
Multi-objective Planning for Workflow Execution
on Grids

Jia Yu, Michael Kirley, and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, VIC 3010 Australia
{jiayu,mkirley,raj}@csse.unimelb.edu.au

Abstract— Utility Grids create an infrastructure for enabling
users to consume services transparently over a global network.
When optimizing workflow execution on utility Grids, we need to
consider multiple Quality of Service (QoS) parameters including
service prices and execution time. These optimization objectives
may be in conflict. In this paper, we have proposed a workflow
execution planning approach using multi-objective evolutionary
algorithms (MOEAs). Our goal was to generate a set of trade-off
scheduling solutions according to the users QoS requirements.
The alternative trade-off solutions offer more flexibility to users
when estimating their QoS requirements of workflow executions.
Simulation results show that MOEAs are able to find a range of
compromise solutions in a short computational time.

I. INTRODUCTION

Utility computing services has been reinforced by service-
oriented Grid computing [1], which creates an infrastructure
enabling users to consume services transparently over a secure,
shared, scalable, sustainable and standard world-wide network
environment. Utility computing [2] provides an economy
model in which service providers are paid for their services
according to factors such as the Quality of Service (QoS)
provided.

Many applications in scientific and enterprise domains such
as bioinformatics and financial analysis can be constructed
as workflows. As a result, a number of Grid workflow man-
agement systems [3][4][5] have been developed to facilitate
the composition and execution of workflow applications over
distributed resources. Many heuristics [6][7][8] have also been
proposed for workflow scheduling in order to optimize a single
objective, such as minimizing execution time. However, a large
number of objectives need to be considered when scheduling
workflows on utility Grids based on users’ QoS requirements.
One important QoS metric is the processing power offered by
the provider. Higher processing power means faster execution
time and may result in a higher cost. Therefore, users may
elect to “trade-off” between expensive services that may offer
a faster execution time and cheaper but slower services to meet
their requirements.

Recently, a number of cost-aware workflow scheduling
heuristics [9][10] have been proposed and evaluated. Even
though multiple criteria have been considered, their aim was to
optimize a single objective. For example, they either minimize
execution cost while meeting users’ deadline or minimize

execution time while meeting users’ budget. However, in
many situations users may need more information such as
the range of QoS levels available and associated costs before
making decisions. Furthermore, QoS levels and prices offered
by service providers may be highly diverse and may not be
directly correlated with the utility perceived by the users.
For example, users may prefer some assignments which have
slightly longer execution times but offer large savings in
execution cost.

Given this motivation, we propose a workflow planning
method, which considers simultaneously optimizing multiple
objectives. In this paper, we investigate the trade-off between
two conflicting objectives execution time and cost-while meet-
ing the users’ maximum deadline and budget requirements.
We believe that our workflow planning approach can be easily
extended to support more objectives. The major benefit of this
workflow planning is to generate a set of alternative trade-off
solutions and offer more flexibility to users for estimating their
QoS requirements of workflow executions. It can also simulta-
neously generate the estimated sub-deadline and sub-budget of
each single workflow task required for the desired schedule.
Such information is important for establishing service level
agreements between users and service providers for workflow
task execution.

The remainder of the paper is organized as follows. In
Section II, we introduce related work and compare them with
the work proposed in this paper. We introduce the workflow
planning problem in Section III. We present a general intro-
duction to multi-objective optimization algorithms in Section
IV. Our methods for solving the multi-objective workflow
optimization problem are described in Section V. Experimental
details and simulation results are presented in Section VI.
Finally, we conclude the paper and present future work in
Section VII.

II. RELATED WORK

Many heuristics have been developed for scheduling DAG
(Directed Acyclic Graph) based task graphs in multiprocessor
systems [11][13]. Several projects have also investigated the
use of heuristics for scheduling workflows on Grids. Min-
Min, Max-Min and Sufferage were employed by Mandal et

al [6] to schedule bio-imaging applications. Genetic algo-
rithms and HEFT (Heterogeneous Earliest Finish Time) have
been extended by the ASKALON project [7][14] to schedule
scientific applications in Grid environments. More recently,
Singh et al [15] incorporated GA with Min-Min heuristics
to optimize execution costs of provisioning resources for
application execution.

In addition, several heuristics have been proposed to address
scheduling problems based on users’ specified QoS constraints
such as budget and deadline. Tsiakkouri et al [10] developed
scheduling approaches to adjust a schedule generated by a
time optimized heuristic and a cost optimized heuristic to meet
users’ budget constraints respectively. GRIA (Grid Resources
for Industrial Applications) [24] provides various resource
allocation strategies for workflow execution based on QoS
requirements. In our previous work [9], we have developed
algorithms based on the genetic algorithms to minimize either
execution cost or time.

The work in this paper is distinct from the related work
because it simultaneously optimizes multiple objectives of
workflow execution according to users QoS constraints and
is capable of generating a set of alternative trade-off solutions
for users’ further decisions.

III. WORKFLOW PLANNING PROBLEM

Workflow execution planning is carried out prior to work-
flow execution. It aims to investigate users execution require-
ments and generate possible execution schedules. Below, we
give the formulation of the execution optimization problem
during the planning stage.

We model a workflow application as a DAG. Let Γ be the
finite set of tasks Ti(1 ≤ i ≤ n). Let Λ be the set of directed
arcs of the form (Ti, Tj) where Ti is called a parent task of
Tj , and Tj the child task of Ti. Associated with each directed
arc is a dataflow in which the output of the parent is required
as input data by the child. We assume that a child task cannot
be executed until all of its parent tasks have been completed.
Then, the workflow application can be described as a tuple
Ω(Γ, Λ).

Let m be the number of services available. There is a
set of services S

j
i (1 ≤ i ≤ n, 1 ≤ j ≤ mi, mi ≤

m), capable of executing the task Ti. Services have varied
processing capability delivered at different prices. We denote
that time(Ti) is the completion time of Ti and cost(Ti) the
input data transmission cost and service cost for processing Ti.
The execution optimization problem is to generate solution I ,
which maps every Ti onto a suitable S

j
i to achieve the multi-

objective below:

Minimize T ime(I) = max
Ti∈Γ

time(Ti) (1)

Minimize Cost(I) =
∑

Ti∈Γ

cost(Ti) (2)

subject to Cost(I) < B

Time(I) < D

where B is the cost constraint (budget) and D is the time
constraint (deadline) required by users for workflow execution.

IV. MULTI-OBJECTIVE OPTIMIZATION

We formalized the workflow planning problem as a multi-
objective optimization problem [19] in which a group of
conflicting objectives are simultaneously optimized. As given
in Equation 1 and 2, there are two conflicting objectives:
minimize execution time and minimize execution cost. In such
problems, there is no single optimal solution but rather a set
of potential solutions.

A. Definitions

We can define a multi-objective problem as:

Minimize f(x) = f1(x), ..., fn(x)

where x ∈ X and X is a solution space. We say that the
solution is said to dominate another if it is as good as the
other solution and better in at least one objective. That is x∗

dominates x, if and only if

∀i ∈ [1, ..., n], fi(x
∗) ≤ fi(x) ∧ ∃j ∈ [1, ...n], fj(x

∗) < fj(x)

Figure 1 shows solutions for the minimization problem of
two conflicting objectives, f1(x) and f2(x). The solution x3

dominates y2, because both objective values of x3 are lower
than those of y2. However, x3 does not dominate x4, since
f2(x3) > f2(x4). We say that x3 and x4 are non-dominated
solutions. They are optimal in one objective but none of these
two solutions is superior to the other with respect to the two
objectives.

The set of non-dominated solutions form a non-dominated
set P , which meets following conditions:

• Any solution in P is non-dominated to any other solution
in P with respect to all objectives.

• Any solution in P dominates at least one solution not
belonging to P .

For example, the set of solutions x1−x4 is a non-dominated
set for the given problem. The image of the non-dominated
set is called non-dominated front.

�����

�����

���

���

���

���

��	

����

����

��	 ��

� � � �

�

�

�

���

���

���

��� ��� ���

��
�����
���������
�

Fig. 1. Five non-dominated solutions (x1−x5) and four dominated solutions
(y1 − y4) for two objectives, time and cost. This is a minimization problem.

B. Multi-objective Algorithms

Scheduling of interdependent tasks in distributed heteroge-
neous computing environments is well known to be an NP-
hard problem [17]. Many non-evolutionary based heuristics
have been proposed to optimize execution time. However,
with the increase in the number of parameters and objectives
required to be considered, it becomes infeasible to develop
a simple heuristic or use a classical method such as a linear
programming approach to handle the scheduling optimization
problem. Evolutionary based algorithms have been widely ap-
plied to solve multi-objective optimization problems in many
application domains, such as control systems [16] and network
routing [18], and are capable of simultaneously optimizing
multiple objectives without combining them into a single
scalar objective function.

In this paper, we focus on applying three well-known
algorithms to solve the workflow execution planning problem
and compare the algorithms for different workflow struc-
tures and users constraint levels. The three algorithms are:
Non-dominated Sorting Genetic Algorithm (NSGAII) [20],
Strength Pareto Evolutionary Algorithm (SPEA2) [21] and
Pareto Archived Evolution Strategy (PAES) [22]. NSGAII
and SPEA2 are population-based algorithms with different
evaluation and selection schemes, while PAES is a local
search-based algorithm.

A general high level overview [25] of NSGAII and SPEA2
algorithms is shown in Figure 2. Both NSGAII and SPEA2 are
genetic algorithms-based methods and select individuals from
a population for reproduction. Both crossover and mutation
genetic operators are performed to generate new offspring.
However, these two algorithms employ different evaluation
and selection strategies.

NSGAII evaluates solutions based on the values of each
objective. It ranks all solutions to form non-dominated fronts
according to its values (see Figure 1). It first selects non-
dominated solutions in the current population as the first level
non-dominated front. It then selects non-dominated solutions
in the rest of the population as the next level non-dominated
front. The procedure continues until the whole population is
classified into non-dominated fronts. In the selection phase,
an individual’s non-domination rank biases the probability of
being selected for reproduction. The solutions in the first level
front have highest priority, and then those in the second level
and so forth. The selection process continues until it finds
that the population size would be exceeded if all solutions
were added to the next level front. Then, crowding sort [20]
is performed on the solutions at this level and finally the
solutions from the less crowded area are selected.

On the other hand, SPEA2 uses the degree to which the
solution dominates other members in the population and its
density estimation to evaluate solutions. The density of a
solution in a population is a function of the distance to the k-th
nearest solution. Unlike NSGAII, SPEA2 does not select solu-
tions based on their non-dominated levels at each generation.
It creates an external archive to keep selected individuals for

 NSGAII and SPEA2 algorithm

1. generate initial population
2. do
3. perform crossover on individuals
4. perform mutation on offspring
5. evaluate solutions
6. select individuals to be carried into next generation
7. while(termination condition is not satisfied)

 NSGAII and SPEA2 algorithm

1. generate initial population
2. do
3. perform crossover on individuals
4. perform mutation on offspring
5. evaluate solutions
6. select individuals to be carried into next generation
7. while(termination condition is not satisfied)

Fig. 2. Generic outline of NSGAII and SPEA2.

 PAES algorithm

1. generate current solution
2. create an archive
3. do
4. mutate current solution and generate a candidate

solution
5. evaluate candidate solution
6. if the candidate solution is not dominated by

 the current solution then
7. compare the candidate solution with archive members
8. update archive
9. select a new current solution
10. end if
11. while(termination condition is not satisfied)

Fig. 3. Overview of PAES.

the next generation and first copies non-dominated solutions
in the current population to the archive. If the size of the
archive is exceeded, the solutions in overcrowded areas are
removed from the archive; otherwise, it fills the archive with
dominated solutions based on their Euclidean distance to its
nearest neighbour solution.

An overview of PAES is shown in Figure 3. PAES uses local
search from one current solution to generate a new candidate
and compares the current solution with the candidate solution.
It continues to search from the current solution if the candidate
is dominated; otherwise it is compared with other archived
solutions. In PAES, an archive is maintained to keep the best
solutions found so far. Initially there is only one solution in the
archive. As the number of generations increases, the archive is
updated by adding good candidates and removing dominated
archived members. In addition to comparing solutions by using
the dominance criteria, density estimation is also applied.

V. MULTI-OBJECTIVE WORKFLOW EXECUTION PLANNING

In order to extend MOEAs to solve the workflow scheduling
problem, we need to define an appropriate problem represen-
tation, fitness assignment, and genetic operators. The methods
we have employed are described in the following sub-sections.

A. Problem encoding

For the workflow scheduling problem, a feasible solution
is required to meet the following conditions: (a) a task can
only be started after all its predecessors have completed. (b)
every task appears once and only once in the schedule. (c)
each task must be allocated to one available time slot of a
service capable of executing the task.

�� ��

��

��

��

�� �� �� �� �� ��

�� �� �� �� �� �� �	

����

��������

��

��

��

�	

�	
��	

�
������
����

��

��

��

��

�� ��

��

��

�� ��

�	

��������

��

��
���
���
���
���
���
���
��	

����������������
����

����

	�������������	����

���
��������
����

 �����	��
�������

Fig. 4. Workflow representation in the search space.

Each individual in the search space represents a feasible
solution to the problem. In our work, each solution is rep-
resented by two strings [12], the task-assignment string and
the scheduling-order string. As shown in Figure 4, the task-
assignment string encodes the allocation for each task. For
example, task T0 is assigned to service S1. The scheduling-
order string encodes the order to schedule tasks. For example,
T1 is scheduled after T0, T2 is scheduled after T1 and so
forth. The order in the scheduling-order string must satisfy task
dependencies; that means a task should not be placed before
its predecessors. However, the main reason for having the
scheduling-order string is not only to code task dependencies
but also the execution priorities for independent tasks which
are assigned to a same service. For example, two independent
tasks T0 and T2 are assigned on S1, but T0 is executed first
according to the scheduling-order string.

B. Fitness function

A fitness function is used to measure the quality of the
solutions according to the given optimization objectives. We
separate fitness functions by objective functions and penalty
functions. Objective functions are designed to encourage the
algorithms to choose solutions with minimum objective values.
The objective functions for solution I are defined as follows:

Cost objective function: fcost(I) =
cost(I)

B

Time objective function: ftime(I) =
time(I)

D

A penalty function is developed to handle constraints. It is
defined as follows:

P (I) = Pbudget(I) + Pdeadline(I)

where Pbudget is the budget penalty function defined by:

Pbudget(I) =

{

fcost(I) if cost(I) > B

0 otherwise

�� �� �� �� �� ������

�� �� �� �� �� �����	

��
����

��
����

�� �� �� �� �� ������

�� �� �� �� �� �����	

�
���
��������
�

���
���������
�

�����������

�����������

�������
��

������

Fig. 5. Illustration of crossover operation.

and Pdeadline is the deadline penalty function defined by:

Pdeadline(I) =

{

ftime(I) if time(I) > D

0 otherwise

Since satisfying deadline and budget requirements is the
primary goal of the scheduling scheme, the overall penalty is
added to the objective functions to form the fitness functions:

Cost fitness function: Fcost(I) = fcost(I) + P (I)

Time fitness function: Ftime(I) = ftime(I) + P (I)

C. Evolutionary operations

Evolutionary operators are used to generate new solutions
based on solutions found so far. The two operators are
crossover and mutation.

1) Crossover: For population-based evolutionary algo-
rithms (e.g. NSGAII and SPEA2), crossovers are used to create
new solutions by rearranging parts of the existing solutions in
the current population. The idea behind the crossover is that
the fittest solution may result from the combination of two
of the current fittest solutions. We have implemented two-
point crossover which is illustrated in Figure 5. The crossover
operator is implemented as follows: (a) two parents are chosen
at random in the current population. (b) two random points are
selected from the task-assignment strings. (c) all tasks between
these two points are chosen as successive crossover points.
(d) the service allocation of all tasks within the crossover
window are exchanged. After crossover, two new offspring
are generated by combining task assignments taken from the
two parents.

2) Mutation: For population based algorithms, mutations
occasionally occur in order to allow a child to obtain features
that are not possessed by either of its parents. This process
helps the algorithm to explore new and possibly better ge-
netic material than previously considered. For local search-
based algorithms (e.g. PAES), mutation operations are used
to generate a new solution based on the current solution. We
have developed two types of mutations: reordering mutation
and replacing mutation for the workflow scheduling problem.
The reordering mutation aims to change the execution order
of independent tasks on the same service, while the replacing
mutation aims to re-allocate an alternative service to a task in
a solution.

����������	
��
����
������������� ������������	
��
����
�������������

����

Fig. 6. small portion of workflow applications.

VI. EXPERIMENTS

A. Workflow applications

Given that different workflow applications may have dif-
ferent impact on the performance of the scheduling algo-
rithms, we have evaluated the algorithms on different workflow
structures. According to many Grid workflow projects [7][8],
workflow applications can be categorized into balanced struc-
ture and unbalanced structure. Figure 6 shows balanced- and
unbalanced-structure applications used in our experiments. As
shown in Figure 6a, the balanced-structure application consists
of several parallel pipelines, which require the same types of
services but process different data sets. In Figure 6b, the struc-
ture of the unbalanced-structure application is more complex.
Unlike the balanced-structure application, many parallel tasks
in the unbalanced structure require different types of services,
and their workload and I/O data varies significantly.

B. Experimental setting

In our experiments, we have simulated 15 types of services
with various price levels, each of which was supported by 10
different service providers with varied processing capability.
The topology of the system is such that all the services are
connected to one another, and the available network band-
widths between the services are 100Mbps, 200Mbps, 512Mbps
or 1024Mbps. The processing cost and transmission cost are
inversely proportional to the processing time and transmission
time respectively.

The behaviors of algorithms are also observed at three con-
straint levels, namely relaxed constraint, medium constraint,
and tight constraint. The relaxed constraint level assumes that
users require relatively large deadline and budget, while tight
constraint level assumes that users require low deadline and
budget. The relaxed/tight deadlines and budgets of an applica-
tion are determined by the maximum and minimum time/cost
for the workflow execution. Tmax is the time derived by
executing the workflow at the cheapest cost Cmin, while Cmax

is the cost achieved by executing the workflow at the shortest
time Tmin. The Tmax and Cmin can be generated by an cost
optimization algorithm such GreedyCost [9], while Tmin and
Cmax are generated by a time optimization algorithm such
as HEFT [11]. The deadline D and budget B are defined by

TABLE I

DEFAULT SETTINGS.

Parameter Value/Type
Population size 10
Initial population randomly generated solutions
Maximum generation(NSGAII, SPEA2) 100
Crossover probability(NSGAII, SPEA2) 0.9
Mutation probability 0.5
Archive size(SPEA2, PAES) 10
Depth(PAES) 10
Maximum iteration(PAES) 1000

Equation 3 and 4 respectively.

D = Tmax − k(Tmax − Tmin) (3)

B = Cmax − k(Cmax − Cmin) (4)

The value of k was varied from 0.2 to 0.8 to generate the
relaxed, medium and tight deadlines and budgets.

The parameter settings used as the default configuration for
NSGAII, SPEA2 and PAES are listed in Table I. Two versions
of SPEA2 and NSGAII have been used. In the first version,
the initial population was randomly generated. In the second
version, we seed the population with individuals generated by
simple heuristics. Here, we have implemented two heuristics:
Greedy Cost-Time Distribution (TD) and Greedy Time-Cost
Distribution (CD). The CD approach is aimed at minimizing
execution time while meeting the budget constraint, while the
TD is aimed at minimizing execution cost while meeting the
deadline constraint.

C. Comparison of Different algorithms

In our first experiment, we compare three algorithms, NS-
GAII, SPEA2 and PAES, using relaxed, medium and tight
constraints for unbalanced-and balance-structure applications.
NSGAII and SPEA2 were selected with two different initial
populations. Two of the members in the initial population
were comprised of the solutions produced by two deadline or
budget constrained minimization heuristics, TD and CD, which
are described in Section VI-B, together with other randomly
generated solutions. We denote the results returned by NSGAII
and SPEA2 with this type of initial population as NSGAII*
and SPEA2* respectively. The other initial population contains
only randomly generated solutions and corresponding results
returned by NSGAII and SPEA2 are denoted as NSGAII and
SPEA2 respectively.

In order to compare the performance of alternative workflow
multi-objective scheduling algorithms, we need to examine
the extent of minimization of the obtained non-dominated
solutions produced by each algorithm for each objective and
the spread of their solutions. Figure 7 show the non-dominated
solutions obtained at the end of simulation trial (average
over 10 runs) for the unbalanced-structure application. The
performance appears to be dramatically different when the TD
and CD heuristics have been used to initialize the population.
Compared with SPEA2 and NSGAII, SPEA2* and NSGAII*
guarantee the extreme solutions and have a better spread
distribution of solutions within the constraints, whereas the

solutions obtained by SPEA2 and NSGAII dominate a small
subset of solutions produced by SPEA2* and NSGAII*. How-
ever, as the constraints are tightened, SPEA2* and NSGAII*
significantly outperforms SPEA2 and NSGAII in terms of
the minimization and distribution of solutions. As shown in
Figure 7c, the solutions produced by SPEA2 and NSGAII
cannot meet the deadline and budget constraints. This shows
that the performance of population-based algorithms can be
significantly affected when we initialize the population with
solutions generated by TD and CD.

In order to present a comprehensive comparison of the over-
all quality of these alternative approaches, we have run each
algorithm for two different workflow structures at relaxed,
medium and tight constraint levels respectively. The experi-
ment for each scenario was repeated 30 times (the average
running time of each experiment on a machine with Intel CPU
2.00GHz was 4 mins). We have constructed a reference set, R,
by merging all of the archival non-dominated solutions found
by each of the algorithms for a given workflow structure and
constraint level across 30 runs. We then use the hypervolume
difference indicator I−

H to measure the differences between
non-dominated fronts generated by the algorithms and the
reference set R. I−

H measures the portion of the objective space
that is dominated by R [23]. The lower the value of I−

H , the
better the algorithms performs.

The box plots in Figure 8 and 9 show statistical significance
difference between algorithms for balanced- and unbalanced-
structure workflow respectively (p-value < 0.05). We can ob-
serve that NSGAII and SPEA2 perform similar on both appli-
cations, whereas PAES performs differently. For the balanced-
structure application, as shown in Figure 8 PAES performs
worst at relaxed and medium constraint while it performs very
similar to SPEA2 and NSGAII at tight constraint. However, it
outperforms SPEA2 and NSGAII for the unbalanced-structure
application as we can see from Figure 9. Therefore, it can be
said that the local search-based algorithm is more efficient for
the unbalanced-structure application whereas the population-
based algorithms is better for the balanced-structure applica-
tion.

However, a population-based algorithm can be improved by
employing solutions optimizing each objective separately as
initial individuals. The statistical analysis in Figure 8 and 9
shows that SPEA2* is significantly better than SPEA2 and
outperforms PAES. Even though the behaviors of SPEA2
and NSGAII are similar, NSGAII* does not perform as
well as SPEA2*. It even performs worse than NSGAII on
the unbalanced-structure application at relaxed constraint (see
Figure 9a.

The major difference between the SPEA2 algorithm and
the NSGAII algorithm is their selection strategies. Different
selection strategies mean that NSGAII and SPEA2 perform
differently. As described in Section IV-B, SPEA2 firstly se-
lects non-dominated solutions in the current population, and
then select other solutions which are in less overcrowded
area. On the other hand, NSGAII not only selects the non-
dominated solutions in the population, but also ranks the

rest of the solutions into non-dominated levels and selects
solutions belong to higher non-dominated levels. Such an
elitist selection strategy could result in less diverse elements
contained by individuals and thus leading to premature con-
vergence, since it easily chooses the individuals which inherit
the parts from employed initial individuals. However, as the
tight degree of the constraint increase, the search space, which
contains solutions satisfying constraints decreases. Therefore,
the difference between the SPEA2* and NSGAII* decreases
as the constraints become tight. As shown in Figure 8c and
Figure 9c, the difference between NSGAII* and SPEA2* is
not significant. These results show that with incorporating TD
and CD, SPEA2 can be significantly improved and perform
best in all the cases, while the performance of NSGAII gets
worse for the unbalanced-structure workflow with relaxed and
medium constraints. As shown in Figure 8 and 9, SPEA* can
perform better than NSGAII* for both workflow applications.

D. Effect of changing crossover type

We also compare the crossover operator (denoted as two-
point crossover) proposed in Section V-C.1 with another
crossover type called one-point crossover [12]. One-point
crossover divides the task-assignment string into a top part
and bottom part and swaps task assignments of bottom parts
of parents. As shown in Figure 10, the results generated
by two crossover types are similar for the balanced-structure
application. However, the two-point crossover can achieve bet-
ter performance for the unbalanced-structure application. This
means that two-point crossover can encourage the evolutionary
algorithm to search better solutions more efficiently.

VII. CONCLUSION

Existing workflow scheduling algorithms only attempt to
minimize either execution time or execution cost. However,
more scheduling objectives are required to be considered
while scheduling workflows on utility Grids. In this paper,
we have proposed a workflow execution planning approach,
which optimize multiple objectives. The planner can generate
a set of widespread alternative solutions if the optimization
objectives are conflicted. Providing these alternative solutions
can offer more flexibility to users to estimate their preferences
and choose a desired workflow schedule based on their QoS
requirements.

We have applied Multi-objective Evolutionary Algorithms
(MOEAs) for the workflow execution planning problem.
Our goal was to simultaneously minimize two conflicting
objectives-execution time and execution price while meet-
ing users’ maximum time constraint (deadline) and price
constraint (budget). Corresponding fitness functions, which
incorporate minimization objectives and penalty functions for
the constraints, have been developed. We have also compared
two population-based MOEAs, NSGAII and SPEA2, and one
local search-based MOEAs, PAES. A statistical analysis of the
result has been presented to show the quality of each algorithm
for various workflow structures and constraint levels. We have
also proposed a method which incorporates single objective

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
C

os
t/B

ud
ge

t

Execution Time/Deadline

Unbalanced-structure application(H)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

(a) relaxed constraint (k=0.2)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
C

os
t/B

ud
ge

t

Execution Time/Deadline

Unbalanced-structure application(M)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

(b) medium constraint (k=0.5)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.75 0.8 0.85 0.9 0.95 1

E
xe

cu
tio

n
C

os
t/B

ud
ge

t

Execution Time/Deadline

Unbalanced-structure application(L)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

(c) tight constraint (k=0.8)

Fig. 7. Obtained non-dominated solutions for the unbalanced-structure application on different constraint levels.

NSGAII* SPEA2* NSGAII PAES SPEA2

0.1

0.2

0.3

0.4

0.5

0.6

I
H
 −

Scheduling Algorithms

(a) relaxed constraint

NSGAII* SPEA2* NSGAII PAES SPEA2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I
H
 −

Scheduling Algorithms

(b) medium constraint

NSGAII* SPEA2* NSGAII PAES SPEA2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I
H
 −

Scheduling Algorithms

(c) tight constraint

Fig. 8. Box plot of I
−

H
indicator values for the balanced-structure application on different constraint levels.

NSGAII* SPEA2* NSGAII PAES SPEA2
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

I
H
 −

Scheduling Algorithms

(a) relaxed constraint

NSGAII* SPEA2* NSGAII PAES SPEA2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

I
H
 −

Scheduling Algorithms

(b) medium constraint

NSGAII* SPEA2* NSGAII PAES SPEA2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I
H
 −

Scheduling Algorithms

(c) tight constraint

Fig. 9. Box plot of I
−

H
indicator values for the unbalanced-structure application on different constraint levels.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

E
xe

cu
tio

n
C

os
t/B

ud
ge

t

Execution Time/Deadline

Balanced-structure application(M) Crossover type

one-point crossover
two-point crossover

(a) balanced-structure

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

E
xe

cu
tio

n
C

os
t/B

ud
ge

t

Execution Time/Deadline

Unbalanced-structure application(M) Crossover type

one-point crossover
two-point crossover

(b) unbalanced-structure

Fig. 10. Performances of SPEA2 with different crossover types.

optimization heuristics and population-based algorithms. The
simulation results show that it can significantly improve the
performance of SPEA2 and find a range of compromise
solutions within a short computational time.

In future work, we will evaluat scheduling approaches in
terms of pricing models and Grid sizes. We will also enhance
the work by providing run-time rescheduling approaches to
support adaptive execution environments.

ACKNOWLEDGMENT

We would like to thank Robert Stewart for providing
scripts for statistical analysis. We also want to thank
Srikumar Venugopal, Hussein Gibbins and Chee Shin Yeo for
their comments on this paper. This work is partially supported
through Australian Research Council (ARC) Discovery
Project grant.

REFERENCES

[1] I. Foster et al., The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration, Technique Report,
Gridbus Project,2002.

[2] T. Eilam et al.,Using a utility computing framework to develop utility
systems, IBM System Journal,43:97-120,2004.

[3] E. Deelman et al., Mapping Abstract Complex Workflows onto Grid
Environments, Journal of Grid Computing, 1:25-39, 2003.

[4] T. Oinn et al., Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):3045-3054, Oxford
University Press, London, UK, 2004.

[5] G. V. Laszewski, Java CoG Kit Workflow Concepts for Scientific Ex-
periments, Argonne National Laboratory, Argonne, IL, USA Technique
Report, 2005.

[6] A. Mandal et al., Scheduling Strategies for Mapping Application
Workflows onto the Grid, in IEEE International Symposium on High
Performance Distributed Computing(HPDC 2005), Research Triangle
Park, NC, USA, 2005.

[7] M. Wieczorek et al., Scheduling of scientific workflows in the
ASKALON grid environment, SIGMOD Rec.,34:56-62, 2005.

[8] J. Blythe et al., Task scheduling strategies for workflow-based applica-
tions in grids, in Proceedings of the Fifth IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’05), 2005.

[9] J. Yu and R. Buyya, Scheduling Scientific Workflow Applications with
Deadline and Budget Constraints using Genetic Algorithms, Scientific
Programming,14:217-230, 2006.

[10] E. Tsiakkouri et al., Scheduling Workflows with Budget Constraints, in
CoreGRID Integration Workshop Pisa, Italy, 2005.

[11] T. Haluk et al., Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing, IEEE Transactions on Par-
allel and Distributed Systems., 13:260-274, 2002.

[12] W. Lee et al., Task matching and scheduling in heterogeneous computing
environments using a genetic-algorithm-based approach, J. Parallel
Distributed Computing.,47:8-22, 1997.

[13] E. S. H. Hou et al., A Genetic Algorithm for Multiprocessor Scheduling,
IEEE Transactions on Parallel Distributed Systems.,5:113-120, 1994.

[14] R. Prodan and T. Fahringer, Dynamic scheduling of scientific workflow
applications on the grid: a case study,in Proceedings of the 2005 ACM
symposium on Applied computing, Santa Fe, New Mexico, 2005.

[15] S. Gurmeet et al., Application-Level Resource Provisioning on the Grid,
in Proceedings of the Second IEEE International Conference on e-
Science and Grid Computing, 2006.

[16] P. J. Fleming and R. C. Purshouse, Evolutionary Algorithms in Control
Systems Engineering: a Survey, Control Engineering Practice, 10:1223-
1241, 2002.

[17] Y. Yang and H. Casanova, NP-complete Scheduling Problems, Journal
of Computer and System Sciences, 10:434-439, 1975.

[18] A. Roy and S. K. Das, Optimizing QoS-Based Multicast Routing in
Wireless Networks: A Multi-Objective Genetic Algorithmic Approach,
in Second IFIP-TC6 Networking Conference(Networking 2002), Pisa,
Italy, 2002.

[19] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
England, Wiley and Sons, 2001.

[20] K. Deb et al., A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-
II, Parallel Problems Solving from Nature VI, pp.849-858, 2000.

[21] E. Zitzler et al., SPEA2: Improving the strength Pareto evolutionary
algorithm,Technique Report, Swiss Federal Institute of Technology
2001.

[22] J. D. Knowles and D. W. Corne, The Pareto Archive Evolution Strategy:
A New Baseline Algorithm for Multi-Objective Optimization, The
congress on Evolutionary Computation, pp. 98-105, 1999.

[23] E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A com-
parative case study and the strength pareto approach, IEEE Transactions
on Evolutionary Computation, 3:257-271, 1999.

[24] M. Ghanem et al., Grid-enabled Workflows for Industrial Product
Design, Second IEEE International Conference on e-Science and Grid
Computing (e-Science’06), Amsterdam, The Netherlands, 2006.

[25] PISA, A Platform and Programming Language Independent Interface
for Search Algorithms, http://www.tik,ee,ethz.ch/sop/pisa/.

