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Abstract—A seamless and intuitive search capability for the
vast amount of datasets generated by scientific experiments is
critical to ensure effective use of such data by domain specific
scientists. Currently, searches on enormous XML datasets is
done manually via custom scripts or by using hard-to-customize
queries developed by experts in complex and disparate XML
query languages. Such approaches however do not provide
acceptable performance for large-scale data since they are not
based on a scalable distributed solution. Furthermore, it has
been shown that databases are not optimized for queries on
XML data generated by scientific experiments, as term kinship,
range based queries, and constraints such as conjunction and
negation need to be taken into account. There exists a critical
need for an easy-to-use and scalable framework, specialized
for scientific data, that provides natural-language-like syntax
along with accurate results. As most existing search tools are
designed for exact string matching, which is not adequate for
scientific needs, we believe that such a framework will enhance
the productivity and quality of scientific research by the data
reduction capabilities it can provide. This paper presents how the
MapReduce model should be used in XML metadata indexing for
scientific datasets, specifically TeraGrid Information Services and
the NeXus datasets generated by the Spallation Neutron Source
(SNS) scientists. We present an indexing structure that scales well
for large-scale MapReduce processing. We present performance
results using two MapReduce implementations, Apache Hadoop
and LEMO-MR, to emphasize the flexibility and adaptability of
our framework in different MapReduce environments.
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I. INTRODUCTION

Data-centric programming paradigms and specialized query

languages have steadily grown to very large sizes. In this

progression, the technical knowledge required to manage such

languages has slowly become more complex. Unfortunately,

the powerful capabilities of these new technologies, currently,

can only be leveraged by computer scientists who have

mastered the complexity of specialized query languages and

scripts, and who also have expertise in dealing with complex

and disparate software tools. It is therefore essential to abstract

away the fundamental complexity of scientific metadata and

provide an elegant, intuitive, simple, but powerful free-form

query based search framework to end users and scientists. The

nature of scientific data in itself and the requirements of its

search do not permit the direct use of existing search engine

techniques. Unlike linked web documents, scientific datasets
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for their part, are stored in a flat or hierarchical file structure,

where the index depth of their content is not a relevant criteria,

but rather one that is required to capture the information in all

the scientific datasets in the repository.

Scientific user queries contain ranges for data and attributes

and cannot be processed with direct string matching alone,

as is the case with text search engines. Such values need

to be retrieved within specified ranges, and according to

algebraic relationships. Additionally, the query terms given by

the scientist may not directly match with the strings in the

datasets, and various equivalences to the query may need to

be matched to capture the intent of the scientist. For example,

terms such as degrees, temp, temperature, and weather may

need to be recognized as kins in the context of a scientific

search. Similarly, terms such as facility and site will have to

be reconciled in a scientific search, whereas they are divergent

in a purely string based search. For such a search to be efficient

and effective, a data indexing scheme needs to be employed.

Without an indexing scheme, search requires scanning of each

and every file in the repository. Indexing provides a mechanism

to reduce the number of files relevant to the given search query,

thus greatly limiting search time and enhancing accuracy.

With the amount of available scientific data growing from

terabyte sizes to petabytes, the number of files being generated

is also scaling into tens and hundreds of millions. Scientists

conducting experiments using the Spallation Neutron Source

(SNS) and High Flux Isotope Reactor (HFIR) at Oak Ridge

National Laboratory (ORNL) generate hundreds of terabytes

of data annually [1]. An effective scientific data search frame-

work requires an efficient mechanism to generate indexes

based on the metadata for the large number of scientific

data files produced. Considering the scale of the datasets in

question, it stands that performing the work of index creation

on a single machine is simply not feasible.

The specific algorithms for semantic matching has been

studied extensively by the Web information retrieval and

database community including related work on just semantic

matching of queries and search terms for grid by two of our

co-authors [2], [3]. This paper is focused on the design of the

indexing framework using MapReduce [4], which can scale,

and can be used along with a semantic matching module.

The framework we have developed easily integrates into a

MapReduce framework allowing the XML-based data index-





to be parsed significantly increases. By indexing, we achieve

a data reduction which lessens the volume of the data to be

searched, and as a consequence the number of conversions to

apply.

1) Motivation for XML based Metadata Search: XML

based scientific metadata, programming paradigms, and spe-

cialized query languages such as SPARQL [7] have steadily

grown in complexity and the technical knowledge to manage

them has also become difficult to master for domain scientists.

Just as most computer users today do not have to write

programs, domain scientists should be shielded from the low-

level details of XML syntax and structure. The integration of

Natural Language Processing (NLP) and Information Retrieval

(IR) technologies in web search engines have made it possible

for end-users to easily and effectively obtain information

that is stored in billions of web pages. Users do not need

professional programming expertise or technical knowledge

of the structure and format in which web pages are stored

by search engine servers. However, as there is little context

to the information that is indexed and searched via web

search engines, they typically return multiple links to the end

user. A key difference for search in XML based scientific

metadata information is that unlike web search engines that

return multiple web pages, domain scientists require the exact

information in response to their queries. For many scientific

instruments, such as the SNS facility, the number of metadata

files is also very large, as each data file, or small groups of

files can have an XML based metadata file associated with it.

A fast and scalable metadata based data reduction system is

critical for making such information easily accessible.

2) Metadata Sources from TeraGrid: The TeraGrid infor-

mation, that can be searched using free-form queries in our

framework, is based on the data that can be extracted by

crawling their portal pages [8]. The collected data provides

information about TeraGrid resources, capabilities, software,

services, science gateways, and other infrastructure elements.

3) Scope of Free-form Queries: The scope of free-form

queries in our framework is based on expressing search queries

in plain English language, and scientists do not need to learn

any formal expression syntax, just as in web search. Scien-

tists can express search constraints using natural-language-

like specifications. Our work adapts several techniques from

Information Retrieval and Semantic Web, to enable context-

rich free-form queries. The problem of processing and acting

upon arbitrary English is an extremely challenging research

topic being actively addressed in the AI community. To serve

a scientific query, however, it suffices for our system to

understand a limited form of English, wherein the vocabulary

is based on scientific terminology. There is no formal query

specification language that scientists need to learn, just as in

web search. In this paper, we do not discuss the application

of ontologies for the semantic analysis of a user query. This

ontological module takes place in a single node and the

research involved in the semantic network has been discussed

in other venues, [3] and [5].
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Fig. 4: Non-indexed search, and indexed search times of TeraGrid data. Indexing in this

case is paramount to good search performance. While the advantages of indexing is well

known, this graph quantifies the exact cost difference for searching XML datasets.

III. INDEXING XML-BASED SCIENTIFIC METADATA

USING MAPREDUCE

In providing a scientist with the ability to easily, intu-

itively and effectively search through massive data sets, it is

paramount to develop an efficacious indexing methodology.

The primary objective of any XML indexing technique is to

reduce the time and space complexity for search queries on

XML-based scientific datasets. When a search query is re-

ceived, the indexing metadata is reviewed and compared with

keywords present in the query. According to search terms and

conjunctions present in the search query, the corresponding

index file is selected, and the inverted index object is loaded

into memory to serve the query. The indexes are stored in

separate files as storing the index for petabytes of data in one

very large file is a highly inefficient option. As the indexes are

stored in separate index files, the search space for the keywords

present in the query gets substantially reduced. An inverted

index is created for each element value present in all the

XML metadata files, which results in significantly faster query

processing. Without an indexing scheme, data reduction will

require scanning every file in the repository, which requires

extensive computing for each query and significantly increases

the response time of every request, as shown in Fig. 4. In Fig.

4, the search time for a non-indexed search through 40 million

records takes nearly 1 minute, whereas, that of an indexed

search take a 1/3 of a second. If this occurs for several searches

per-day, it can result in a massive loss of productivity. The

performance bottlenecks presented by a single-node search

system approach make it impractical. Furthermore, the large

number of index files, and as a consequence the disk-space

occupied by the indices can be overwhelming for a single

system. The MapReduce paradigm is a perfect candidate for

the generation of indexes and subsequent searching, as the

model is designed to be scalable and fault-tolerant in data-

intensive applications [4].

IV. SCIENTIFIC DATA SEARCH

An indexing program needs to be flexible enough to run

at pre-determined times and also on-demand when a large
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Fig. 13: Shows the execution of our indexing framework in two a distributed settings.

Both Hadoop and LEMO-MR clusters are setup with five hosts. Both frameworks are

running identical Map and Reduce code. Input here varies from .1 to 40 million records.

The single computer system shows slower, and finds itself out of memory around 5.2

Million records.

accesses hidden links that have data in XML format for listing

of the kits, services, software, and resource descriptions. We

used these hidden links to generate XSD files for the infor-

mation available on the TeraGrid web pages and subsequently

applied our indexing scheme. As there are various kinds of

information available via TeraGrid Information Services, we

combined the different XSDs under a single parent node to

apply the node numbering scheme described in Section IV.

We run our tests on a selection of two machine classes:

• Dual core – One desktop-class machine, which has a

single 2.4Ghz Intel Core 6600 with 2 GB of ECC RAM,

and quad cores running Linux 2.6.24. The file system in

use here is NFS v.4.

• Quad core – 1U nodes in a cluster, each of which has

two 3.2Ghz Intel Xeon CPUs, 4 gigabytes of RAM 8

cores, and run a 64 bit version of Linux 2.6.15. Results on

this class of machines are taken by averaging the timings

produced on these nodes. The file system in use in the

test directory is NFS v.4

In Fig. 13, the TeraGrid datasets presented here features

a progression of input sizes going from 0.1 million records

and scaling all the way up to 40 million records. As more

data is gathered from TeraGrid, a distributed solution will

be essential to address the limitations of a single node’s

memory and computational capacity. The single node search

system featured in this experiment reaches the upper limits

of its memory capacity with 5.2 million elements. Processing

larger data then becomes incumbent upon both MapReduce

frameworks, which scale up to over 40 Millions elements

with 5 nodes. An advantage of the MapReduce model is the

ability for its distributed filesystem to off-load application

memory content into distributed files to be picked up by

any node in the cluster. With enough nodes, this affords

the model the ability to process all its input in memory

at once. This experiment is not only aimed at showing the

memory advantage and performance of a MapReduce cluster
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Fig. 14: Speed-up computed from LEMO-MR, and Hadoop clusters, against a single

node search system. In this experiment, both MapReduce frameworks search over 40

million records with various cluster sizes, ranging from 8 to 128 nodes. Speed-up is

computed as
T1

Tp
and represents how fast each cluster performs relative to the single-

node search system. Both clusters roughly scale in a similar fashion, even as LEMO-

MR runs faster in this context. This graph shows the applicability and performance of

the MapReduce model, even with single-node-search system capable data sizes. In this

particular example, indexing time is cut by a factor of 8, and as such can allow for more

frequent indexing, and as a consequence, more accurate and up-to-date search results.

in scientific data reduction, but also quantify the threshold

up to which a single-node’s memory is capable of handling

input sets. Even below the memory threshold of a single node

solution, a MapReduce solution, although out of place with

small input sizes and little processing, [11], is more efficient.

Finally, Fig. 13 is meant to show that scientists processing

smaller scale data, but requiring multiple indexing processes

as data arrives frequently, can harvest greater productivity from

a MapReduce framework with a limited number of nodes.

As shown in [10], LEMO-MR has less operational overhead,

as it does not support all of Hadoop’s features such as data

replication and data shuffling, and thus performs slightly better

than Hadoop as the data set scales from 0.1 million to tens of

millions of elements.

In Fig. 14 speed-up is computed as a measure of how both

clusters scale relative to a single-node search system. This

graph shows that even with a relatively moderate cluster in

size, performance up to 8 times faster than that of a single-

node search system can be attained, while still operating with

single-node memory capable datasets.

Fig. 15 shows the scalability of our indexing framework in

a MapReduce environment, with 400 million data elements

to process. As TeraGrid data is gathered, a single node

system quickly becomes overwhelmed with the amount of

data capable of fitting in its memory, as shown in Fig.

13. We address this shortcoming by adapting the indexing

scheme to work with commodity machines in a MapReduce

cluster. As more computing power is gradually added for each

performance run, both clusters index their input faster. This

enables the processing of over 0.4 billion elements, from 10

minutes with 8 nodes, to 1.5 minutes with a 128 node cluster.

The Map construct here consists for each node in applying

the index on the data they temporarily own and returning

the produced index into the intermediate data pool, awaiting

reducing. The reduce operation consolidates, organizes and
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Fig. 15: Processing performance shown by both MapReduce clusters as nodes are

gradually added to each of them in indexing a set containing slightly over 400 million

elements.

eliminates duplicate indexes produced by similar parts of

the input. LEMO-MR performs better as it is designed as a

lightweight implementation of MapReduce, and is devoid of

significant operational responsibility encountered by Hadoop

MapReduce, such as maintenance of input chunk duplication

factors, HDFS maps, and block mapping.

VII. RELATED WORK

While we applied our indexing framework to Hadoop [4]

and LEMO-MR [10], the indexing scheme we presented in

this paper can be applied in an iterative manner to Twister

[12] by allowing each step of the iteration to produce a sub-

index as explained in section III. [13] details four different

approaches for applying document indexing in MapReduce.

They show that the MapReduce indexing strategy suggested

in [4] generates too much intermediate data, which in turn

causes too much overhead. [14] indicts scan-centric MapRe-

duce approaches for processing queries as a cause for extra

I/O overhead when a query addresses only a subset of the

data. [15] uses MapReduce to address two important problems

with spatial databases on a Google IBM cluster. The paper

shows the application of MapReduce to R-Trees building and

aerial image rendering. The work we presented in this paper

focuses on scientific data indexing, and as such differs from

the ones outlined above, as they present general data indexing

approaches using MapReduce.

Structure-based XML-indexing is primarily based on the

bi-similarity concept where the nodes in XML documents

are grouped into structurally similar concepts. These struc-

tural summaries are the reflection of the underlying database

structures. Milo et. al. [16] use template indexes or T-indexes

for processing queries consisting of path expressions. T-

indexing can be quite an expensive structure, but this can be

considerably reduced in specific conditions. Chen et. al. [17]

introduce the D(k)-index that is based on the concepts of bi-

similarity. Their indexing technique derives adaptive structural

summaries from the XML data and serves as indexes for

evaluating path expressions.

XML data is modeled as labeled graphs, where the edges

correspond to element-sub-element relationships and IDREF

pointers. Spyglass [18] exploits spatial locality and skewed

distribution of namespaces in file system metadata to index

namespace hierarchy in a multi-dimensional kd-tree. The

design of the system is influenced by real-time file system

metadata usage characteristics that include search on multi-

ple metadata attributes, multiple versions of same metadata

attribute, and localized lookup. Although scientific metadata

search exhibits similar characteristics, there is an additional

requirement to support complex free-form queries, which

cannot be satisfied by processing namespaces alone. Therefore

our system focuses on semantics by including ontology-based

techniques.

Our indexing and search system is complementary to these

approaches as it focuses on matching free-form queries to the

correct data files. Depending on the structure of the metadata,

the appropriate scheme can be incorporated to augment frame-

work we have developed. The work we present in this paper

focuses on scientific data indexing, and as such differs from

the ones outlined above, as they present general data indexing

approaches using MapReduce.

VIII. CONCLUSION

With current advances in modern scientific endeavors, cou-

pled with the demands of an ever more connected scien-

tific world, there exists a need for fast and efficient scien-

tific data search framework. Domains like Cancer Research,

Biomedicine, High Energy Physics, to cite a few, are all daily

producing massive amounts of data, that need to be searched.

According to CERN, [19], more than 40 million data elements

are generated by the Large Hadron Collider, every second

during the particle accelerator’s operation. The utilization of a

semantic framework along with an indexing scheme capable

of efficiently indexing scientific metadata has the power of

providing a simple yet powerful interface to domain scientists

for querying and obtaining specific subsets of files and data

they are interested in.

Scientific search differs from web text based search, as

data ranges, term kinship, conjunction, disjunction, natural

language and result precision need to be accounted for. We

provide the ease-of-use of popular Web search engines, along

with the ability to retrieve information related to user queries

in the scientific domain. Our distributed indexing and search

is based on the MapReduce model, as TeraGrid data sizes

require the indexing and search to scale to very large datasets.

The integration of our framework into a high performance

distributed environment, allows domain scientists to harness

more indexing and searching power. The specific contributions

of our framework are the following:

• Our design provides an indexing framework capable of

indexing and efficiently searching large-scale scientific

XML data sets.

• To meet scalability and variety requirements, our frame-

work is tailored for integration with any framework that

espouses the MapReduce model.



IX. FUTURE WORK

In future work, we will modify the indexing data structures

to optimize the storage of keys by combining frequently

occurring or well-known ranges into a single key value. We

also plan to incorporate the effects of disk I/O and memory

size for testing terabyte size data for indexing. We will conduct

benchmark studies to determine the best XML parser suited

to parse a large number of XML files for faster indexing of

the data.
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