
Dynamic Scheduling for Heterogeneous Desktop Grids

Issam Al-Azzoni and Douglas G. Down
Department of Computing and Software

McMaster University
Hamilton, Ontario, Canada

alazzoi@mcmaster.ca, downd@mcmaster.ca

Abstract

Desktop Grids have emerged as an important method-
ology to harness the idle cycles of millions of participant
desktop PCs over the Internet. However, to effectively uti-
lize the resources of a Desktop Grid, it is necessary to use
scheduling policies suitable for such systems. A scheduling
policy must be applicable to large-scale systems involving
large numbers of machines. Also, the policy must be fault-
aware in the sense that it copes with resource volatility.
Further adding to the complexity of scheduling for Desktop
Grids is the inherent heterogeneity of such systems. Sub-
optimal performance would result if the scheduling policy
does not take into account information on heterogeneity. In
this paper, we suggest and develop several scheduling poli-
cies for Desktop Grid systems involving different levels of
heterogeneity. In particular, we propose a policy which uti-
lizes the solution to a linear programming problem which
maximizes system capacity. We consider parallel applica-
tions that consist of independent tasks.

1. Introduction

Widespread availability of low-cost, high performance
computing hardware together with the rapid expansion of
the Internet and advances in computing networking tech-
nology have led to an increasing use of heterogeneous
computing (HC) systems. An HC system is constructed
by networking various machines with different capabili-
ties and coordinating their use to execute a set of tasks.
Desktop Grids are HC systems characterized by the non-
dedication of their machines. These systems aim to harvest
a large number of desktop PCs owned by individuals and
whose idle cycles can be exploited to run Grid applications.
Desktop Grids have recently received a lot of attention be-
cause of the success of several popular applications such as
SETI@home [19].

An important component of a Desktop Grid system is

its scheduler. The scheduler is responsible for assign-
ing resources to tasks. It uses a scheduling policy that
is designed to optimize certain performance requirements.
These scheduling policies may use certain information,
such as task arrival rates and machine execution rates, to
improve performance. Based on the information that can be
used, scheduling policies are classified as static, dynamic,
or adaptive (Shah et al. [20]). In a static policy, the schedul-
ing is carried out independent of the state of the system
and is done in a predetermined manner. A dynamic pol-
icy adapts its scheduling decisions based on the state of the
system. Adaptive policies are dynamic policies where the
parameters of the scheduling policy are changed based on
the global state of the system. This paper suggests several
adaptive scheduling policies for Desktop Grids.

A scheduling policy must support systems with a very
large number of machines. Besides the natural complex-
ity of scheduling for such large systems, the complexity
is further complicated by several factors. First, Desktop
Grids are characterized by very high resource volatility. In
such systems, machines can fail at any time without any
advance notice. Since Desktop Grids are typically based
on the Internet, machines are also exposed to link failures.
Furthermore, Desktop Grids are volunteer computing sys-
tems where participants voluntarily join in to execute the
Grid applications. Thus, the machines of a Desktop Grid
system are not dedicated (i.e., machines’ local jobs should
have higher priority than the Grid tasks). To better cope
with resource volatility, a scheduling policy must be fault-
aware in the sense that it needs to exploit the knowledge of
the effective computing power delivered by resources and
the distribution of their fault times (if such information is
available).

A second factor contributing to the complexity of
scheduling for Desktop Grids is related to the heteroge-
neous nature of such systems. In this work, we consider het-
erogeneous machines which execute tasks that themselves
may be highly heterogeneous. The execution time of a task
depends on the class of the task as well as the executing



machines. Performance would be significantly impacted if
information on task and machine heterogeneity is not taken
into account by the scheduling policy. There is already
work on developing policies for clusters of dedicated and
heterogeneous machines (see Al-Azzoni and Down [1], He
et al. [12], Maheswaran et al. [15], and [20]). To the best of
our knowledge, this is the first paper to consider the prob-
lem of scheduling for heterogeneous Desktop Grids involv-
ing resource volatility.

Our workload model supports parallel applications con-
sisting of independent tasks. These are used in a variety of
domains, including simulations, fractal calculations, com-
putational biology, and computer imaging. We assume that
the Desktop Grid is mainly used to execute short-lived ap-
plications [13]. These applications consist of short tasks
whose mean execution times are small relative to the mean
machine availability times. Hence, for such applications,
there is no need for incorporating fault tolerant scheduling
mechanisms such as checkpointing, migration and replica-
tion.

In current Desktop Grids, the default scheduling policy is
First-Come-First-Served (FCFS) [11, 13]. This policy does
not require any information on task arrival rates and ma-
chine execution rates or availabilities. This policy performs
well in systems with limited task heterogeneity. However,
as our simulations show, the policy performance is subop-
timal in systems with high task heterogeneity and degrades
rapidly as the load increases. In this paper, we suggest the
use of an existing policy (the Gcµ policy) which has been
described in the queueing literature. This policy performs
much better than the FCFS policy, but requires informa-
tion on the machine execution rates. Furthermore, we de-
velop a new policy (the LPAS DG policy) which utilizes the
solution to a linear programming (LP) problem that maxi-
mizes system capacity. In addition to the machine execution
rates, this policy assumes knowledge of the task arrival rates
and that there is a mechanism by which the scheduler de-
tects machine failures and availabilities. Our simulation ex-
periments show significant performance advantages for the
LPAS DG policy over the Gcµ policy, especially in highly
heterogeneous systems.

The organization of the paper is as follows. Section 2
gives the workload model in detail and describes several
Desktop Grid scheduling policies. The Gcµ policy and the
LPAS DG policy are described in Sections 2.3 and 2.4, re-
spectively. In Section 3, we present the results obtained in
our simulation experiments. The literature related to this
work is discussed in Section 4. Section 5 concludes the pa-
per and outlines future research work.

2. Fault-Aware Scheduling Policies for Desktop
Grids

2.1. Workload Model

In our model for a Desktop Grid, there is a dedicated
scheduler for assigning incoming tasks to the requesting
machines. Let the number of machines in the system be
M . It is assumed that the tasks are classified into N classes
of tasks. Tasks that belong to the same class i have arrival
rate αi. Let α be the arrival rate vector, the ith element of α
is αi.

The tasks are assumed to be independent and atomic. In
the literature, parallel applications whose tasks are indepen-
dent are sometimes referred to as Bag-of-Tasks applications
(BoT) (as in Anglano et al. [4]) or parameter-sweep appli-
cations (as in Casanova et al. [7]).

Resource management systems for Desktop Grids
mainly use pull-based scheduling (see Choi et al. [8, 9]). In
pull-based scheduling, when a machine becomes available,
it sends a request to the scheduler in order to be assigned
a new task for execution. Using pull-based scheduling is
necessary due to the property that the machines are not ded-
icated in Desktop Grids. One of the results of using pull-
based scheduling is that tasks queue at the scheduler side.
There is no queueing at the machines; in fact, in Desktop
Grids, one machine executes at most one task at a time with-
out preemption (see [9], Domingues et al. [10], and [13]).
Also, in pull-based scheduling, the scheduler makes a deci-
sion as soon as it receives a request from a machine [9].

In Desktop Grids, machines can fail (or become unavail-
able) at any time without any advance notice [4]. If a ma-
chine fails while executing a task, then that task needs to
be resubmitted to the scheduler. We assume that the sched-
uler becomes aware of the failure of any machine within a
negligible amount of time [13]. We assume that the Desktop
Grid is mainly used to execute short-lived applications [13].
Hence, in such systems, we do not consider fault tolerant
scheduling mechanisms such as checkpointing, migration
and replication, due to their overhead.

One of the basic properties of Desktop Grids is the non-
dedication of machines. When a machine is available, it
may also run local jobs (i.e., jobs submitted by a local user).
The machines’ local jobs are always given higher priority.
When a machine is busy with local jobs, the result is a
slowing down of the execution of the Desktop Grid tasks
submitted by the scheduler to the machine. To model the
non-dedication property of machines, we use an approach
similar to [4]. Let µ′

i,j be the nominal execution rate for
tasks of class i at machine j, hence 1/µ′

i,j is the mean nom-
inal execution time for class i tasks at machine j. When a
machine becomes available, it sends its request for a new
task to the scheduler. As in [4], we assume that the ma-

2



chine also supplies the expected proportion of time that it
is going to spend in executing the Desktop Grid tasks dur-
ing its coming availability period (i.e., its CPU availability).
These estimates are obtained using techniques such as the
ones suggested by Wolski et al. [21] and Yang et al. [22].
Thus, we can define the effective execution rate µi,j for the
submitted tasks as follows:

µi,j = µ′
i,j × aj

where aj represents the fraction of machine j’s capacity that
is available for executing the Desktop Grid tasks during its
coming availability period. Also, let µ be the effective ex-
ecution rate matrix, having (i, j) entry µi,j . As in [4, 13],
once a task is submitted to a machine, the task can not be
resubmitted unless a failure occurs.

2.2. Current Policies

A scheduling policy that is applicable to our workload
model is the classical First-Come-First-Served (FCFS) pol-
icy. FCFS is used in major Desktop Grid schedulers [11,
13]. An advantage of FCFS is that it does not require any
information about task arrival rates or machine execution
rates. However, as our simulations show, FCFS only per-
forms well in systems with limited task heterogeneity and
under moderate system loads. As the application tasks be-
come more heterogeneous and the load increases, perfor-
mance degrades rapidly.

2.3. The Gcµ Policy

A related policy is a variation of the generalized cµ
rule (Gcµ) analyzed by Mandelbaum and Stolyar [16]. We
consider the version of the Gcµ rule which asymptotically
minimizes delay costs. The policy can be stated as fol-
lows: when a machine j requests a task, the scheduler
assigns it the longest waiting class i task such that i ∈
arg maxi Di(t)µ′

i,j , in which Di(t) is the longest sojourn
time of a class i task at time t.

To the best of our knowledge, the Gcµ policy has never
been suggested and used as a scheduling policy in Desktop
Grids. The Gcµ policy aims at myopically maximizing the
rate of decrease of the instantaneous delay cost. It has been
proved that when the primitives α and µ satisfy certain con-
ditions, the Gcµ policy minimizes both instantaneous and
cumulative delay costs, asymptotically, over essentially all
scheduling disciplines, preemptive or non-preemptive [16].
The optimality of the Gcµ policy is obtained under a heavy
traffic assumption, in other words, optimality is achieved as
the system load approaches 100 percent. When one backs
off from the heavy traffic condition, we will see that there
is room for making bad scheduling decisions, which in turn
can significantly degrade performance.

Under moderate traffic conditions, the Gcµ rule could
make more frequent bad scheduling decisions, especially in
systems with highly heterogeneous execution rates. This re-
sults from the policy’s greedy nature. Our LPAS DG policy
avoids this by preventing the assignment of particular task
classes to inefficient machines.

Note that a scheduler using the Gcµ policy only requires
information on the execution rates of the machines. Using
this extra information, however, can result in achieving sig-
nificant performance improvement over policies that do not
use such information (i.e., FCFS).

2.4. The LPAS DG Policy

The Linear Programming Based Affinity Scheduling pol-
icy for Desktop Grids (LPAS DG) requires solving the fol-
lowing allocation LP (Andradóttir et al. [3]) at each ma-
chine availability/unavailability event, where the decision
variables are λ and δi,j for i = 1, . . . , N , j = 1, . . . ,M .
The variables δi,j are to be interpreted as the proportional
allocation of machine j to class i.

max λ

s.t.
M∑

j=1

δi,jµ
′
i,j ≥ λαi, for all i = 1, . . . , N, (1)

N∑

i=1

δi,j ≤ aj , for all j = 1, . . . ,M, (2)

δi,j ≥ 0, for all i = 1, . . . , N, and j = 1, . . . ,M.
(3)

The left-hand side of (1) represents the total execution ca-
pacity assigned to class i by all machines in the system.
The right-hand side represents the arrival rate of tasks that
belong to class i scaled by a factor of λ. Thus, (1) enforces
that the total capacity allocated for a class should be at least
as large as the scaled arrival rate for that class. The con-
straint (2) prevents overallocating a machine and (3) states
that negative allocations are not allowed.

Let λ∗ and {δ∗i,j}, i = 1, . . . , N , j = 1, . . . ,M , be an
optimal solution to the allocation LP. The allocation LP al-
ways has a solution, since no lower bound constraint is put
on λ. Let δ∗ be the machine allocation matrix where the
(i, j) entry is δ∗i,j .

Whenever a machine becomes available or unavailable,
the scheduler solves the allocation LP to find {δ∗i,j} , i =
1, . . . , N , j = 1, . . . ,M . If a machine j becomes unavail-
able, then aj = 0. In this case, δ∗i,j = 0 for i = 1, . . . , N .
On the other hand, if a machine j becomes available, aj is
equal to the predicted CPU availability for machine j during
its next expected machine availability period. The sched-
uler obtains values for aj using the CPU availability predic-

3



tion techniques discussed in Section 4. Solving the alloca-
tion LP at each availability/non-availability event represents
how the LPAS DG policy adapts to the dynamics of ma-
chine availability. Constraint (2) enforces the condition that
the allocation of machine j should not exceed its CPU avail-
ability. The use of aj represents how the LPAS DG policy
adapts to the dynamics of CPU availability.

The value λ∗ can be interpreted as follows. Consider
an event in which a machine becomes available or unavail-
able. Let λ∗ and {δ∗i,j}, i = 1, . . . , N , j = 1, . . . ,M , be an
optimal solution to the allocation LP corresponding to the
system just after the occurrence of the event. Consider the
system that only consists of the available subset of the M
machines. Then, the value λ∗ can also be interpreted as the
maximum capacity of this partial system [1, 12].

The LPAS DG policy is defined as follows. When a ma-
chine j requests a task, let Sj denote the set of task classes
i such that δ∗i,j is not zero (Sj = {i : δ∗i,j %= 0}). Let Di(t)
be the waiting time (sojourn time) of the head of the line
class i task at the time of making the scheduling decision t.
The scheduler assigns machine j the longest-waiting (head
of the line) class i task such that

µi,jδ
∗
i,j > 0 and i ∈ arg max

i
µi,jDi(t).

Note that µi,j represents the effective execution rate for
class i tasks at machine j (µi,j = ajµ′

i,j for i = 1, . . . , N ,
j = 1, . . . ,M ). Note that the LPAS DG policy does not use
the actual values for {δ∗i,j}, beyond differentiating between
the zero and nonzero elements. Regardless, we must solve
the allocation LP to know where the zeros are.

The allocation LP considers both the arrival rates and
execution rates and their relative values in deciding the al-
location of machines to tasks. In addition, these allocations
are constrained by the CPU availabilities of the available
machines. Consider a system with two machines and two
classes of tasks (M = 2, N = 2). The arrival and execution
rates are as follows:

α =
[

1 1.5
]

and µ =
[

9 5
2 1

]
.

Assume that all machines are dedicated (i.e., aj = 1, for
all j = 1, . . . ,M ). Solving the allocation LP gives λ∗ =
1.764706 and

δ∗ =
[

0 0.352941
1 0.647059

]
.

Thus, when machine 1 requests a task, the scheduler only
assigns it a class 2 task. Machine 2 can be assigned tasks
belonging to any class. Although the fastest rate is for ma-
chine 1 at class 1, machine 1 is never assigned a class 1 task.
Note that machine 1 is twice as fast as machine 2 on class 2
tasks and note that µ1,1

µ2,1
< µ1,2

µ2,2
.

There could be many optimal solutions to an allocation
LP. These optimal solutions may have different number of
zero elements in the δ∗ matrix. The following proposition is
a basic result in linear programming (the proof can be found
in Andradóttir et al. [2]):

Proposition 1 There exists an optimal solution to the allo-
cation LP with at least NM + 1−N −M elements in the
δ∗ matrix equal to zero.

Ideally, the number of zero elements in the δ∗ matrix should
be NM + 1 − N − M . If the number of zero elements
is greater, the LPAS DG policy would be significantly re-
stricted in shifting workload between machines resulting in
performance degradation. Also, if the number of zero ele-
ments is very small, the LPAS DG policy resembles more
closely the Gcµ policy. In fact, if the δ∗ matrix contains
no zeros at all, then the LPAS DG policy reduces to the
Gcµ policy. Throughout the paper, we use the unique
optimal solution in which the δ∗ matrix contains exactly
NM + 1−N −M zeros.

The LPAS DG policy can be considered as an adaptive
policy. As the policy only involves solving an LP, it is suited
for scenarios when the global state of the system changes.
For example, new machines can be added and/or removed
from the system. Also, parameters such as the arrival rates
and execution rates may change over time. On each of these
events, one needs to simply solve a new LP and continue
with the new values.

3. Simulation Results

We use simulation to compare the performance of the
scheduling policies. In Section 3.1, we simulate an artificial
system with high heterogeneity levels to show the impact
of heterogeneity on performance. Then, in Section 3.2, we
show the results of simulating a realistic Desktop Grid sys-
tem.

The task arrivals are modeled by independent Poisson
processes, each with rate αi, i = 1, . . . , N . The execution
times are exponentially distributed with rates µ′

i,j , where
1/µ′

i,j represents the mean nominal execution time of a task
of class i at machine j, i = 1, . . . , N , j = 1, . . . ,M .

There are several performance metrics that can be
used [4, 13]. We use the long-run average task completion
time W , as a metric for performance comparison. A task
completion time is defined as the time elapsing between the
submission of the task and the completion of its execution,
including resubmission times. For each simulation exper-
iment, we also show the average task completion time for
class i tasks, Wi, for all i = 1, . . . , N .

Each simulation experiment models a particular system
under different assumptions on machine and CPU availabil-
ities. Each experiment is repeated 30 times. For every case,

4



Figure 1. Relative average task completion
times: System A under arrival rates α1

we compute the 95%-confidence interval for W and Wi, i =
1, . . . , N , with an accuracy of 0.1% or less. The accuracy
of a confidence interval is calculated as the ratio of the half
width of the interval over the mean value. We normalize the
results with respect to the Gcµ policy. Note that we do not
give performance results for the FCFS policy when it results
in either an unstable system or one in which performance is
several orders of magnitude worse.

3.1. Task and Machine Heterogeneity

There are different kinds of system heterogeneity. Ma-
chine heterogeneity refers to the average variation along the
rows of µ, and similarly task heterogeneity refers to the av-
erage variation along the columns (see Armstrong [5]). In
this section, we simulate a system with high task hetero-
geneity and high machine heterogeneity.

System A has M = 28 machines and N = 4 classes.
The machines are partitioned into 7 groups (labeled G1
through G7). Each group consists of 4 machines and ma-
chines within a group are identical. The execution rates are
shown as follows:

Group
Task G1 G2 G3 G4 G5 G6 G7

1 4.5 2 9.5 6.2 10.25 2.25 3.95
2 6.2 4.5 6 2 4.2 5.9 10.25
3 9.5 6.5 4 10 5.9 2.25 3.95
4 2.25 10 2 3.95 1.75 10 1.75

Execution rates for System A

Figures 1 and 2 show simulation results for System A
under two different arrival rates: α1 = [50 48 50 48] and
α2 = [62.5 60 62.5 60]. The arrival rates α1 result in a
lightly loaded system compared to a heavily loaded system

Figure 2. Relative average task completion
times: System A under arrival rates α2

under arrival rates α2. We assume that each machine fails
at the rate 0.05 (0.02) per time-unit and the mean fault time
is four (two) time-units when modeling the system under
arrival rates α1 (α2). Machines are fully dedicated when
they are available i.e., aj = 1 for all j = 1, . . . ,M . It is
assumed that machine fault times and availability times are
exponentially distributed.

While the LPAS DG policy achieves very competitive
performance to that of the Gcµ policy, its performance
is generally superior in highly heterogeneous and highly
loaded systems (as the results above indicate). Furthermore,
using the FCFS policy for System A results in instability i.e.
the mean number of tasks in the system is unbounded. In
general, the FCFS policy achieves poor performance and
even results in unstable systems when there is high task
heterogeneity and high machine heterogeneity. This sug-
gests that FCFS will not be able to support the same level
of throughput as our two proposed policies.

3.2. Realistic Architectures

To simulate more realistic scenarios, we use the data re-
ported in [4, 6] which was collected by running benchmark-
ing tools on an actual system. We refer to this system as
System B.

In [4], the authors define the nominal computing power
of a machine as a real number whose value is directly pro-
portional to its speed. Thus, a machine with a nominal com-
puting power of 2 is twice as fast as a machine with a nom-
inal computing power of 1. It is found that, for System B,
there are three different values for the nominal computing
power of machines, namely {1, 1.125, 1.4375}.

Since we consider the problem of scheduling multiple
applications on Desktop Grids, we define Pi,j as the nomi-

5



nal computing power of machine j on class i tasks. Thus, a
machine j with Pi,j = 2 is twice as fast as a machine j′ with
Pi,j′ = 2 on class i tasks. In this manner, we can describe
systems in which a machine is fast on some applications but
slow on others.

As in [4], the CPU availability is described by a Markov
chain whose parameters are computed using a network
monitoring and forecasting system. A new value for the
CPU availability is computed every 10 seconds of simu-
lated time. The actual values for each machine’s transition
probabilities are reported in [6] (see Table 4.14). For the
LPAS DG policy, we compute aj as the average CPU avail-
ability for each machine j from the corresponding Markov
chain. This is justified for the model of System B since the
mean execution time for a given task is much larger than the
average time spent in a particular state of the Markov chain.

To model machine availability, we use a Weibull distri-
bution. The actual values for the Weibull parameters depend
on the particular machine. For System B, these parameters
(shape and scale) are provided in Table 4.14 [6]. As in [4],
the fault time of a machine is set to a constant 120 time-
units.

We simulate two configurations based on System B (B1
and B2). Both systems consist of M = 300 machines. We
group the machines into 15 groups. Each group consists of
20 machines identical in terms of the Markov chain describ-
ing CPU availability and the parameters for the Weibull dis-
tribution. Each group has the same parameters as those of
one of the 15 machines of System B listed in Table 4.14 [6].

In System B1, we assume that the machines of a group
are identical in terms of their nominal computing powers.
Each group has the same nominal computing power as one
of the 15 machines of System B. Furthermore, we assume
that the nominal computing power of a machine depends
only on the machine and is independent of the class of tasks
being executed. Thus, if a machine j belongs to a group
G and the nominal computing power for the group is PG,
then Pi,j = PG, for all i = 1, . . . , N . Thus, a fast machine
is fast on all applications. System B1 represents a system
which is mainly used to execute a single application.

In System B2, we assume that each machine has a nom-
inal computing power (on class i tasks) Pi,j randomly cho-
sen from {1, 1.125, 1.4375} with equal probabilities. Thus,
a machine can be fast executing some applications while,
at the same time, slow executing other applications. Sys-
tem B2 represents a system which is mainly used to execute
multiple applications with inherent heterogeneity.

Finally, we assume that there are N = 4 classes (or appli-
cations). The authors in [4] define BaseT ime as the mean
execution time of a task submitted to a machine with a nom-
inal computing power of 1. Thus, each class consists of
tasks with the same value for BaseT ime (for class i, we
denote it by BaseT imei). We assume that BaseT imei =

Figure 3. Relative average task completion
times: System B1 under arrival rates α3

8750, 17500, 35000, 50000, for i = 1, . . . , 4, respectively.
This information is enough to generate the matrix µ′. The
mean nominal execution time for a class i task at machine j
can be computed as BaseT imei ∗ 1/Pi,j .

Figures 3 and 4 show simulation results for Sys-
tems B1 and B2 under arrival rates α3 = [0.00457
0.00229 0.00114 0.0008]. These results indicate that the
FCFS policy achieves acceptable performance in systems
with low task heterogeneity, such as System B1. However,
as the level of task heterogeneity increases (e.g. System
B2), FCFS results in performance degradation which gets
worse as the load increases. For instance, Figure 5 shows
results for System B2 under higher load (α4 = [0.00495
0.0011 0.00214 0.00135]). For such cases, both the Gcµ
and the LPAS DG policies result in significant performance
improvement. The LPAS DG policy is generally superior
in highly heterogeneous and highly loaded systems.

4. Literature Review

A taxonomy of Desktop Grids and a survey focusing
on scheduling is provided in [9]. This taxonomy is de-
fined by three major components: the application’s per-
spective, the resource provider’s perspective, and the sched-
uler’s perspective. With respect to our workload model, we
consider applications with independent, fixed tasks that are
computation-intensive. There are no deadlines associated
with tasks and the tasks arrive non-deterministically to the
scheduler. In terms of the resource provider’s perspective,
we assume that the resource providers (i.e., the machines)
are not dedicated to public execution and they are faulty. In
terms of the scheduler’s perspective, a centralized organi-
zation is assumed. The scheduler uses pull-based schedul-

6



Figure 4. Relative average task completion
times: System B2 under arrival rates α3

ing in which scheduling events are initiated by the resource
providers.

Several fault-aware Desktop Grid scheduling policies are
presented in [4] for Bag-of-Tasks applications. The pro-
posed policies exploit fault handling mechanisms including
replication and checkpointing. Furthermore, these policies
exploit knowledge of the effective computing power deliv-
ered by resources and the distribution of their fault times
to improve scheduling performance. The performance of
the different policies is analyzed using an extensive simu-
lation study. The policies proposed in [4] assume that the
set of tasks is initially available to the scheduler, however,
we assume a continuous arrival stream of tasks and that the
scheduler only knows the arrival rates and execution rates
(does not need to know the entire distribution). Our work
goes beyond this by addressing workloads where multiple
Bag-of-Tasks applications are simultaneously submitted.

Other heuristics are proposed in [13]. These heuris-
tics attempt to minimize the overall execution time, or the
makespan, of a single parallel application. The application
is assumed to consist of a number of independent tasks that
is relatively small compared to the number of available re-
sources. The heuristics are based on three resource selection
techniques, namely resource prioritization, resource exclu-
sion, and task replication. Even though the heuristics devel-
oped in [13] are designed to schedule a single application,
the authors acknowledge that these heuristics provide key
elements for designing effective “job scheduling” strate-
gies. Furthermore, the authors planned to design scheduling
heuristics for the scenario where multiple applications are
submitted over time. In this context, our work represents a
step in addressing such environments.

Several scheduling techniques are suggested in [10] for

Figure 5. Relative average task completion
times: System B2 under arrival rates α4

institutional Desktop Grids. Institutional Desktop Grids are
grids comprised of the desktop machines of an institution
(academic or corporate) and thus characterized by a more
homogenous computing infrastructure. Similar to [4, 13],
the scheduling techniques are designed to minimize the
turnaround time of a single Bag-of-Tasks application. The
turnaround time for a Bag-of-Tasks application is defined
as the elapsed time between the submission of the first task
until the last task is completed.

Several papers study machine availability in Desktop
Grids. In Nurmi et al. [17], availability data is collected
from different Desktop Grid environments. Their results
indicate that either a hyperexponential or Weibull distri-
bution effectively represents machine availability in enter-
prise and Internet computing environments. In Kondo et
al. [14], statistics from four real enterprise Desktop Grids
are gathered in order to develop predictive models for ma-
chine availability.

An approach for predicting machine availability in Desk-
top Grids is presented in Ren et al. [18]. The authors apply
semi-Markov process models for the prediction. Their ex-
perimental results show that the prediction has an accuracy
of 86% on average and it is robust. They suggest a method
for applying availability prediction to job scheduling. Us-
ing simulation, they show the effectiveness of their schedul-
ing policies in large compute-bound guest applications. Our
work proposes policies for short-lived applications.

A significant amount of work has been done on the mea-
surement and characterization of CPU availability. The
work of [22] includes techniques based on time series pre-
dictors for predicting CPU load at some future time point,
average CPU load for some future time interval, and varia-
tion of CPU load over some future time interval. The ex-

7



pected future variance in CPU availability is used to de-
rive a conservative scheduling policy to make data map-
ping decisions for a particular class of applications, namely,
loosely synchronous, iterative, data-parallel computations.
The work of [21] examines the problem of making short
and medium term forecasts of CPU availability on time-
shared Unix systems. Their results demonstrate the pos-
sibility of making short and medium term predictions of
available CPU performance despite the presence of long-
range autocorrelation and potential self-similarity.

5. Conclusion

In this paper, we have proposed to use the Gcµ policy
for Desktop Grids when information on the machine ex-
ecution rates are available. When task arrival rates and
CPU availabilities are available, we have developed the
LPAS DG policy which utilizes the solution to an alloca-
tion LP. Both policies perform much better than FCFS, es-
pecially for applications with high task heterogeneity. A
distinct feature for this work is the proposal of fault-aware
policies that take into consideration the heterogeneity of
Desktop Grids.

References

[1] I. Al-Azzoni and D. Down. Linear Programming Based
Affinity Scheduling of Independent Tasks on Heterogeneous
Computing Systems. IEEE Transactions on Parallel and Dis-
tributed Systems, to appear.

[2] S. Andradóttir, H. Ayhan, and D. G. Down. Dynamic server
allocation for queueing networks with flexible servers. Op-
erations Research, 51(6):952–968, 2003.

[3] S. Andradóttir, H. Ayhan, and D. G. Down. Compensat-
ing for failures with flexible servers. Operations Research,
55(4):753–768, 2007.

[4] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wol-
ski. Fault-aware scheduling for Bag-of-Tasks applications
on Desktop Grids. In Proceedings of the 7th International
Conference on Grid Computing, pages 56–63, 2006.

[5] R. Armstrong. Investigation of effect of different run-time
distributions on SmartNet performance. Master’s thesis,
Naval Postgraduate School, 1997.

[6] M. Canonico. Scheduling Algorithms for Bag-of-Tasks Ap-
plications on Fault-Prone Desktop Grids. PhD thesis, Uni-
versity of Turin, 2006.

[7] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand.
Heuristics for scheduling parameter sweep applications in
grid environments. In Proceedings of the 9th Heterogeneous
Computing Workshop, pages 349–363, 2000.

[8] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and
C. Hwang. Characterizing and classifying desktop grid. In
Proceedings of the 7th International Symposium on Cluster
Computing and the Grid, pages 743–748, 2007.

[9] S. Choi, H. Kim, E. Byun, and C. Hwang. A taxonomy of
desktop grid systems focusing on scheduling. Technical Re-
port KU-CSE-2006-1120-01, Department of Computer Sci-
ence and Engeering, Korea University, November 2006.

[10] P. Domingues, A. Andrzejak, and L. Silva. Scheduling for
fast turnaround time on institutional desktop grid. Technical
Report TR-0027, CoreGRID, January 2006.

[11] P. Domingues, P. Marques, and L. Silva. DGSchedSim: A
trace-driven simulator to evaluate scheduling algorithms for
desktop grid environments. In Proceedings of the 14th Eu-
romicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 83–90, 2006.

[12] Y.-T. He, I. Al-Azzoni, and D. Down. MARO - MinDrift
affinity routing for resource management in heterogeneous
computing systems. In Proceedings of the Conference of
the Centre for Advanced Studies on Collaborative Research,
pages 71–85, 2007.

[13] D. Kondo, A. A. Chien, and H. Casanova. Resource man-
agement for rapid application turnaround on enterprise desk-
top grids. In Proceedings of the ACM/IEEE Conference on
Supercomputing, 2004.

[14] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and
H. Casanova. Characterizing resource availability in enter-
prise desktop grids. Future Generation Computer Systems,
23(7):888–903, 2007.

[15] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund. Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems.
In Proceedings of the 8th Heterogeneous Computing Work-
shop, pages 30–44, 1999.

[16] A. Mandelbaum and A. L. Stolyar. Scheduling flexible
servers with convex delay costs: Heavy-traffic optimality of
the generalized cµ-rule. Operations Research, 52(6):836–
855, 2004.

[17] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine
availability in enterprise and wide-area distributed comput-
ing environments. In Proceedings of the 11th International
Euro-Par Conference, pages 432–441, 2005.

[18] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi. Prediction of
resource availability in fine-grained cycle sharing systems
empirical evaluation. Journal of Grid Computing, 5(2):173–
195, 2007.

[19] SETI@home. “http://setiathome.berkeley.edu/”.
[20] R. Shah, B. Veeravalli, and M. Misra. On the design

of adaptive and decentralized load balancing algorithms
with load estimation for computational grid environments.
IEEE Transactions on Parallel and Distributed Systems,
18(12):1675–1686, 2007.

[21] R. Wolski, N. Spring, and J. Hayes. Predicting the CPU
availability of time-shared Unix systems on the computa-
tional grid. Cluster Computing, 3(4):293–301, 2000.

[22] L. Yang, J. M. Schopf, and I. Foster. Conservative schedul-
ing: Using predicted variance to improve scheduling de-
cisions in dynamic environments. In Proceedings of the
ACM/IEEE conference on Supercomputing, page 31, 2003.

8



Figure 6. (for Reviewers Use Only) A copy of Table 4.14 in [6] which is used in Section 3.2 to provide
the parameters needed to simulate System B

9


