
Dependable Workflow Scheduling in Global Grids

Mustafizur Rahman1, Rajiv Ranjan2, and Rajkumar Buyya1

1Grid Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{mmrahman, raj}@csse.unimelb.edu.au

2Service Oriented Computing Research Group
School of Computer Science and Engineering

The University of New South Wales, Australia
rajiv@unsw.edu.au

Abstract

In this paper, a reputation-based Grid workflow
scheduling algorithm is proposed to counter the ef-
fect of inherent unreliability and temporal character-
istics of computing resources in large scale, decentral-
ized Grid overlays. The proposed approach builds upon
structured peer-to-peer indexing and overlay network-
ing techniques to create a scalable wide-area networking
of Grid sites for supporting dependable scheduling of
applications. The scheduling algorithm considers relia-
bility of a Grid resource as a statistical property, which
is globally computed in the decentralized Grid overlay
based on dynamic feedbacks or reputation scores as-
signed by individual service consumers (Grid Resource
Brokers). The proposed algorithm can dynamically
adapt to changing resource conditions and offer sig-
nificant performance gains as compared to traditional
approaches in the event of unsuccessful job execution
or resource failure. We evaluate and demonstrate the
feasibility of our approach through an extensive trace
driven simulation. The results show that our schedul-
ing technique can reduce the makespan up to 50% and
successfully isolate the failure-prone resources from the
system.

1 Introduction

Grid computing enables the sharing, selection, and
aggregation of distributed heterogeneous resources that
are under the control of different Grid sites. Feder-
ated model for inter-connecting multiple Grid sites [1],
[6] offers an opportunity for every participating site

to pool its local resources as part of a single, massive
scale resource sharing abstraction. In a large scale fed-
eration, both Grid users (i.e. application scientists)
and resources are independent and geographically dis-
tributed over many disciplines and sites. Similarly, ap-
plications (e-Science workflows, scientific simulations)
combine multiple, independent, and distributed soft-
ware elements such as services, real-time data and ex-
periments.

In federated environments such as global Grids, the
availability, performance, and state of resources, appli-
cations, services, and data undergo continuous changes
during the life cycle of an application. Uncertainty
and unreliability are facts in federated environments,
which are triggered by multiple factors, including: (i)
software and hardware failures as the system and appli-
cation scale that lead to severe performance degrada-
tion and critical information loss; (ii) dynamism (unex-
pected failure) that occurs due to temporal behaviours,
which should be detected and resolved at runtime to
cope with changing conditions; and (iii) lack of com-
plete global knowledge that hampers efficient decision
making as regards to composition and deployment of
the application elements. The existing Grid schedul-
ing approaches and application composition techniques
[12], [17] are inadequate to handle all of these uncer-
tainties caused by the dynamic behaviours related to
resources and applications in federated environments.

The aforementioned challenges are addressed in this
paper by developing a novel self-managing [2] schedul-
ing algorithm for workflow applications that takes into
account the Grid site’s prior performance and be-
haviour for facilitating opportunistic placement of ap-



plication components. The proposed scheduling algo-
rithm is dependable (lower probability of application
failure), as it is capable of dynamically adapting to the
changes in system behaviour by taking into consider-
ation the performance metrics of Grid sites (software
and hardware capability, availability, failure). The de-
pendability of a Grid site is quantified using a decen-
tralized reputation model, which computes local and
global reputation scores for a Grid site based on the
feedbacks provided by the scheduling services that have
previously submitted their applications to that site. In
particular, this paper contributes the following to the
state-of-the-art in the Grid scheduling paradigm :

(i) a novel Grid scheduling algorithm that aids the
Grid schedulers such as resource brokers in achieving
improved performance and automation through intel-
ligent and opportunistic placement of application ele-
ments based on dependability;

(ii) a comprehensive simulation-driven analysis of
the proposed approach based on realistic and well-
known application failure models to capture the tran-
sient behaviours that prevails in existing Grid-based
e-Science application execution environments;

(iii) a comparative evaluation that demonstrates
the self-adaptability of the proposed approach in
comparison to Grid environments where: (1) re-
source/application behaviours do not change (i.e. no
failure occurs), therefore no self-management is re-
quired and, (2) transient conditions exist but runtime
systems and application elements have no capability to
self-adapt.

The remainder of this paper is organized as fol-
lows. In the next section, we describe the related work
that are focused on dependable application schedul-
ing and distributed reputation models. Section 3 pro-
vides a brief discussion related to key system models
including federated Grid overlay and workflow appli-
cation. In Section 4, we provide the overall architec-
ture of our dependable scheduling approach. The pro-
posed distributed reputation management for depend-
able scheduling is presented in Section 5. Simulation
setups, performance metrics and key findings of the
experiments performed are discussed in Section 6. Fi-
nally, we conclude the paper with the direction for fu-
ture work.

2 Related Work

2.1 Dependable Scheduling

A recent work by Jik-Soo et al. [12] that advo-
cates Content Addressable Network [16], DHT based
dynamic propagation and load-balancing in desktop
Grids, suffer from performance uncertainty and unreli-
ability due to lack of context awareness in scheduling.

A most recent proposal or reputation-driven scheduling
in context of voluntary computing environments (desk-
top grids) has been put forward by Jason et al. [17].
They consider a centralized system model, where a
central server is assigned responsibility for maintain-
ing reliability ratings that form the basis for assigning
tasks to group of voluntary nodes. Such centralized
models for scheduling and reputation management [3]
present serious bottleneck as regards to scalability of
the system and autonomy of Grid sites. Moreover,
our approach considers scheduling of workflow applica-
tions, whereas the aforementioned approaches are tar-
geted towards bag of tasks type of application model.
Currently, Grid information services [5], on which Grid
schedulers [7] depend for resource selection, do not pro-
vide information regarding how the resources have per-
formed in the recent past (performance history) or at
what level they are rated by other schedulers in the
system as regards to QoS satisfaction.

2.2 Distributed Reputation Models

There has been considerable amount of research
work done in Peer-to-Peer (P2P) reputation systems
to evaluate the trustworthiness of participating peers.
These reputation systems are targeted towards P2P file
sharing networks that focus on sharing and distribution
of information in Internet-based environments. The
PoweTrust model proposed by Zhou et al. [20], utilizes
single dimensional Overlay Hashing Functions (OHFs)
for: (i) aassigning score managers for peers in the sys-
tem and (ii) aggregating/computing the global reputa-
tion score. These kinds of OHFs are adequate if the
search for peers/resources is based on single keyword
(such as file name) or where there is single ordering in
search values. However, OHFs are unable to support
(or support with massive overhead) searches contain-
ing multiple keywords, range queries (such as search
for a Grid site that has: Linux operating system, 100
processors, Intel architecture, and reputation ≥ 0.5).
The EigentTrust model [10] suggested by Kamvar et
al. also suffers from aforementioned shortcomings. To
overcome these limitations, in the proposed approach
a d-dimensional data distribution technique [14] is ap-
plied on the overlay of peers for managing the informa-
tion related to complex searches and reputation values.

3 System Models

3.1 Grid Model

The proposed scheduling algorithm utilizes the
Grid-Federation [15] model in regards to distributed
resource organization and Grid networking. The Grid-
Federation consists of a number of Grid sites, n, with
each site contributing its local resources to the federa-

2



Grid site p

Grid site u

Application

Subscribe
Reply

Application

P
u
b
li
sh

R
ep

ly

Fe
ed

b
a
ck

Grid Autonomic
Scheduler

S
u
b
sc

ri
b
e User

User

Grid 
Autonomic
Scheduler

Grid Autonomic
Scheduler

User

Grid site s

Publish

Feedback

Submit
1

2 7

4

P
u
b
lis

h

Subsc
rib

e

Fe
ed

bac
k

Rep
ly

5

6
Heart beat 

Result

Task 

Job queue

3

T2T1

DHT-based Overlay 

of Grid Peers

Autonomic Manager

Local Resource Manager

Grid Peer

Grid Autonomic Scheduler

Feedback

Subscribe 
(claim)

Publish 
(ticket)

Monitor

Plan

Schedule

Analyze Reputation

Verification

output input

•Discovery
•Coordination
•Messaging

Core Services

Figure 1. Reputation-based dependable scheduling architecture. Grid sites p, l, s, and u are managed
by their respective Grid Autonomic Scheduler services.

tion. Every site in the federation has its own resource
set descriptor that includes information about the CPU
architecture, number of processors, memory size, sec-
ondary storage size, and operating system type.

The application scheduling and resource discovery in
the Grid-Federation is facilitated by a specialized Grid
Resource Management System (GRMS) known as Grid
Autonomic Scheduler (GAS). Fig. 1 shows an example
Grid-Federation resource sharing model consisting of
Internet-wide distributed Grid sites. Every contribut-
ing Grid site maintains its own GAS service. A GAS
service is composed of the software components: Grid
Autonomic Manager (GAM), Local Resource Manage-
ment System (LRMS) and Grid Peer.

The GAM component of GAS exports a Grid site
to the federation and is responsible for scheduling lo-
cally submitted jobs (workflows, parallel applications)
in the federation. Further, it also manages the exe-
cution of remote jobs (workflows) in conjunction with
the local resource management system. The LRMS
software module can be realized using systems such as
SGE (Sun Grid Engine) [9].

The Grid peer implements infrastructure level core
services for enabling decentralized and distributed re-
source discovery supporting resources status lookups
and updates across a federation. It also enables de-
centralized inter-GAS interaction for optimizing load-
balancing and distributed resource provisioing. These
core services are divided into a number of sub-layers:
(i) higher level services for discovery, coordination,
and messaging; (ii) low level distributed indexing and
data organization techniques; (iii) DHT-based self-
organizing routing structure.

A Grid Peer service accepts three basic types of ob-
jects from the GAM service as regards to dependable
and dynamic scheduling: (i) a claim, is an object sent
by a GAM to the DHT overlay for locating the re-
sources that match the user’s application requirements,
(ii) a ticket, is an update object sent by a Grid site,
mentioning about the underlying resource conditions,
and (iii) a feedback, is an object sent by a GAM regard-
ing the reputation of a Grid site in the system upon
the output arrival of a previously submitted task. In
general, a Grid resource is identified by more than one
attribute (such as number of processors, type of operat-
ing system, CPU speed); so a claim, ticket or feedback
object is always multi-dimensional. Further, each of
these objects can specify different kinds of constraints
on the attribute values.

The self-organizing routing structure is largely de-
signed over Chord [18]. Grid Peer nodes in the Chord
overlay are interconnected based on a ring topology. By
maintaining a small routing state of O(log n) per node,
Chord as well as other DHTs offer deterministic look
ups in a completely decentralized and distributed man-
ner. Traditionally, the basic Chord implementation
is incapable of supporting complex multi-dimensional
Grid resource search algorithms, as it was originally
designed to support only one-dimensional search algo-
rithms (document or name search in peer-to-peer file
sharing network). In order to support complex resource
discovery (processor type, OS type, CPU speed) over
Chord routing structure, a multi-dimensional data dis-
tribution indexing technique [14] (a variant of MX-CIF
Quad tree [19]) is implemented. In depth discussion of
this aspect of the system is beyond the scope of this

3



paper. However, interested readers can refer to our
previous work [14] for detailed information.

3.2 Application Model

In this work, we consider the Scientific workflow ap-
plications as the case study for the proposed scheduling
approach. A Scientific workflow application can mod-
eled as a Directed Acyclic Graph (DAG), where the
tasks in the workflow are represented as nodes in the
graph and the dependencies among the tasks are rep-
resented as the directed arcs among the nodes.

In a workflow, an entry task does not have any par-
ent task and an exit task does not have any child task.
We also assume that a child task can not be executed
until all of its parent tasks are completed. At any time
of scheduling, the task that has all of its parent tasks
finished, is called a ready task.

Table 1. Notations: Grid, Reputation and Fail-
ure models

Symbol Meaning
Grid
Si i-th Grid site in the system

GASi i-th GAS in the system
Reputation
succ(i, j, k) output of result verification function for task

Tk of Sj executed by Si.
feed(i, j, k)t feedback score of task Tk from Sj for Si after t

transactions.
NFi total number of negetive feedbacks given by

other sites for Si.
TF t

i transaction feedback value for Si after t trans-
actions by Si.

TF t
i,j transaction feedback value from Sj for Si after

t transactions.
GRt

i global reputation of Si after t transactions.
LRt

i,j local reputation of Si according to Sj after t
transactions.

MLR local reputation matrix.
MGR global reputation matrix.

LRinitial initial local reputation value of each site.
GRinitial initial global reputation value of each site.
Rth reputation threshold of a site for a task to be

mapped by scheduler.
τrefresh time interval after which initial value is as-

signed to reputation score of a site.
Failure
fp task failing probability of a Grid site.
X Y failure distribution, where X% sites fail task

with probability between Y and Y + 0.1.

3.3 Scheduling Model

This section provides a brief description of the key
terminologies and the basic steps involved with the pro-
posed scheduling approach. These steps, represented in
Fig. 1 are as follows:

1. A user submits his task to the local GAS service

at site Su;
2. Following this, the GAS inserts a claim object

to the DHT-based overlay to locate a dependable and
available Grid site (resource) that has reasonable rep-
utation rating (above reputation threshold) in the sys-
tem;

3. The GAS, GASs at site Ss submits a ticket ob-
ject to the overlay encapsulating the information about
status (availability) of the local resource;

4. The overlay undertakes the decentralized match-
making mechanism and discovers that the resource
ticket issued by Grid site Ss matches with the resource
description and reputation rating currently specified
by claim object inserted by site Su. Following that a
match notification message is sent to Su;

5. Next, GASu sends the task to site Ss. While the
application is being processed, GASu periodically mon-
itors the execution progress by sending IsAlive mes-
sages to Ss. IsAlive messages allow the GAS services
to detect the hardware and network link failure related
to the site Ss.

6. Once the execution of the task is finished, Ss
returns the output to GASu;

7. Finally, GASu performs the result verification
for the received output, computes the feedback score
for Ss and reports to the overlay. The feedback score
is aggregated to the local and global reputation scores
for Ss using the proposed decentralized and distributed
reputation model, described in the next section.

4 Distributed Reputation Management

In this section, the key concepts and methods re-
lated to the distributed reputation management and
its application to dependable scheduling are discussed.

In a fully decentralized and distributed Grid over-
lay, the P2P reputation system calculates the reputa-
tion score for a Grid site Si by considering the opin-
ions (i.e. feedbacks) [20, 10] from all the Grid sites ∈
{S1, S2, . . . , Sn}, who have previously interacted with
Si. After a Grid site Sj completes a transaction with
another Grid site Si, Sj provides its feedback for Si
to the overlay, which is utilized to compute the repu-
tation of Si. This reputation value drives the future
application scheduling decision making in choosing Si
for task execution. A Grid site, which accumulates
higher reputation in the system is expected to be pop-
ular in the overlay. Over the period of time, the dis-
tributed scheduling services (GASs) in the system are
more likely to prefer that site in the future for place-
ment of tasks. On the other hand, a Grid site that
performs badly over a period of time would accumulate
comparatively lower reputation and will eventually be
shunted out of the system, i.e. would receive none or
very few job submissions from the schedulers (GAS).

4



In the proposed approach, the overlay maintains two
reputation scores for each Grid site: (i) Global Repu-
tation (GR) and (ii) Local Reputation (LR). Here, the
GAS service (on behalf of local Grid site and users)
rates the Grid sites, to which it submits a task, after ev-
ery successful transaction (task completion) or unsuc-
cessful transaction (task failure) based on a feedback
function, feed(i, j, k). The local and global reputation
scores for Grid sites are stored within the distributed
overlay in the form of local and global reputation ma-
trix. These values are recursively aggregated from the
feedback scores after each transaction and utilized by
the scheduling algorithm to dynamically quantify the
reliability of the sites.

4.1 Feedback Generation

GAS services can use a variety of rating functions
based on system consensus for computing the feedback
value. Some of the example functions can include the
model used by eBay system. The reputation scheme in
eBay is simple: +1 for a good or successful transaction,
−1 for a poor or failed feedback, and 0 for a neutral
or don’t-care feedback. In this model, the feedback
score has three discrete values, which evaluate the re-
sult of a transaction. However, this model does not
incorporate different types of behaviour of the partici-
pating entities (e.g. an entity is failing transactions of
only a particular entity, an entity is failing transactions
only at the beginning or an entity is generating suc-
cessful and unsuccessful transactions alternately) into
the feedback score, which is required to be considered
in case of heterogeneous and dynamic resource sharing
Grid environments.

In our feedback model, the GAS service at site Sj
computes the feedback, feed(i, j, k) for a Grid site Si
dynamically after each transaction (i.e. Si completes
execution of a task Tk submitted by Sj). First, Sj veri-
fies the output of a task returned by Si using the result
verification function success(i, j, k) that assigns a value
∈ {0,1}, where 0 represents an unsuccessful/failed task
execution and 1 represents a successful task execution.
A task execution may fail for various reasons (e.g. the
resource does not have appropriate libraries installed,
executables are outdated or resource has been restarted
before sending all the output files). The result verifi-
cation function is represented as,

success(i, j, k) =
{1 if task execution is sucessful

0 if task execution is failed
(1)

Then Sj generates the feedback score based on the
value assigned by result verification function. If the as-
signed value is 1, feedback score is 1; on the other hand

if the assigned valued is 0 then the feedback score is cal-
culated from an exponential distribution. The output
given by the exponential function is varied over the
number of failed transactions between the correspond-
ing two Grid sites. The objective of using this exponen-
tial function is to give a Grid site greater opportunity to
execute tasks at the beginning so that it is not shunted
out of the system after only few failed transactions.
However, if a site continues to fail more transactions,
the value for exponential function approaches 0. Thus,
if Fi,j is the number of unsuccessful task executions
by Si with Sj , the feedback score for task Tk, after t
transactions by Si with Sj can be represented as,

feed(i, j, k)t =
{1 if success(i,j,k) = 1

α
F

1
βf
i,j
f if success(i,j,k) = 0

(2)

where, 0 < αf ≤ 0.5 and βf ∈ {1, 2, 3}.
If the feedback score given by a Grid site Sj is 1,

we consider it as Positive Feedback (PF), whereas a
Negative Feedback (NF) is attained if feedback score is
less than 1.

4.2 Global Reputation Calculation

The Global Reputation (GR) of a site is a statis-
tical reputation that is calculated by averaging all the
feedbacks given by the GAS services of other Grid sites
for their tasks executed at that site. Once the overlay
receives a feedback, it computes the Transaction Feed-
back (TF) for that feedback. The value of TF depends
on whether the feedback is positive or negative. If nege-
tive feedback is received, TF is same as the feedback
value. However, if feedback is positive, the value of TF
is computed from an exponential distribution, where
the output value is varied over the total number of
negative feedbacks received by the corresponding Grid
site. The purpose of using this distribution is to al-
low a Grid site to accrue a higher value of GR only
if it executes more successful tasks than failed tasks.
So, if it fails very few transactions, the output of the
exponential function reaches 1 accordingly. Thus, if
NFi is the total number of negative feedbacks given by
other sites for Si, the transaction feedback value after
t transactions by Si can be calculated as,

TF ti =
{feed(i,j,k)t if negative feedback

{(1−αp)+α
NF

1
βp
i

p }×feed(i,j,k)t if positive feedback

where, 0.5 ≤ αp < 1.0 and βp ∈ {4, 5, 6}.
The GR of a particular Grid site is calculated by

taking the average of aggregated TFs form other sites.
Initially GR is assigned a value GRinitial that is greater
than or equal to the reputation threshold Rth. After-

5



wards, it is dynamically changed based on the TF com-
puted after every transaction. Thus, GR of a Grid site,
Si after total t number of transactions with other sites
is represented as,

GRti =
{GRinitial if t = 0

GR
t−1
i

×t+TFt
i

(t+1) if t > 0
(3)

The GR value of each Grid site is stored in a matrix.
At any instance of time, the DHT-based distributed
overlay maintains n× 1 global reputation matrix MGR

(refer to Fig. 2(a)) for all the Grid sites Si ∈ {1,2,. . . ,n}
that is updated dynamically after every transaction in
the system. This MGR is utilized by the distributed
scheduler for mapping tasks to the Grid sites based on
their reputation values.

S1

S2

S3

MGR =

0.85

0.90

0.70

S1

S2

S3

MLR =

0.75

0.82

0.76

S2 S2 S2

0.82

0.98

0.56

0.95

0.75

0.88

(a) Global reputa-
tion matrix

S1

S2

S3

MGR =

0.85

0.90

0.70

S1

S2

S3

MLR =

0.75

0.82

0.76

S2 S2 S2

0.82

0.98

0.56

0.95

0.75

0.88

(b) Local reputation matrix

Figure 2. Reputation matrix for three Grid
sites (S1, S2, S3).

4.3 Local Reputation Calculation

Sometime, considering only GR of a Grid site for
mapping tasks, can not guarantee dependable schedul-
ing. For example, the resource at a site Si may fail
tasks submitted by only a particular Grid site Sj . In
this case, as Sj successfully executes tasks submitted
by other Grid sites, its GR is high. So, the sched-
uler may still map the tasks submitted by Sj to Si.
Therefore, we introduce another reputation score, Lo-
cal Reputation (LR) for a Grid site.

Similar to GR, LR is calculated as an average of
the feedback values except it considers feedbcks from
only one Grid site. TF for computing LR also follows
the same function as generating TF for GR. Therefore,
if NFi,j is the number of negative feedbacks given by
Sj for Si after t transactions with Si, the transaction
feedback value can be calculated as,

TF ti,j =
{feed(i,j,k)t if negative feedback

{(1−αp)+α
NF

1
βp
i,j

p }×feed(i,j,k)t if positive feedback

where, 0.5 ≤ αp < 1.0 and βp ∈ {4, 5, 6}.
Now, the LR of a Grid site, Si according to Sj , after

t number of transactions with Sj is represented as,

LRti,j =
{LRinitial if t = 0

LR
t−1
i,j

×t+TFt
i,j

(t+1) if t > 0
(4)

The LR values of each Grid site in regards to other
sites are kept in a n× n local reputation matrix MLR

(refer to Fig. 2(b)), which is stored in the overlay and
updated dynamically after every transaction between
the corresponding sites. Similar to MGR, MLR is also
utilized by the distributed scheduler for mapping tasks
to the Grid sites based on their reputation values.

5 Performance Evaluation

5.1 Simulation Setup

Our simulation infrastructure is created by combin-
ing two discrete event simulators namely GridSim [4],
and PlanetSim [8]. GridSim offers a concrete base
framework for simulation of different kinds of heteroge-
neous resources, services and application types. Plan-
etSim is an event-based overlay network simulator that
can simulate both unstructured and structured over-
lays.

5.1.1 Workload Configuration

In this study, we consider fork-join workflow (see
Appendix) and an example of such workflow is
WIEN2K [13], which is a quantum chemistry appli-
cation developed at Vienna University of Technology.
In this kind of workflow, forks of tasks are created and
then joined, such that there can be only one entry task
and one exit task. We fix the number of tasks in a work-
flow at 100 during the experiments but the size of each
task is randomly generated from a uniform distribution
between 50000 MI (Million Instructions) to 500000 MI.
Further, we assume that workflows are computation in-
tensive. Thus, the data dependency among the tasks
in the workflow is negligible.

5.1.2 Network Configuration

The experiments run a Chord overlay with 32 bit con-
figuration (number of bits utilized to generate node and
key ids). The total number of GAS/broker in the sys-
tem is 64. Further, network queue message processing
rate is fixed at 4000 messages per second and message
queue size is fixed at 104.

5.1.3 Resource Claim and Ticket Injection
Rate

The GASs inject the ticket objects based on the ex-
ponential inter-arrival time distribution. The injection
rate (i.e. resource update query rate) for the resource
tickets is every 200 seconds. At the beginning of the
simulation, the resource claims for the entry tasks of all
the workflows in the system are injected. Subsequently,
when these tasks finish, then the resource claims for
the successive tasks in the workflow are posted. This
process is repeated until all the tasks in the workflow
are successfully completed. Spatial extent of both re-

6



source claims and ticket objects lie in a 4-dimensional
attribute space. These attribute dimensions include
the number of processors, pi, their speed, mi, their
architecture, xi, and operating system type, φi. The
distribution for these resource dimensions is generated
by utilizing the configuration of resources that are de-
ployed in various Grids including NorduGrid, Auver-
Grid, Grid5000, NaregiGrid, and SHARCNET1.

5.1.4 Reputation Configuration

The values of the parameters for configuring the repu-
tation based scheduling in our experiment are listed in
Table 2.

Table 2. Reputation parameters
parameter value parameter value

αf 0.5 LRinitial 0.8
βf 2.0 GRinitial 0.8
αp 0.5 Rth 0.8
βp 5.0 τrefresh 1000 sec

5.1.5 Failure Configuration

The Weibull distribution [11] is one of the most com-
monly used distributions in reliability engineering and
has become a standard in reliability textbook for mod-
eling time-dependant failure data. Therefore, in this
work, we use a 2-parameter weibull distribution to de-
termine whether a task execution is failed or successful
in the system. The 2-parameter weibull distribution is
generally characterized by two parameters: shape pa-
rameter, β and scale parameter, η. In our experiment,
the value of β is 1.2 and η is 141 sec, which is equal to
the mean execution time of a task in the system.

Based on the Weibull distribution, we generate a set
of resource failure distributions, X Y by incorporating
resource failure probability, fp, where X represents the
percentage of resources likely to fail tasks in the sys-
tem and Y represents the probability of failure. For
instance, if X is 20 and Y is 0.4, then 20% of resources
in the system may fail tasks with the probability (fp)
between 0.4 and 0.5. The resource failure distributions,
we use in the experiment are as follows:

X 0.1: 0.1 ≤ fp < 0.2 ; X 0.3: 0.3 ≤ fp < 0.4
X 0.5: 0.5 ≤ fp < 0.6 ; X 0.7: 0.7 ≤ fp < 0.8
X 0.9: 0.9 ≤ fp < 1.0

5.2 Performance Metrics

As a measurement of scheduling performance, we
evaluate the following performance metrics:

Scheduling Efficiency: In order to determine the
scheduling efficiency, we measure two values of the sys-
tem: (i) average makespan per workflow and (ii) total

1http://gwa.ewi.tudelft.nl/

number of tasks failed by all Grid sites in the system.
Makespan is calculated as the response time of a whole
workflow, which is equal to the difference between the
submission time of the entry task in a workflow and the
output arrival time of the exit task in that workflow.
The measurement of makespan is taken by averaging
over all the workflows in the system.

Scheduling complexity: It is expressed as the
total number of tasks scheduled by each GAS in the
system.

Pruning Efficiency: We consider pruning effi-
ciency as the degree to which the failure-prone re-
sources are shunted out of the system. We have mea-
sured total number of tasks successfully executed and
failed by the resource at each Grid site in order to
show the pruning efficiency.

5.3 Results and Observations

In this section, we present the experimental results
obtained by simulating our reputation based depend-
able workflow scheduling approach and compare these
with that of other approaches. The experiments are
conducted with the aim at characterizing:

(i) the performance of proposed reputation based
dependable scheduling approach (Failure with Repu-
tation), compared to its alternatives, No Failure (re-
sources do not fail any task) and Failure without self-
adaptation (some resources fail tasks and scheduler
uses a simple rescheduling technique) with respect to
various performance metrics;

(ii) the impact of different task failure distributions
on the performance of our approach and of its alterna-
tives.

Fig. 3 presents the results of scheduling efficiency
of the proposed reputation based scheduling approach
against the other approaches, Failure without self-
adaptation and No Failure. The total number of tasks
failed by all Grid sites for each of the three approaches
are depicted in Fig. 3(a) and Fig. 3(b) for different
failure distributions. As we can see from Fig. 3(a)
that when the failure probability of the resources is in-
creased (for example, from 0.1 to 0.9), the total num-
ber of failed tasks in Failure without self-adaptation is
heavily increased accordingly. This situation is further
aggravated for 50 Y (refer to Fig. 3(b)) since more
resources are likely to fail tasks. In contrast, our ap-
proach, Failure with Reputation can strongly reduce
the number of task failures in the system irrespective
of failure distributions. This happens due to the rea-
son that in this case, the resources with higher failure
probability are not assigned any task by the schedulers
as their reputation scores are decreased beyond the
threshold Rth after few task failures. Therefore, the
total number of failed tasks in Failure with Reputation

7



0

400

800

1200

1600

2000

2400

25_0.1 25_0.3 25_0.5 25_0.7 25_0.9

No Failure Failure Failure with Reputation

Failure distribution

To
ta

l n
u

m
b

er
 o

f 
fa

ile
d

ta
sk

s

(a) Total task failures for failure distributions 25 Y

0

1000

2000

3000

4000

5000

6000

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

No Failure Failure Failure with Reputation

Failure distribution

To
ta

l n
u

m
b

er
 o

f 
fa

ile
d

ta
sk

s

(b) Total task failures for failure distributions 50 Y

4000

4500

5000

5500

6000

6500

7000

25_0.1 25_0.3 25_0.5 25_0.7 25_0.9

No Failure Failure Failure with Reputation

Failure distribution

av
g.

m
ak

es
p

an
 p

er
w

o
rk

fl
o

w
 (s

ec
)

(c) Makespan for failure distributions 25 Y

4000

5000

6000

7000

8000

9000

10000

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

No Failure Failure Failure with Reputation

Failure distribution

av
g.

m
ak

es
p

an
 p

er
w

o
rk

fl
o

w
 (s

ec
)

(d) Makespan for failure distributions 50 Y

Figure 3. Effect of failure distribution on the makespan of workflow and the total number of task
failures in the system.

is not increased with the increase in failure probability
since those failure-prone resources are always shunted
out of the system after few failures. For instance, to-
tal number of tasks failed by all sites in Failure with
Reputation is upto 96.8% and 96.5% less than that
in Failure without self-adaptation for 25 Y and 50 Y
respectively.

The average makespan per workflow also shows (see
Fig. 3(c) and Fig. 3(d)) similar trend (upto 28% and
50% makespan reduction for 25 Y and 50 Y respec-
tively) as reflected in total number of task failures since
if one task is failed, its child tasks can not be sched-
uled and eventually the completion time of the whole
workflow is increased.

Fig. 4 shows the total number of tasks scheduled
by GAS1 to GAS16 in the system for the failure dis-
tribution, 50 0.5. From the figure, it is evident that
in case of Failure without self-adaptation, each GAS
needs to schedule more tasks than No Failure (where,
GAS is not required to schedule any extra task than
the size of workflow), which increases the load on the
GAS accordingly. On the contrary, in case of Failure
with Reputation, the number of tasks scheduled by each
GAS in the system is almost equal to that of No Failure
as very few tasks are failed in this approach. For ex-
ample, GAS14 schedules 100 tasks in No Failure, 102
in Failure with Reputation, whereas in case of Failure

without self-adaptation, it needs to schedule 216 tasks,
which is 112% greater than that in Failure with Repu-
tation since 116 tasks, scheduled by GAS14 are failed
by the Grid sites. The other GASs in the system also
show the similar trend.

Fig. 5 illustrates the pruning efficiency of the pro-
posed scheduling technique. Fig. 5(a) and Fig. 5(b)
show the total number of tasks successfully executed
and failed by the resources in Grid site 1 to Grid site
16 respectively for 50 0.5. From the figures, we can
realize that in Failure without self-adaptation, if a Grid
site can execute task faster, it is assigned more tasks.
Thus, the number of successful and failed tasks by that
site is high if it’s failure probability is low and high re-
spectively. On the other hand, in case of Failure with
Reputation, number of successful tasks by a Grid site
is high if it is faster and does not fail any task. If it
fails task, although it can execute task faster, it is not
assigned any task further. Therefore, total failed tasks
by that resource becomes very low. For instance, total
failed tasks by resource R2 (with 0.59 failure probabil-
ity and 3600 MIPS rating) is 152 in Failure without
self-adaptation, whereas it is only 11 in Failure with
Reputation. Fig. 5(c) shows how failure-prone resource
R2 is shunted out of the system over the period of time
in our proposed reputation based scheduling approach.

8



0

40

80

120

160

200

240

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l s
ch

e
d

u
le

d
 t

as
ks

Figure 4. Total number of tasks scheduled by
the GAS in the system (GAS1 - GAS16).

0

60

120

180

240

300

360

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l s
u

cc
e

ss
fu

l t
as

ks

(a) Total number of tasks successfully executed by each re-
source (R1 - R16)

0

45

90

135

180

225

270

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l f
ai

le
d

 t
as

ks

(b) Total number of tasks failed by each resource (R1 - R16)

0

30

60

90

120

150

180

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

No Failure Failure Failure with Reputation

Time (sec)

To
ta

l f
ai

le
d

 t
as

ks

(c) Total number of tasks failed by Resource 2 over time

Figure 5. Effect of considering reputation on
pruning failure-prone resources.

6 Conclusion and Future Work

In this paper, we have presented a reputation based
dependable scheduling technique for workflow applica-
tions in global Grids. Using simulation, we have mea-
sured the performance of the proposed scheduling tech-
nique against two cases: Failure without self-adaptation
and No Failure. The results show that our schedul-
ing technique can reduce the makespan up to 50%
and successfully isolate the failure-prone resources from
the system. Thus, by applying the proposed reputa-
tion based scheduling technique, not only opportunistic
placement of workflow tasks is possible but also signif-
icant performance gains are achievable (as analyzed in
the previous section). Moreover, our results have prac-
tical importance since they highlight the fact that the
schedulers, which do not have the ability to self-adapt
in dynamic Grid conditions deliver degraded perfor-
mance to application workflows.

Clearly, it is reasonable to conclude that developing
self-adapting Grid scheduling and application manage-
ment techniques is important to exploiting the realm
of Grids. Further, adapting to dynamic resource condi-
tions aids in coping with the unpredictability and un-
certainty of Internet-scale, multi-domain global Grids.
In future, we intend to evaluate and analyze the pro-
posed approach against different workloads by varying
ticket inter-arrival time and size of workflow.

7 Acknowledgements

This work is partially supported by Australian Re-
search Council (ARC) Discovery Project grant. We
gratefully thank Xiaofeng Wang for his assistance in
formulating the distributed reputation model.

References

[1] The Australian Research Collaboration Service,
http://www.arcs.org.au/.

[2] M. Agarwal, V. Bhat, H. Liu, V. Matossian,
V. Putty, C. Schmidt, G. Zhang, L. Zhen,
M. Parashar, B. Khargharia, and S. Hariri. Au-
toMate: enabling autonomic applications on the
grid. In Proceedings of Autonomic Computing
Workshop, USA, June 2003.

[3] F. Azzedin and M. Maheswaran. Integrating Trust
into Grid Resource Management Systems. Pro-
ceedings of International Conference on Parallel
Processing, 2002.

[4] R. Buyya and M. Murshed. Gridsim: A toolkit
for the modeling and simulation of distributed re-
source management and scheduling for grid com-
puting. Concurrency and Computation: Practice

9



and Experience, Volume 14, Issue 13-15, pages
1175-1220, Wiley Press, 2002.

[5] K. Czajkowski, S. Fitzgerald, I. Foster, and
C. Kesselman. Grid information services for
distributed resource sharing. In Proceedings of
the 10th IEEE International Symposium on High
Performance Distributed Computing, USA, June,
2001.

[6] Morris Riedel et al. Interoperation Scenarios of
Production e-Science Infrastructures. In OGF
Workshop on eScience Highlights, India, 2007.

[7] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and
S. Tuecke. Condor-G: A computation manage-
ment agent for multi-institutional grids. In 10th
IEEE International Symposium on High Perfor-
mance Distributed Computing, USA, June, 2001.

[8] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Teje-
dor, and R. Rallo. Planetsim: A new overlay
network simulation framework. In Software En-
gineering and Middleware, SEM 2004, Linz, Aus-
tria, pages 123–137. Lecture Notes in Computer
Science (LNCS), Springer, Germany, 2005.

[9] W. Gentzsch. Sun Grid Engine: Towards Creat-
ing a Compute Power Grid. In Proceedings of 1st
IEEE International Symposium on Cluster Com-
puting and the Grid, Brisbane, Australia, May,
2001.

[10] S. D. Kamvar, M. T. Schlosser, and H. Garcia-
Molina. The Eigentrust algorithm for reputation
management in P2P networks. In Proceedings
of 12th international conference on World Wide
Web, Hungary, 2003.

[11] D. Kececioglu. Reliability Engineering Handbook.
Prentice Hall, Inc., New Jersey, Vol. 1, 1991.

[12] J. Kim, P. Keleher, M. Marsh, B. Bhattacharjee,
and A. Sussman. Using content-addressable net-
works for load balancing in desktop grids. In Pro-
ceedings of 16th international symposium on High
performance distributed computing, USA, June,
2007.

[13] D. Kvasnicka P. Blaha nad K. Schwarz,
G.K.H. Madsen and J. Luitz. Wien2k - an
augmented plane wave plus local orbitals program
for calculating crystal properties. Technical
report, Vienna University of Technology, Austria,
2001.

[14] R. Ranjan. Coordinated resource provisioning in
federated grids. Technical report, The University
of Melbourne, Australia, 2007.

[15] R. Ranjan, A. Harwood, and R. Buyya. A case
for cooperative and incentive based coupling of
distributed clusters. Future Generation Computer
Systems, Volume 24, No. 4, Pages: 280-295, El-
sevier Press, Amsterdam, The Netherlands, 2008.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Schenker. A scalable content-addressable
network. In SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies, ar-
chitectures, and protocols for computer communi-
cations, USA, 2001.

[17] J. Sonnek, A. Chandra, and J. Weissman. Adap-
tive Reputation-Based Scheduling on Unreliable
Distributed Infrastructures. IEEE Transactions
on Parallel and Distributed Systems, volume 18,
issue 11, pages 1551-1564, 2007.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications.
In ACM SIGCOMM Conference on Applications,
technologies, architectures, and protocols for com-
puter communications, USA, 2001.

[19] E. Tanin, A. Harwood, and H. Samet. A dis-
tributed quad-tree index for peer-to-peer settings,.
In Proceedings of the International Conference on
Data Engineering, Japan, 2005.

[20] R. Zhou and K. Hwang. PowerTrust: A Robust
and Scalable Reputation System for Trusted Peer-
to-Peer Computing. IEEE Transactions on Par-
allel and Distributed Systems, volume 18, issue 4,
pages 460-473, 2007.

10


