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Abstract—Previous distributed anomaly detection efforts have
operated on summary statistics gathered from each node. This
has the advantage that the audit trail is limited in size since
event sets can be succinctly represented. While this minimizes
the bandwidth consumed and helps scale the detection to a large
number of nodes, it limits the infrastructure’s ability to identify
the source of anomalies. We describe three optimizations that
together allow fine-grained tracking of the sources of anomalous
activity in a Grid, thereby facilitating precise responses. We
demonstrate the scheme’s scalability in terms of storage and
network bandwidth overhead with an implementation on nodes
running BOINC. The results generalize to other types of Grids
as well.
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I. INTRODUCTION

The typical Grid’s infrastructure is exposed to the Internet
at large. For example, the widely deployed Globus [15] uses
a service-oriented architecture with daemons on each node
to receive callbacks. Instances of BOINC [2] (which is used
by the popular application SETI@home [49]) share a host
runtime environment that may be infected with malware [41]
and programs controlled by pseudonymous users. While a
substantial amount of research has been undertaken to verify
the correctness of the results computed on Grid nodes [39],
considerably less effort has been invested in checking that the
computing processes are performing as expected.

Grid applications are written to solve particular scientific or
engineering problems. Consequently, the customized portions
of the software may not undergo the quality assurance process
of more mature, longer-lived software products and may con-
tain vulnerabilities at the time of deployment. Combined with
the large attack surface, this results in substantial exposure for
the Grid.

As the computational and networking resources devoted to
Grids grow, applications running on them become increasingly
attractive to attackers. An attacker who gains control of a
program running on a single node can leverage the pre-
established trust relationships (present in Globus, for example)
between Grid resources to attain control over a large collection
of them. This threatens the data and programs of all the other
users of the Grid. Even when clients do not allow inbound
connections or single sign-on authentication, vulnerabilities

in Grid applications manifest on all the nodes where it is
executing, enabling an adversary to gain control over a large
set of resources using infection vectors such as worms or
viruses.

If a Grid application is successfully exploited, it can be
used to launch a large-scale attack against Internet-connected
hosts that are outside the Grid. However, such an attack would
divulge the malware’s presence and most likely lead to its
removal from the Grid nodes. Of greater concern is the utiliza-
tion of the Grid’s resources for unauthorized activity. In recent
years, collections of compromised hosts have been abused
by grayware for activities such as serving advertisements,
relaying spam, and illicitly storing copyrighted music, video,
or programs. Since detection would lead to its elimination, the
grayware typically operates with stealth, thereby maximizing
its life and the resulting commercial gain. Even when the Grid
application is cryptographically signed, as is the case with
code that uses BOINC, verification attests the integrity only
at the time the code is being installed and loaded from disk.
If the code is compromised during execution, its integrity in
future runs can no longer be relied upon.

Monitoring a Grid to watch for intrusions requires that the
activity on each node must be audited and compared to a
description of acceptable activity [11]. Since the event stream
must be trusted, it must originate in the operating system. The
most common source utilized is the record of system calls
invoked, as this is the interface through which applications
interact with the system [21]. Detecting Grid-wide attacks
requires that the audit trails from all the nodes be collected
and analyzed. However, recording the complete invocation
signature of all system calls along with the arguments passed
to them would result in a deluge of data. Consequently, current
systems correlate activity from a distributed set of nodes by
tracking the type of events but not their arguments [32].

We focus on mechanisms to facilitate fine-grained tracking
of the source of Grid infections. Our approach (i) compresses
the event stream at the point of origin, reducing the computa-
tional and storage overhead on each node, (ii) allows a tradeoff
in the frequency and bandwidth of network communication,
enabling faster responses at the cost of increased bandwidth
or decreased accuracy, and (iii) enables detailed provenance
analysis of most anomalous activity.



II. MOTIVATION

We first expand on the reasons why we believe Grid
infrastructures are at substantial risk.

A. Vulnerable code

Building software that is secure requires a significant in-
vestment of resources. It starts when use cases are being
developed, adding the need to create abuse cases as well
[22]. When the code’s architecture is being designed, a risk
analysis should be undertaken to determine if the expected
losses from abuse can be tolerated [46]. When code is being
developed, static analysis tools should be used to flag security
vulnerabilities [47]. Software quality assurance tests should be
augmented with security tests that confirm resistance to abuse
[8]. Configuration testing must be extended with penetration
tests to verify that weaknesses are not introduced in some
states [48].

Grid infrastructure is designed to be used for an extended
period of time. It is therefore worth making the investment to
ensure that the software is developed to be secure. Grids are
typically funded and managed by consortiums of universities,
companies, and government bodies that can afford to make the
necessary commitment of resources to achieve strong security.
In contrast, Grid applications are produced by small groups of
researchers, scientists, and engineers. These users may not be
trained in secure software engineering, nor are they typically
provided a budget that affords it. Frequently, they develop
a piece of code to answer a focused question and may not
reuse the code in the future. As a result, they are motivated to
develop and deploy their code as rapidly as possible. They may
view the overhead of secure software development practices
as unwarranted if their programs are expected to have a short
life cycle. Software engineering research [6] predicts that Grid
applications are therefore likely to contain bugs at the time of
deployment. An adversary will be able to exploit some fraction
of these bugs to breach security.

B. Exposed services

Grid computing projects are often structured as collections
of Web services [18], each of which operates independently
from the others and provides distinct functionality. To facilitate
interaction between components, the projects use standardized
data representations, typically in XML [51], with available
resources described in a language such as WSDL [50], and use
communication protocols like SOAP [38] for remote invoca-
tions. Such a service-oriented architecture lets legacy systems
be seamlessly integrated while simultaneously allowing them
to be dynamically replaced at a later point [17]. It pro-
vides several other benefits as well, such as utilizing explicit
service contracts, abstracting utilities, using loose coupling
to minimize dependencies, promoting code reuse, facilitating
composition of applications, and allowing the discovery of new
functionality.

Applications running on such Grids can be dispatched to
arbitrary nodes in the system from where they may initiate
connections to (and receive callbacks from) external nodes

on the Internet, such as application-specific database servers.
Erecting a firewall between the Grid resources and the rest
of the Internet will impede the normal operation of such
applications. The ramification of using such an open archi-
tecture is that it creates a large attack surface for external
adversaries to target. The probability of an attacker being able
to detect a vulnerability in one of the services running on a
Grid node is substantially higher than if that attacker had to
find a weakness in the authentication service that is the sole
externally accessible part of a firewalled distributed system.

C. Automatic privilege escalation

Early distributed computing authentication systems such as
Kerberos [4] allowed a user to use the same credentials to
access the resources of each node. However, the user was
expected to furnish proof of identity (such as a password) to
each node independently. As batch computing infrastructures
like Condor [26] were built they incorporated functionality to
transparently delegate rights from one node to another. Since
Grid infrastructures farm subtasks out to a large number of
nodes, it is necessary to configure the underlying infrastructure
to utilize the delegation mechanisms to facilitate the migration
of code along with its permissions to arbitrary nodes in
the system without manual intervention. This convenience
introduces system-wide risk in the event that a malicious user
gains access to a single node in the system. That user can
leverage the predefined trust relationships to execute code at
many other nodes in the Grid infrastructure. Thus, an attacker
who is able to compromise a part of an application running
on a single node will be able to rapidly escalate access to a
large subset of the Grid.

D. Attractive attack platform

The motivation of cyber attackers has changed over time.
Their goals are now often economically driven rather than
being limited to vandalism for community recognition [3]. In
addition to directly targeting financially lucrative targets that
are connected online, attackers attempt to garner revenue using
commandeered resources to launch email mass marketing
campaigns [20], host mimicked Web sites to collect identity
information that can be sold on the black market [9], and boost
advertising revenues of clients by generating fraudulent clicks
on their Web pages [24].

Grid nodes form an attractive target to attackers for a variety
of reasons. Each node is usually well provisioned with fast
processors, large amounts of memory and disk storage, and
high network bandwidth. Dedicated nodes (such as those used
in TeraGrid [42]) are most likely poorly provisioned with
hardware needed for interactive computing, such as graphics
accelerators and sound cards, and input/output peripherals like
displays and speakers. However, the absence of these devices
is of no consequence for the type of workload that economi-
cally incentivized attackers run. Further, such Grid nodes are
deployed in configurations least likely to detect and interfere
with an attacker’s activity. The absence of interactive users
who may note anomalous application behavior, the lack of



egress filters deployed by Internet service providers to curtail
spam originating from their customers’ infected computers,
and the dearth of intervening institutional firewalls make such
Grid nodes particularly suitable for use by attackers.

E. Significant consequences

Data emitted from a Grid is usually the product of a
significant amount of time and computational resources. For
example, each piece of information that physicists use from
Fermilab’s Collider Detector is the output of a month of
processing dozens of terabytes of raw data [40]. Similarly, the
cost to analyze a single protein stored in the Protein Data Bank
is $200,000 [35]. The cost of producing such data precludes
its availability from an alternate source. Consequently, there is
substantial adverse economic impact if large amounts of data
in a Grid must be discarded because of anomalous activity.
Minimizing this requires the ability to hone in on which
information has been tainted.

F. Unreported incidents

Grid middleware, such as the Globus toolkit [15], is com-
posed of code that is meant to be reused for many years.
Further, it is distributed to the public and utilized by many
users. Consequently, when a vulnerability in the code is
discovered, in addition to addressing it, knowledge about
the weakness is shared. Hence, external agencies that track
security vulnerabilities and exploits are made aware of it and
sources such as NIST’s ICAT database [23] have a record
of the issue. In contrast, application code (that executes on
a Grid) is viewed as internal to the group developing it.
When vulnerabilities are found, they may be addressed but not
reported to external agencies. Thus, tallying known exploits for
Grid application code using the ICAT or equivalent database
results in a significantly more sanguine view of the issue than
is warranted.

III. ARCHITECTURE

Our focus is the development of a monitoring architecture
that can scale to hundreds or thousands of nodes while tracking
infection sources to individual files and processes. We do not
create any new intrusion detection algorithms. Instead, we
provide a framework for implementing previous schemes, such
as those of Malan and Smith [29], and Oliner et al. [32].

A. Community monitoring with sets

The application community [27] paradigm postulates that
if many instances of a piece of software collaborate and
share information about anomalous activity as it is occur-
ring, then despite the fact that the first few nodes may be
damaged, the remaining can be protected. Grid applications
are particularly well suited to utilize this model because they
perform a large computation by parallelizing it and executing
the same operations with different inputs on multiple nodes.
It is precisely the portion that is distributed that is likely to
contain vulnerabilities (as reasoned in Section II-A) since it
typically has a shorter life cycle with limited effort expended
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Fig. 1. Anomalies on Grid nodes are reported to a central monitor that
correlates them and broadcasts a threat digest to all nodes in the community.

on hardening the code. Instead of requiring changes in the
user’s code, we audit and correlate the system call invocations
of the target application.

System call-based intrusion detection [21] builds a profile
of normal application behavior by recording all the observed
sequences of a predefined length during a training period
and then subsequently flagging as anomalous any sequence
of system calls that is not in the profile. Distributed versions
[29], [32] require the stream of all anomalous sequences to be
sent to a central monitor that correlates the activity.

We leverage two properties of these anomaly detection
algorithms. First, they operate on tuples of system calls,
treating them as integral elements. Second, the three primary
steps can be framed as set operations:

• The definition of normal application behavior consists
of the union of all tuples observed during training.
Analogously, anomalous activity is considered to occur
when tuples seen in the operational phase do not satisfy
membership queries for the normal behavior set.

• Logging anomalous activity consists of a Grid node
constructing the union of anomalous tuples that it has
observed and sending this set to the central monitor.

• Determining when the same activity is occurring on two
Grid nodes can be effected by taking the intersection of
the sets of anomalies originating at the nodes. If the set is
empty, there is no correlation. The larger the cardinality
of the set intersection, the greater the correlation between
the anomalous activity occurring at the two nodes.

Finally, the same properties also allow us to define a fourth
operation that acts on sets of tuples of system calls:

• We can create a Grid vaccination by assembling a set
of dangerous tuples, which if observed on a Grid node
indicate the presence of an attack. This can be effected



at the central monitor by constructing the union of all
tuples that occur in the anomaly sets originating from at
least some predefined threshold τ number of Grid nodes.

Anomaly detection systems can trade the accuracy with
which they can identify previously known versus currently
unknown attacks. Heavier training with known threats reduces
the probability of a known threat generating a false positive
alert. Simultaneously, this increases the likelihood that a new
attack will go unnoticed (since the system’s notion of an attack
is more closely associated with the known attacks). Similarly,
training with a more diverse set of attacks results in a system
that has lower false negatives (since it is able to discern a wider
variety of deviant phenomena) but also has a higher rate of
false positive alerts (since normal behavior is likely to exceed
one of the (lower) internal thresholds for flagging activity
as anomalous). Consequently, maintaining a sufficiently low
false negative rate is likely to result in substantial anomaly
streams being sent from Grid nodes to the central monitor
where correlation is performed and vaccinations are defined.

Oliner et al. [32] found that their central server received
an average of 10 Mb/s and up to double that with 35 clients
being monitored. This motivated us to frame our monitoring
architecture in terms of set operations. The advantage this
provides is that each set can be represented with a Bloom
filter [5], which is a space-efficient data structure that can
answer set membership queries in constant time without any
false negatives and a false positive probability that can be
made arbitrarily small by selecting a large enough size for the
filter [7]. In Section IV, we describe the resulting decrease in
storage requirements.

B. Near real-time correlation

The security of a Grid application is a function of global
state that is distributed across many nodes with significant
amounts of activity cumulatively occurring at each moment.
A typical Grid computing node runs at 2 GHz and accesses a
64-bit memory at 667 MHz, receiving as many as 20 bits per
cycle on average. Commodity network interfaces operate at
10 Gb/s, allowing intra-cluster communication at this speed.
Even end-to-end links between Grid clusters that are separated
by large distances now approach the 10 Gb/s throughput level
[14], [30]. A processor can access as many as 5 bits per cycle
on average from a remote node, the same speed that local
access to memory was a decade ago. While this bandwidth
is enough for most monitoring applications, including many
security-related applications, it is still insufficient for nodes
to share their system call-level audit trails in real time since
thousands of events occur each second and logging a single
call takes hundreds of bytes on average if its parameters are
included, yielding hundreds of kilobytes of audit data from
each node. On a Grid with a hundred nodes, each would have
to receive tens of megabytes each second. Attempting to share
the details of all system activity in a distributed system would
saturate the communication infrastructure.

Despite the volume of data resulting from monitoring hun-
dreds of nodes, real-time correlation remains feasible because
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Fig. 2. To monitor hundreds of Grid nodes without saturating the network
with audit data, the anomaly stream is transformed into Bloom filter digests.

the audit trails have low entropy for three reasons. First,
the space of possible events is substantially larger than the
set of values present in an audit trail. For example, an
event logged with a hundred ASCII characters could have
256100 = 2800 possible values but in practice there are
significantly fewer possibilities (even accounting for variation
in parameter values). Second, much activity in a computational
workload is repetitive with numerous tuples of event sequences
occurring frequently, reducing the number of bits needed to
represent them. Third, the training profile for what constitutes
normal application behavior serves as a compression index
that eliminates a large subset of symbols that would otherwise
need to be sent in the data being transmitted from a Grid node
to the central monitor.

Each Grid node maintains an anomaly digest as a Bloom
filter, which tracks the set of anomalous sequences of system
events that have been observed in the current interval of time,
termed an epoch. Tuples of anomalous events are idempotently
inserted into the Bloom filter as they are observed. At the end
of an epoch, the Grid node transmits the anomaly digest to
the central monitor, as illustrated in Figure 2. The correlation
process maintains a counting filter [13] for each epoch, with
as many buckets as there are bits in the Bloom filter used for
anomaly digests. Each time the correlation process receives
an anomaly digest, it increments each bucket in the counting
filter that corresponds to a bit that is set in the anomaly digest.
At the end of an epoch, it creates a threat digest, which is a
Bloom filter of the same width as the anomaly digest. For
each bucket in the counting filter with a value that exceeds
a predefined threshold τ , the corresponding bit in the threat
digest is set to one. The resulting threat digest is broadcast
as a vaccination to all Grid nodes, as illustrated in Figure 1.
When the threat digest is interrogated about any anomaly that
was observed on more than τ nodes, it will yield a positive
response. This allows a Grid node to use a vaccination to flag
dangerous tuple sequences in real time as they are occurring
based on the knowledge that the anomalous tuple had already
occurred on τ other nodes.

During an epoch, a Grid node’s notion of anomalous activity
changes from that of the server. The server’s view becomes
consistent with that of the clients at the end of an epoch
when it receives digests from all of them. To bound the
inconsistency, a Grid node can repeatedly halve the length
of an epoch until the level of anomalous activity captured in
a single digest drops below a predefined threshold. However,
each time the epoch is halved, the cumulative bandwidth used
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to transmit digests to the server would double. To avoid this,
the Bloom filter can be halved in size by replacing it with the
bitwise OR of its first and second halves. This results in an
increase in the false positive rate [7] when checking whether a
potentially anomalous sequence is present in the threat digest.
However, this automatically tunes the monitoring architecture
to be more responsive when the level of anomalous activity
increases while simultaneously maintaining a fixed bound on
the network bandwidth consumed.

C. Anomaly provenance

When a Grid node records the occurrence of a sequence
of system events that are present in one of the threat digests
it has received from the central monitor, the node is under
attack. If there was a detailed log of all activity on the node,
including the arguments passed to system calls, the source
of the attack could be inferred by tracing backward from the
anomalous system calls. However, recording all the arguments
of every system call invoked generates a large volume of
data. We address the apparent tension with the insight that
only a small subset of system call arguments needs to be
audited to determine the provenance of the anomalous activity.
Specifically, recording just the file and process identifiers
provides a rich set of information with which to reason. This
has the advantage that it results in a very small increase in the
storage needed compared to the case where only the system
calls are being logged without arguments.

On each Grid node, we maintain a provenance database
populated with two types of records. The first is for the
identifier and attributes of every file that has been read or
written. We adopt the convention of identifying a file using
both its logical location and its last time of modification to
disambiguate different versions of the same file, which avoids
cycles in the provenance graph. The second type of record is
for process identifiers and contains associated attributes. When
a file is read or written by a process, new records are created
or existent ones updated (if the file is being read, for example),
as appropriate. This suffices for constructing a data flow graph,
as depicted in Figure 3, that is consistent with the model used
by Grid projects [43].

When a Grid node flags an event sequence as anomalous,
the arguments can be extracted. Any arguments that are file
or process identifiers are looked up in the node’s provenance
database. The entire provenance graph of the process or file
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can then be extracted, allowing a precise characterization of
the source of the anomaly, as illustrated in Figure 4.

IV. EVALUATION

To evaluate our monitoring architecture, we developed com-
ponents that allowed us to gather data from real workloads.
Since Windows-based hosts are the most likely platform to be
infected by malware, we conducted our experimental analysis
in the context of the volunteer computing Grid software
BOINC [2]. The implementation was done on a testbed where
the prototypical Grid node ran Microsoft Windows XP (with
Service Pack 3 installed) on a 2.8 GHz Intel Core2Duo
processor with 3.5 GB of memory.

The normal workload consisted of version 6.10.43 of
BOINC executing while being audited with version 2.7 of
the Process Monitor tool [34], which logs system activity.
Events related to the file system, Windows registry, process life
cycle, network communication, and thread management were
recorded. Our monitoring component used the Open Bloom
Filter library [33] to construct anomaly digests.

We synthetically constructed a scenario where BOINC had
been attacked and was being used as a relay for spam. Such
a situation could occur in a variety of ways. For example,
malware may use the BOINC process to mask its own activity
by adjusting the access control configuration and using the
Windows CreateRemoteThread() interface to inject itself into
the address space of the BOINC process at start-up. Verifying
the integrity of the BOINC application binary will not detect
this. To mimic the application behavior induced by an infection
with a spam relay, we used MailBoy 2004 [28], which includes
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internal SMTP and DNS servers. In the evaluation, MailBoy
created 20 threads with timeout periods of 30 seconds to send
messages to a mailing list with 1,700 email addresses.

During preliminary analysis, we found that using 6-tuples of
Windows event sequences did not provide sufficient discrimi-
nation between anomalous and normal activity. We increased
the tuple size until it was 11, at which point we achieved good
detection performance. Figure 5 shows the amount of storage
required to record all the 11-tuples of system event sequences
that occur when running BOINC for 24 hours and 20 minutes.
The graph plots the log file size as a function of the number of
events that have been observed. Note that this is for a single
application running on just one Grid node. At the end of the
evaluation period, 1.5 million events had occurred that took
216 MB to store. The raw log for even five Grid applications
running on 100 nodes would require a server to receive over
100 GB of log data in a day. In contrast, sending a 0.5 KB
(4,000 bit) Bloom filter every minute would require that the
server receive a total of 360 MB of data (from 5 applications
on 100 nodes).

A primary concern when sending anomaly digests instead
of the actual event tuples is the misidentification of normal
activity as anomalous by the correlation process. This could
occur if the central monitor checks whether a tuple is present in
an anomaly digest from a Grid node and receives a false pos-
itive confirmation. By making the Bloom filter large enough,
its false positive rate can be reduced below any predefined
threshold. However, implementing our real-time correlation
process potentially requires folding Bloom filters by factors
of 2n for small n. To characterize the effect of these actions,
we performed the following analysis.

During normal system operation on a Grid node we col-
lected all the event tuples that were reported as anomalous.
Simultaneously, we constructed Bloom filters of size 500,
1000, 2000, and 4000-bits, corresponding to the scenario
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Fig. 7. Plots for a normal workload with malware mixed in and run over
the course of 24 hours and 20 minutes.

where the monitoring architecture starts with 4,000 bit filters
and then folds them by factors of 2, 4, and 8. Next, as each
new event occurred in the system, we checked to see if the
resulting tuple was anomalous and if it was, whether it had
been seen earlier. If it had not been observed, we queried the
Bloom filters to check that they reported false. If they reported
true, we knew that this was a false positive. As the system
ran, we counted the frequency with which such false positives
were being observed for all the filters (of different sizes).
Since this count is expected to increase as time progresses and
more activity (including that which is anomalous) occurs, we
normalized the false positive rate by the number of anomalous
tuples that had been observed, as plotted in Figure 6. Figure 7
shows the same analysis for a workload where malware was
injected.

In both the normal and infected workloads we found that
if we operated with anomaly digests using 4,000-bit Bloom
filters, the false positive rate was negligible. However, if we
“folded” the digest even once, the false positive rate increased
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to over 10%, which would be unacceptable for any anomaly
detection system that used our monitoring architecture. If the
digests were folded twice or thrice into 1,000 or 500 bits, the
false positive rate increased dramatically. (The increase and
decrease in false positive rates visible in the early part of the
1,000- and 2,000-bit plots is assumed to relate to the activity
level of the normal workload.) We concluded that the smallest
digest size to use was 4,000 bits. During normal operation,
larger digests can be used and sent less frequently to remain
below any predefined bandwidth threshold. When anomalous
activity increases, the digests can then still be folded (from 32
KB to 16 KB, 8 KB, or 4 KB, for example).

Finally, we wanted to estimate the amount of storage that
would be required on each Grid node to maintain the prove-
nance database. To do this, we counted the number of unique
identifiers for files and processes that were encountered during
the 24-hour period that the normal and infected workloads
were executed. In particular, a file at the same location but
that had been modified will have a different identifier, allowing
causal inferences to be made accurately. Figure 8 shows that
over the course of a day, the number of file identifiers remains
under 100 in the normal workload and under 2,000 in the
infected workload. The number of process identifiers grows
over the course of the day but to a smaller extent. This
shows that only a few megabytes of storage will be needed to
maintain the provenance database.

V. RELATED WORK

Globus [15], one of the most widely used Grid infras-
tructure projects, developed the Grid Security Infrastructure
(GSI) [16] to protect users from external abuse. It provides a
single sign-on authentication service that allows Grid software
to distinguish legitimate remote requests from unsanctioned
Internet traffic. Since Grid resources are utilized by numerous
principals from multiple organizations, the GSI also provides
an authorization service to prevent internal abuse. The GSI

leverages local site access control mechanisms to enforce
security policy that prevents Grid insiders from breaching the
confidentiality and integrity of other users’ data. Similarly,
numerous other Grid projects [1], [10], [12], [19], [31], [36],
[44], [45] incorporate analogous security services. While these
systems focus on proactive prevention of policy violations,
others effect post fact detection of security breaches by cor-
relating intrusion alarms from Grid nodes [25], [37].

Forrest et al. demonstrated that anomalous process behavior
on a host could be detected by monitoring sequences of
system calls [21]. During training, a set of “normal” sequences
is recorded. Subsequently, sequences that fall outside the
set serve as a predictor of anomalous activity on the host.
However, the approach has an inherent tradeoff. A larger
training window reduces false positives — that is, the flagging
of innocuous sequences — but also increases false negatives —
that is, the failure to flag malicious activity because it mimics
normal sequences in the training set. Keromytis proposed that
anomaly detection could be improved — that is, false positives
could be reduced without increasing false negatives — by
leveraging the homogeneity in an “application community”
[27]. Oliner et al. showed this with temporal correlation of
anomalous system call sequences from concurrently executing
instances of the same program [32]. Malan and Smith [29]
demonstrated that worms and bots could be detected using a
complementary hypothesis — that strong temporal correlation
in emitted system call sequences indicated the presence of the
malware. None of these efforts investigated how to manage
the large volume of data that results from auditing system call
arguments, a step that is necessary for fine-grained response.

VI. CONCLUSION

We described a scalable monitoring architecture for use
with Grid applications. It uses Bloom filters at each Grid
node to create succinct digests of anomalies seen in an epoch.
These digests are sent to a central correlation process that
uses a counting filter to combine the anomaly digests. A
threat digest is constructed representing all anomalies that have
occurred on at least a predefined threshold number of nodes.
The threat digest is broadcast to all Grid nodes that use it to
flag dangerous anomalies as they occur. The provenance of
the file and process arguments of such anomalous events can
be retrieved using a database maintained locally on the Grid
node. We reported the results of an empirical analysis that we
used to validate our approach.
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