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Abstract—Non-negative Matrix Factorisation (NMF) is a popu-
lar tool in which a ‘parts-based’ representation of a non-negative
matrix is sought. NMF tends to produce sparse decompositions.
This sparsity is a desirable property in many applications, and
Sparse NMF (S-NMF) methods have been proposed to enhance
this feature. Typically these enforce sparsity through use of
a penalty term, and a /; norm penalty term is often used.
However an /; penalty term may not be appropriate in a
non-negative framework. In this paper the use of a ¢, norm
penalty for NMF is proposed, approximated using backwards
elimination from an initial NNLS decomposition. Dictionary
recovery experiments using overcomplete dictionaries show that
this method outperforms both NMF and a state of the art S-NMF
method, in particular when the dictionary to be learnt is dense.

Index Terms—sparse, non-negative, dictionary learning, NMF

I. INTRODUCTION

Non-negative Matrix Factorisation (NMF) is a learning
algorithm which seeks the approximation

M = DX (1)

where M € RM*¥ is the matrix for which the factorisation is
sought, D € RM*K and X € REXYN are a dictionary matrix
containing template atoms and a coefficient matrix with each
row containing the activations of the corresponding dictionary
atom, respectively, and M, D,X > 0. NMF was originally
proposed by Paatero and Tapper [1], in which it was proposed
to minimise a Euclidean distance cost function:

Cp = |M - DX|[% )

using Alternating Non-negative Least Squares (ANLS) pro-
jections. NMF was popularised by Lee and Seung [2] who
proposed using fast multiplicative gradient descent updates
instead of the ALS methodology. While NMF algorithms
have been proposed for many different cost functions [3],
the Euclidean distance NMF is popular for many applications,
and several proposals have been proposed for performing fast
ANLS by taking various approaches to the Non-Negative Least
Squares (NNLS) subproblems [4] [5] [6] [7].

A noted feature of NMF factorisations is that they tend to be
sparse, a desirable property that several authors have proposed
to augment by introducing a sparse penalty term:

N
1
Cs = 5IM=DX[5 + A xnll 3)

n=1

where A is a parameter that controls the sparsity and ||.||, is
an £, vector norm. Typically in the NMF literature, a ¢; norm
is used as the penalty term on the activation matrix, which can
be seen as a non-negative matrix variant of the LASSO [8], or
Basis Pursuit Denoising (BPDN) [9]. This was first proposed
by Hoyer [10] in the multiplicative update framework. In
the ALS framework, Kim and Park [6] proposed to apply a
squared ¢;-penalty term, \||x||, that can be considered a /;-
penalty that scales to the signal. An ¢; penalty term is effected
using an Iterative Soft Thresholding (IST) [11] approach that
is known to converge for LASSO / BPDN, in [12], where the
authors also propose starting with a large value of A that is
gradually decreased. However, the use of an ¢; penalty may
not be optimal in a non-negative framework. It has been shown
recently that Thresholded NNLS outperforms non-negative
{1-minimisation, such as LASSO/BPDN due to the innate
regularisation of the non-negative constraint [13]. Indeed, in
[12] an iterative strategy using hard thresholding was often
seen to perform better than the IST approach, the authors
noting that the hard thresholding strategy tends towards an
¢y penalty, where ||x|o = |x # 0].

Other Sparse NMF approaches which seek to approximate a
£o norm include NMF-/¢, [14] and Non-negative K-SVD [15],
characterised by using a different approach to the dictionary
update step, such as a modifed K-SVD algorithm [15], or
repeated NMF updates [14]. In both cases, pursuit algorithms
are used, with an emphasis on matching pursuits, with stopping
conditions determined by a predetermined number of atoms,
[15] [14], or a relative error measure [15].

The focus of this paper is on the use of an ¢y penalty for
sparse NMF. In particular a backwards elimination approach
using a modified sparse cost function that we have seen previ-
ously to be effective in non-negative sparse decompositions
[16] is employed for the sparse aproximation step. While
an optimal solution to the problem may not be guaranteed,
the backward elimination step is locally optimal, and does
not require the use of a predetermined number of atoms, or
relative error condition as a stopping condition. In the rest
of this paper, the relevant background material is first briefly
described before introducing the proposed methodology. Ex-
perimental results on synthetic data are offered, which validate
the approach taken before concluding with pointers to future
work.
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II. BACKGROUND
A. NMF with ANLS

While NMF was popularised using multiplicative updates,
the ANLS approach is generally considered to perform better
converging to a lower value of the cost function. The ANLS
approach performs alternating NNLS projections:

X ¢ min |[|[M — DX||% s.t. X > 0 4)
X
to update the coefficent matrix and
D<—mgnHMT—XTDTH2Fs.t.D >0 )

to update the dictionary. The computational load of using
NNLS projections for the subproblems has been noted and
variants of the ANLS algorithm have been proposed using
projected gradient [5], optimised active set [4], block pivoting
[6] and coordinate descent [7] methods in order to counter
this computational load. A noted ability of ANLS methods
relative to multiplicative update methods is their ability to
handle overcomplete dictionaries [7].

B. Backward Elimination

Backwards elimination is a stepwise strategy that starts with
an initial set, I', of indices of supported atoms, and eliminates
an atom with index l%, such that I' + F\I% at each iteration
such that

k= arg mkin AFr (6)

where }
Afe = |5 — [[e*]13 (7)

where r’ is the residual at the current matrix and ¥ is the
hypothetical residual given the sparse support I'* = T'\k.
A fast elimination criteria is proposed as part of the Greedy
Sparse Least Squares (GSLS) algorithm [17], derived through
using the block matrix inversion formulae:

Ar = %1% ¢ diag(IDEDr] 1) (8)

which calculates AFr for all k simultaneously, where x is the
least squares solution vector given I, the current support, al’!
denotes elementwise power of a and @ denotes elementwise
division.

III. METHOD
A. Modified Sparse Cost Function

In the sparse representations literature an ¢y penalised least
squares solution is considered optimal. In an orthonormal basis
[18], hard thresholding using a threshold A is equivalent to

Cr = |lm — Dx||5 + X?||x/|o. 9)

We have observed empirically found that in a non-negative
framework, that better sparse approximation, using the back-
wards elimination framework, occurs with a slight modifica-
tion to this cost function [16] using the residual norm

Crmod = ||m—DX||2+)\HXHO (10)

for which the motivation comes from the observation that the
backwards elimination criteria (8) scales to the square of Z.

The backwards elimination step (6) can be seen to locally
optimise the sparse cost function (9) when A*r < A2. In order
to optimise the modified sparse cost function the measure

Afr = \/|r]3 + Afr — ||rl2

can be simply calculated, noting that k, the index of the
selected atom is the same regardless of the cost function
applied. The stopping condition for the backwards elimination
criteria is then given similarly as AFr < ).

(1)

B. {y-Sparse NMF

A sparse NMF algorithm is proposed which uses the
modified sparse cost (10), an approach referred to as {g-
Sparse NMF, (¢,S-NMF) outlined in Fig. 1. ¢3-Sparse NMF, as
outlined here follows the ANLS approach. After initialisation
of the dictionary D, the ¢;S-NMF enters an iterative loop.
First NNLS is performed to estimate the coefficient matrix X.
Approximation of the minimum of (10) with a non-negative
constraint is then performed using backwards elimination at
each column of the initial NNLS decomposition.

Input M € RMXN [\
Initialise D € RM*K
repeat
Calcluate X using (4)
for n = 1:N do
Ly = {kHX}kn > O}
repeat
Select I%n using (6) (8)
Iy« o\ ky,
until Afr,, < A
X, = argmin, ||m, — Dr, x||3s.t.x>0
end for
Update D using (5)
until stopping condition

Fig. 1: ¢y S-NMF Algorithm

After the elimination process is completed X is recalculated
using NNLS constrained to the new sparse support, I". The
final step of the iteration consists of re-estimating D, using
the transposed NNLS projection (5).

In some cases it may be useful to enforce sparsity in the
dictionary, using a cost function such as

Cinoa = Y {Ilmy = DXyl + Alxullo} +0IDllo  (12)

where ||DJ|p is the number of non-zero elements in the
dictionary. The reason that the ANLS approach is considered
is that sparsity of the dictionary can also be enforced using
the backwards elimination approach, applied to the transposed
NNLS problem (5) with a stopping condition A™'r < 7.




IV. EXPERIMENTS

Some synthetic dictionary recovery experiments were de-
signed to test the proposed approach. Random, twice over-
complete non-negative dictionaries D of dimension 200 x 400
were generated, using a flat equal probability distribution in
the range [0,1], and all dictionary columns were normalised to
unit ¢5 norm. A coefficient matrix X of dimension 200 x 800
was synthesised using a equal distribution in [0.021]. Between
5 and 10 entries of X were randomly selected to be active in
each column for all experiments, and all other entries of X
were set to zero. Experiments were performed using different
sparsity levels in the dictionary, with {10, 25,50} % of entries
set as non-zero.

The matrix M = DX was synthesised. Subsequent fac-
torisation was performed using different approaches. All ap-
proaches use the transposed ANLS approach (5) to perform
the dictionary update, while different algorithms are used
to estimate the coeffcient matrix X at each iteration. Each
approach was run for 50 iterations of the alternating projection.
The proposed ¢4S-NMF is used with A = 0.02, the minimum
value of an activation in the synthesised dictionary. NMF
was performed using the ANLS approach. OMP was used
as a sparse approximation step, with non-negative constraints
applied. OMP stopped iterating when either 15 atoms were

selected, or the relative error ‘:ECL””% < 0.05. Thresholded
NNLS (T-NNLS) was performed using two different values
of the threshold A = 0.02 and A\ = +/0.02. An ¢;-SNMF
approach was also performed, with A = 0.02, and also with
A = 0.04 (¢;-SNMF (2)). For all NNLS calcuations the
active set Fast-NNLS [19] method was used, considering each
column of M separately.

The goal of the experiments was to reproduce a similar
dictionary using the described NMF techniques. In order to
measure the similarity between the original and estimated
dictionaries, the simple measure:

min{X:kK:1 max gy, Zszl max gt}
K

where G = D7D, is used. P4, is recorded as the final
value of P. A value of P = 0.95 is considered success in
these experiments, and an additional measure Z, relates the
number of iterations taken to achieve P = 0.95

is also tabulated. This threshold of 0.95 is considered
success in these experiments.

'P:

13)

V. RESULTS

The results for the experiments are shown in Table I,
while Fig. 2 plots the evolution of the average of P for all
experiments of given dictionary sparsity. It is observed that
NMF performs poorly in all cases, being unsuccessful for all
dictionaries, with the average correlation falling relative to the
initialised dictionary. While a stated advantage of the ANLS
approach to NMF is that overcomplete dictionaries can be used
[7], it would appear not be viable without a sparsity-based
approach. The proposed fo-SNMF approach is seen to be the
only algorithm successful in all experiments. However, a small

TABLE I
DIFFERENT NMF ALGORITHMS COMPARED FOR DIFFERENT DICTIONARY
SPARSITY LEVELS WITH DICTIONARIES SYNTHESISED FROM
EQUIPROBABLE DISTRIBUTION

50% 25% 10%
Prmaz z Pmaz z Prmax 1z
Zo-S-NMF 0.992 27 0.992 12 0.973 10
NMF 0.408 - 0.507 - 0.660 -

T-NNLS 0.990 17 0.970 14 0.897

01-SNMF 0.432 - 0.555 - 0.865 -
£1-SNMF(2)) 0.476 0.893 - 0.995 21
OMP 0.818 0.958 15 0.976 11

drop-off in performance is observed in the case of the sparsest
dictionary, where P, is reached after around 15 iterations,
and not subsequently improved. A sparsity constraint on the
dictionary, such as in (12), may improve this performance. The
use of OMP was seen to be reasonable, with success seen with
both of the sparser dictionaries, and a relatively high value of
P.naz in the case of the densest dictionary. When a high value
of A\ was used, the T-NNLS approach was seen to perform
well for the denser dictionaries, while failing in the sparsest
dictionary. With a lower threshold, A = 0.02, the T-NNLS
approach was seen to perform similar to NMF, and the results
are not recorded. Using an ¢1-SNMF approach was seen to be
relatively unsuccessful, using the considered parameters. Only
when the higher threshold (2$)\) was used was success seen
in any of the experiments. In this case, however, P,,,, was
seen to be higher than for all other algorithms.

The effect of the use of a higher threshold is obvious in
the results, as seen in the case of T-NNLS, with a high
threshold. Some experiments were run with the ¢?-penalty
norm suggested by [6]. The ¢?-norm can be considered a
scaled ¢1-norm, and seen to perform well using a value of
A = 0.02. Considering the synthesis of the coefficient matrices
used here, the % squared approach is similar to ¢; with a
higher value of A. Other initial experiments performed using
high values of \ with the ¢;-SNMF approach were seen to
bring similar improvements in the dictionary recovery to the
¢2 approach. These observations would seem to validate the
approach taken in [12] where a large value of )\, used at initial
iterations, was gradually decreased. However, it is noted that in
all cases the proposed ¢y approach performs similarly, without
requiring any scaling.

VI. CONCLUSIONS

A new variant of Sparse NMF has been presented using
a modified sparse cost function with an ¢y penalty with
a backwards elimination strategy proposed to perform the
approximation. The use of this approach was seen to improve
dictionary recovery results in synthetic experiments, and real-
world data will be considered in future. The improvement
in other approaches by scaling up the sparsity parameter,
A was noted, however, the proposed approach was seen to
perform adequately while using the value of A\ suggested by
the experimental setup.

An extension of this approach to enforce sparsity of the
dictionary itself was also proposed, although not implemented
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Fig. 2: Comparison of NMF algorithms learning in terms of P
when the dictionary is 50% dense (top), 25% dense (middle)
and 10% dense (bottom).

here. Future work will incorporate this approach. It was found
that the use of accelerated NNLS algorithms such as [6] was
problematic in these experiments, possibly due to the lack of
structure between individual matrix columns which might be
expected in real-world experiments and also to ill-condition
introduced by overcompleteness of the dictionary. Repeated

use of the F-NNLS algorithm was seen to be computationally
expensive. OMP was seen to perform reasonably well, and use
of a bi-directional stepwise optimal pursuit should improve
these results, possibly close to that of the backwards elimi-
nation approach employed, while reducing the computational
load. Such an approach could also be used to solve the
transposed problem (5). The backwards elimination approach
has been seen to perform well in the case of block sparsity,
and an investigation of the use of block sparsity in NMF will
be undertaken.
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