adaptable to growing networks. Since the 
protocols are designed independent of any specific DHT 
implementation, they can be incorporated with any generic p2p 
DHT, depending on the application requirements. We present 
experiments comparing our implementations with existing 
mutual exclusion algorithms. The significant reduction in overall 
message overhead and better load-balancing mechanisms makes 
the proposed protocols very attractive in being used for current 
and future p2p and Grid applications. 
 

Index Terms— Distributed algorithms, Distributed computing, 
Resource management, Token networks 
 

I. INTRODUCTION 
HE problem of mutual exclusion can be described as a 
collection of asynchronous processes, each alternately 

executing a critical and a non-critical section that must be 
synchronized so that no two processes ever execute their 
critical sections concurrently. It was first described and solved 
by Dijkstra in [2]. 

Even though mutual exclusion is a well-studied problem in 
distributed systems, it is not possible to directly adapt the 
proposed solutions into the p2p domain. This dilemma is 
caused by the differences in the underlying system models, 
one of which being the absence of a centralized index server 

to keep track of membership and to ensure consistency. Also, 
classical distributed algorithms use several rounds of all-to-all 
communication which is unscalable. 
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The three most important characteristics that all mutual 
exclusion protocols for p2p systems should demonstrate are: 

 Scalability – Since 1000’s of nodes can be actively 
participating at any given time, the protocol should be 
scalable with system size. 

 Fault tolerant – Failure of nodes should be gracefully 
handled and should not pose a large background 
overhead or break the correctness of the protocol. 

 Churn resistant – The dynamic nature of p2p systems 
should be taken into account when designing protocols. 
Typical p2p systems experience high churn rate, i.e., 
nodes join and leave the network at a high rate. 

Resources that are being shared can be either computational 
resources or data, and access to them should be controlled in 
an efficient and completely decentralized manner. Since each 
resource can have multiple replicas, the problem in question 
becomes even more challenging. Access to that resource is 
controlled by its set of replicas.  

The proposed mutual exclusion protocols combine token 
and quorum-based approaches, to provide efficient and 
reliable access to shared resources in dynamic p2p systems. 
The algorithms demonstrate good load-balancing 
characteristics and low message overhead, when acquiring 
access to a resource. They utilize a route-based scheme such 
that a quorum set is constructed for every replica, based on the 
route traversed by a request to reach that replica. The replica’s 
quorum set thus comprises of every intermediate node lying 
on the DHT-based route between the requester and itself. This 
translates to O(log n) quorum set nodes per replica and O(log 
n) messages, where n is the number of nodes in the system, 
using an underlying DHT routing scheme like Chord [23] or 
Pastry [20]. The use of these quorum sets allow the protocols 
to scale well with system size since a large number of 
messages will be intercepted before reaching the replicas.  

 

II. SYSTEM MODEL 
The protocols presented in this paper are based on the 

following system model representing a dynamic p2p DHT: 
 The basic entities in the system are called nodes (or 

peers). 
 Each virtual resource (e.g., a file or a computational 

T 
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resource) corresponds to a set of nodes (i.e., replicas) 
that are responsible for granting access to that resource. 

 A node can access a resource if and only if each 
responsible replica grants access to it. 

 Nodes are connected over a p2p DHT that allows any 
node to route a message to any other node. 

 The replicas for a resource are always available, but 
their internal states may be randomly reset due to a 
crash-recovery failure. They rejoin the network with 
the same nodeId. 

 The number of clients is unpredictable and can be very 
large. Clients are not malicious. 

 There may be high churn in the system – nodes may 
enter and leave the system anytime. 

 Clients and replicas communicate via messages across 
unreliable channels. Messages can be replicated, lost, 
but never forged. 

 

III. RELATED WORK 

A. Mutual Exclusion 
Distributed mutual exclusion protocols tend to fall into two 

categories as detailed in survey papers [18] and [27]. These 
include token based protocols [17] and quorum based 
protocols [19] [24] [13], which intersect at completely 
centralized exclusion. This study proposes a hybrid between 
these two sets of protocols, with a competitive level of 
performance and adherence to general guidelines established 
for such protocols. 

Previous work by researchers in the mutual exclusion 
domain have set certain performance thresholds and presented 
a few common tradeoffs. Maekawa’s algorithm [13] improves 
upon Ricart and Agrwala’s [19] completely distributed 
approach and Suzuki’s algorithm for instance, by grouping 
nodes into overlapping sets (i.e., quorum sets) and reducing 
the number of messages from O(n) to O(√n). Certain 
assumptions on topology can be used to reduce this to O(log 
n) messages [17]. [15] shows how quorum based protocols 
can be analyzed for a random distribution of nodes. [11] 
presents an initial attempt at an algorithm for achieving 
mutual exclusion in dynamic p2p systems, but lacks a detailed 
analysis of their work. 

B. P2P Systems 
Several applications have been built and deployed on p2p 

DHTs, such as distributed file systems and various resource 
sharing overlays such as POST [14], PAST [21], 
SCRIVENER [16], and SQUIRREL [8]. In the physics and 
medical communities for instance, large pools of networked 
computing resources are needed to solve computationally 
intensive tasks. Some currently active projects within these 
domains include the Grid Physics Network [6] and the Human 
Proteome Folding Project [26]. This gives rise to the challenge 
of coming up with efficient resource management and sharing 
mechanisms that scale appropriately. Some previous protocols 

developed for this purpose include the Grid [3] and SHARP 
[5].  

Prior research conducted in efficiently routing messages to 
the nodes holding a particular resource include, the Chord and 
the Pastry protocols. Both are examples of structured p2p 
DHTs and choose their neighbors intelligently to lower the 
latency and message cost of routing (i.e., lookups and inserts) 
to just O(log n). Pastry differs from Chord in that it arranges 
its nodes based on their geographical locality. Kelips [7] is 
another p2p DHT that makes a tradeoff by consuming greater 
amount of memory and constant background communication 
in order to reduce file lookup times and increase resistance to 
failures and churn. 

C. Sigma Protocol 
Sigma [11] is the only currently existing protocol for 

providing mutual exclusion in dynamic p2p systems. It is 
implemented inside a p2p DHT and adopts queuing and 
cooperation between clients and replicas, to enforce a quorum 
consensus. It utilizes the fact that nodes in the DHT 
collectively form a logical space that does not have holes, 
institute a set of logical replicas upon which a quorum 
consensus protocol grants access to the critical section. It 
deals with failures using a combination informed back-off and 
lease mechanisms. 

 

IV. PROPOSED PROTOCOLS 
The Sigma protocol is a step in the right direction, but it 

does not fully utilize the decentralized nature of p2p domain. 
It relies on the replica to maintain the queue of requests for the 
resource, leading to a less fault tolerant system due to a central 
point of failure and increased load on a few set of nodes. 
Along with addressing these problems, the following 
proposed solutions also achieve better performance and load 
balancing characteristics, which play an integral part in p2p 
systems. 

The two protocols below differ in terms of how well they 
conform to the End-to-End argument [22]. This metric helps 
us to find the best placement for a mutual exclusion 
mechanism, in a p2p system. 

A. End-to-End Mutual Exclusion Protocol 
In order to achieve better load-balancing characteristics, 

this protocol maintains the queue of future requests at the 
node that is currently in the critical section, instead of at the 
replica (as was the case in the Sigma protocol). It defines the 
quorum set for gaining mutually exclusive access to a 
responsible replica R to be every node in the path from the 
requesting node to R. Since all the nodes within the quorum 
set maintain information regarding the current owner of the 
replica, requests for a resource that is already being held by 
another node can be satisfied by any of them, by means of an 
ENQUEUE message being sent to the current owner. When 
the node has finished using the resource and leaves the critical 
section, it sends the queue of requests (i.e., token) to the node 
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who requested the resource the earliest. This can easily be 
determined from the request queue, which is kept sorted by 
timestamps of request messages received. 

This protocol primarily focuses on providing mutual 
exclusion with a low message overhead, along with reducing 
the burden on the replicas, for controlling access to the critical 
section. 

The internal state information maintained by each node is as 
follows: 

 A set of request queues (one for each resource 
currently being accessed by this node). The queues 
keep track of requesters’ nodeIds and are kept sorted 
by Lamport timestamps [10], in order to maintain 
fairness and avoid starvation. 

 A replica list maintaining (Replica Id, Owner Id) pairs 
to keep track of which replica is held by (i.e., voted 
for) which node, for the active quorum sets that this 
node is part of. Next and Previous node pointers are 
also maintained for each replica list entry to aid during 
node failures. 

 List of resources this node currently has access to. 
The description of this protocol is as follows: 
1. When a node wants mutually exclusive access to a 

particular resource, it sends requests to all the 
responsible replicas of that resource, using the 
underlying DHT routing mechanism. The set of 
responsible replicas for a given resource can be found 
using the Peer-to-Peer Replica Location Service (P-
RLS) [1]. 

2. Intermediate nodes lookup their replica list for the 
intended resource id. If found, the REQUEST message 
is stopped being forwarded and instead an ENQUEUE 
message is sent directly to the node currently accessing 
the resource in context. Otherwise, the REQUEST 
message continues to be routed 

3. Upon receiving the REQUEST message at the target 
node, that replica will check if it has voted already or 
not. A RESPONSE message is routed directly to the 
original sender of the REQUEST message. The 
RESPONSE message contains the id and timestamp of 
the replica’s owner (i.e., the node this replica has voted 
for). If the replica has not voted before, this 
information would be that of the requesting node. 

4. Whenever a requesting node receives a RESPONSE 
message, it checks to determine if it has received a 
majority of replica votes. If so, it sends an 
IAMWINNER message to all the replicas, declaring 
itself as the new owner of the resource. Next and 
Previous node pointers (part of the replica list entry) 
are updated as this message is routed to all the replicas. 
If nobody has accumulated enough votes in a round, 
the requesters send out a YIELD (i.e., RELEASE + 
REQUEST) message to each of the replicas that voted 
for it 

5. When an ENQUEUE message reaches its destination 
(i.e., reaches the owner of the resource that is being 

requested), the owner adds the requester’s id to its 
request queue. 

6. In order to release a resource, a RELEASE message is 
routed beginning at the current owner of the resource 
and is targeted for all the responsible replicas for that 
resource. The intermediate nodes that this message 
traverses through depend on the Next pointers of each 
node’s replica list entry. Clean-up occurs as this 
message is being routed to the replicas. Once the 
message reaches its target replica, owner information 
of that replica is reset. 

7. When the owner of the resource is done using that 
resource and leaves the critical section, it sends a 
TOKEN message to the node next in line, by removing 
the head of the queue. The TOKEN message that is 
sent contains the remainder of the request queue. 

Figure 1 shows a snapshot of the E2E Protocol, where Req1 
is currently in the critical section and Req2’s request to use 
the same resource is queued up at Req1. When Req3 sends out 
a request for the same resource, its request is intercepted by 
quorum set nodes (before reaching the replica), and therefore 
ENQUEUE messages are sent to Req1 and it adds Req3 to its 
queue. The three quorum sets that exist in this scenario are 
marked. 

 

 
 
Fig. 1. A snapshot of the E2E Protocol 

 

B. Non End-to-End Mutual Exclusion Protocol 
The fundamental idea behind this protocol is to maintain a 

partial queue of requests at all the nodes in the quorum set 
rather than a complete queue at only the accessing node. 
Information maintained in these partial queues can be 
consolidated when the current node exits the critical section, 
to determine the next node in line to use this resource. 

The message overhead is low, so is the burden of achieving 
mutual exclusion on the replicas (just like the E2E protocol). 
Furthermore, this protocol is more distributed and fault-
tolerant, since the queue of requests previously being stored at 
one node is now split among the quorum set. 

The internal state information maintained by each node is as 
follows: 
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 A replica list maintaining (Replica Id, Node Id, Replica 
Request Queue, Next, Previous) entries. Used to keep 
track of which replicas are held and subsequent 
requests for them, for the active quorum sets that this 
node is part of. 

 List of resources this node currently has access to. 
The description of this protocol is as follows: 
1. When a node wants mutually exclusive access to a 

particular resource, it sends a REQUEST message to 
all the responsible replicas of that resource. 

2. Intermediate nodes lookup their replica list for the 
intended replica id. If found then the request is queued 
locally on the node and a GRANTREQ message is sent 
to the requester, containing the current holder of the 
replica. Otherwise, their replica list is updated and the 
REQUEST message continues to be routed. 

3. Upon receiving the REQUEST message at the target 
node (i.e., a replica), the replica will check if it has 
already granted access to the required resource or not. 
If it has, the request is queued on the replica itself. In 
either case, a GRANTREQ message is routed directly 
to the requester, specifying the holder of the replica 
(which will be the requester if the replica has not voted 
before). 

4. In order to release a resource, RELEASE messages are 
routed to all the responsible replicas for that resource. 
All quorum set members update their replica list by 
deleting the respective entry from it and forward the 
message together with a list of requests, sorted by 
timestamp, seen so far by any of the nodes prior to 
them in the sequence from the holder to the replica. 
When this message reaches its target replica, it contains 
every request seen so far for that replica, and is merged 
with the local queue. The next owner of this replica is 
then determined from this newly assembled queue and 
GRANTREQ message is sent directly to that node. 

5. When all GRANTREQ messages reach their 
destination, the requester checks if it has attained 
majority of the replica votes, to enter the critical 
section. If no requester receives majority of the votes, 
all of them propagate a YIELD message to the replicas. 
Otherwise only one of the requesters will receive the 
majority votes and can therefore access the resource. 

6. The YIELD operation reflects the collaborative nature 
of this protocol and is used to reshuffle the queue. The 
fact that nobody wins indicates that contention has 
occurred. The YIELD message allows all requesters to 
try to acquire the resource again after a random time 
period. Typically, this self-stabilization process will 
quickly settle, as verified in [12]. 

Figure 2 shows the snapshot of the Non E2E protocol, 
where Req1 is currently in the critical section. Req2 and 
Req3 have issued REQUEST messages to also try to gain 
access to the same resource. Their requests are queued by 
the intermediate nodes of the respective quorum sets. When 
Req1 has finished using the resource and leaves the critical 

section, the partial queues will be merged (within each 
quorum set) to form the complete queue of requests at the 
replicas. 

 

 
 

Fig. 2. A snapshot of the Non E2E Protocol 
 

V. HANDLING FAILURES 
The protocols described above work well under failure-free 

environments. The types of failures that are being considered 
in the analysis below include: (1) Failure of node currently 
present in the critical section (2) Failure of node(s) 
maintaining the queue of requests (3) Failure of intermediate 
nodes of the quorum set. 

A. E2E Protocol 
Failure of the node that is currently in the critical section 

and is therefore also holding the token (i.e., maintaining the 
request queue), can have a devastating effect on the entire 
system. A very clever scheme has been proposed to handle 
this kind of failure. Since the request queue maintains 
information for nodes that are waiting to use a particular 
resource, why not replicate and maintain the same queue of 
requests at the first n waiting requesters (based on timestamps 
of the requests submitted)? These n+1 nodes (including the 
node currently accessing the resource) can run a membership 
protocol within themselves, to propagate updates and also to 
determine if a particular node has failed. Whenever the 
request queue is updated, this change is propagated to the 
other n nodes of its membership. These updates are ordered by 
sequence numbers so that, in case of failure, we can use the 
most current copy of the request queue. “Ping” messages are 
sent periodically from n waiting nodes to the node holding the 
token, at a low frequency, for example 1 in every 10 minutes. 
This means that the failure of that node can be detected in just 
10/n minutes. When the node holding the token fails, among 
the waiting nodes, the node with the highest sequence number 
will have the most updated copy of the queue. This node 
routes a message to all the replicas notifying itself as the 
owner of the resource. This failure detection/correction 
mechanism is tolerant to the failure of n waiting nodes, where 
n is a parameter that can be set in order to come up with the 
ideal tradeoff between extra bandwidth consumption and 



Computer Science Report No. UIUCDCS-R-2005-2622 (Engr. No. UILU-ENG-2005-1813), University of Illinois at 
Urbana-Champaign, August 2005 

5

fault-tolerance, for a particular application criteria. 
Failure of intermediate nodes within a quorum set is 

detected using the Next and Previous pointers maintained by 
each node, as part of its replica list entry. In case of failure, 
queries are re-routed by the underlying Pastry layer using an 
alternate set of nodes. 

B. Non E2E Protocol 
Since the request queue is being maintained by all the 

intermediate nodes of the quorum set, the queue of requests 
would not be lost by a single node failure. In case a node in 
the path fails, its predecessor routes a new request message to 
the replica, creating a new quorum path, and its successor 
directs a cleanup message to clear the old quorum nodes from 
the failed node to the replica. 

During a RELEASE message sequence, it can happen that 
the replica fails after receiving the partially assembled queue 
from its predecessor. The failure of the replica can be detected 
by the “Ping/Ack” mechanism between the replica and its 
predecessors. In such a case, an alive predecessor would act as 
the temporary token holder, where the new queue would be 
rebuilt. 

 

VI. EXPERIMENTAL RESULTS 
The E2E, Non E2E, and Sigma mutual exclusion protocols 

have been implemented over the FreePastry [4] 
implementation of the Pastry routing substrate. This allows us 
to accurately compare our proposed solutions against the 
Sigma protocol in various different network scenarios, using a 
virtual network simulation model with message-based 
communication. 

The test-bench code starts off by creating a set of nodes, 
arranged according to the Pastry network topology. The 
simulation then runs for a certain number of rounds and 
derives the experimental results, by averaging over ten such 
runs. In the simulation, the concept of a round is introduced in 
order to describe the amount of work done by the nodes in the 
network, which includes a certain number of requests for 
resources being issued by a set of randomly chosen nodes. 
Also in each round, a node releases one of its already held 
resources, with a 50% probability. This means that the 
average holding time of a critical section is 2 rounds. Below 
are the default values for the simulation parameters, which 
will be used to generate the plots in the following sections: 

 
# of 

nodes 
# of 

resources 
# of replicas 

per 
resource 

# of  
rounds 

# of 
requests 

per round 
6500 65 10 20 20 

Table 1: Default values for parameters 
 

A. Scalability 
One of our initial goals behind the proposed protocols was 

to come up with an efficient and scalable method for 
achieving mutual exclusion. Figure 3a presents a comparison 

of the three protocols. Even though all the plots are linear with 
respect to number of nodes, the two proposed protocols 
require 1.5 to 2.5 times less messages than the Sigma protocol, 
which is a big improvement. 
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Fig. 3a. A lower increase in bandwidth consumption, as the network grows 
 
Figure 3b shows the effect of increased network contention 

on the amount of bandwidth consumed. The number of nodes 
present is kept constant at 6500, but the rate of requests per 
round is steadily increased from 10 to 100. This is a nice 
measure as it demonstrates how the protocols would perform 
under heavy loads. 
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Figure 3b: Effect of increasing the number of requests issued per round on 
overall bandwidth consumption 

 

B. Overall Load Distribution 
In order to demonstrate the even load distribution of the 

proposed protocols, the following plots show the Cumulative 
Distribution Functions for them. The simulation parameters 
being used to generate the plots are shown in Table 2. Two 
CDF plots are generated for each protocol, which differ in the 
number of replicas that are responsible for granting access to a 
particular resource. The term load (as used in the plots below) 
refers to the number of messages that a node has to process. 

 
# of 

nodes 
# of 

resources 
# of replicas 

per 
resource 

# of  
rounds 

# of 
requests 

per round 
1000 10 10, 40 20 20 

Table 2: Default values for parameters 
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Figure 4a: In E2E, majority of the nodes have a load of 200 messages/round or 
less, except for a few outliers. By increasing the number of responsible 
replicas for a resource, the load on each node increases. This behavior is 
expected since the number of request/response messages exchanged between 
the replicas and the requesters would now be greater 
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Figure 4b: In Non E2E, majority of the nodes experience a load of less than 
180 messages/round. Unlike the E2E CDF plot, this one has a slightly larger 
number of nodes with loads in the range of 550-680 messages/round. 
Increasing the number of responsible replicas per resource does not have any 
effect on the load experienced by each node. This behavior is explained by the 
fact that in the Non E2E protocol, request messages are intercepted and 
stopped quicker than E2E (especially when number of replicas per resource is 
increased) 
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Figure 4c: In Sigma, majority of the nodes experience a load of 700 
messages/round or less. Similar to the Non E2E CDF plot, this one has a 
slightly larger number of nodes with loads in the range of 2500-3500 
messages/round. Increasing the number of responsible replicas per resource 
has similar effect, as was viewed for the E2E Protocol in Figure 4a 

 

C. High Churn Rate 
Rate of churn is defined as the sum of the number of nodes 

that are in transition (i.e., are either leaving or joining the 
system per round). In our simulation, n/2 randomly chosen 
nodes are failed and n/2 new nodes are added to the system, 
where n is the desired churn rate. The parameters used to 
generate the following plots are consistent with Table 1. 
Requesters are not churned in our experiments. 
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Figure 5: As the rate of churn is increased from 0 to 200, the change in 
message overhead is shown in this plot. Both the protocols experience a 
slightly higher increase in message overhead (at first), but then increase at a 
much lower rate 

 

VII. CONCLUSION 
In this work, a couple of protocols for achieving mutual 

exclusion in a p2p system were presented, one of which 
conformed more to the End-to-End argument.  Both protocols 
can be easily configured to run on any DHT, therefore 
providing a truly generalized solution to the addressed 
problem. The purpose behind presenting two different 
approaches to the same problem was to present the inherent 
tradeoff that exists between the amount of bandwidth 
consumed and better load balancing and fault-tolerance level 
required. An educated decision, based on specific application 
needs, must be made in order to fully utilize the potential of 
the chosen protocol. The proposed protocols, through their 
truly novel quorum and token-based schemes, were able to 
keep the load on the replicas relatively low even in the 
presence of a growing network and high churn rates. 

 

VIII. FUTURE WORK 
An important future direction of this research would be to 

port some existing Grid or p2p applications to use these 
protocols for handling their mutual exclusion needs. The ideal 
goal would be to present a general set of APIs for our 
protocols so that future applications can make use of our 
algorithms in a modular fashion, without worrying about the 
low-level mutual exclusion details. 
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