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Abstract—Profile guided optimisation is a common technique
used by compilers and runtime systems to shorten execution
runtimes and to optimise locality aware scheduling and memory
access on heterogeneous hardware platforms. Some profiling tools
trace the execution of low level code, whilst others are designed
for abstract models of computation to provide rich domain-
specific context in profiling reports. We have implemented mean
shift, a computer vision tracking algorithm, in the RVC-CAL
dataflow language and use both dynamic runtime and static
dataflow profiling mechanisms to identify and eliminate bottle-
necks in our naive initial version. We use these profiling reports
to tune the CPU scheduler reducing runtime by 88%, and to
optimise our dataflow implementation that reduces runtime by
a further 43% – an overall runtime reduction of 93%. We
also assess the portability of our mean shift optimisations by
trading off CPU runtime against resource utilisation on FPGAs.
Applying all dataflow optimisations reduces FPGA design space
significantly, requiring fewer slice LUTs and less block memory.

I. INTRODUCTION

Enormous growth in computer vision (CV) research has
prompted increasing interest in embedded real-time systems
application domains e.g., smart camera architectures [1], mo-
bile robotics [2] and automotive applications (e.g., self drive
cars). While traditional CV algorithms are often developed
for execution on sequential desktop computers, real-time CV
algorithms require hardware platforms with time and resource
bound guarantees to process data-intensive video streams at
high frame rates. Application-specific embedded hardware is
often the preferred option despite relatively complicated and
long development cycles compared to software implementa-
tions on general purpose processors.

Targeting embedded hardware for CV algorithm execution
is a challenging and time consuming task, especially when
implementing algorithms directly with low-level hardware de-
scription language (HDL), such as VHDL or Verilog. Dataflow
languages are a higher level and modular abstraction that have
been demonstrated to be a good fit for embedded systems
programming. The dataflow model is used to implement
digital signal processing (DSP) systems [3], and more recently
have been adopted for stream based image processing [4] and
reconfigurable video coding (RVC) [5] applications.

Although dataflow models are well suited for stream based
application domains to the best of the authors knowledge
mapping CV algorithms to the dataflow model to exploit
parallel hardware is largely unexplored with a few notable

exceptions [6]–[8]. One possible reason is that CV algorithms
cannot trivially be parallelised. For example, global operators
may be mapped over the entire image frame or feedback
loops may be required to derive values from one frame as
inputs to functions on subsequent frames — sequentialising
opportunities for pipelined parallelism.

The process of porting sequential algorithms to dataflow
models is not trivial, and a three-step process is proposed in
[9]: a) decouple the algorithm into independent processing
blocks (actors) and data flow (tokens) between these blocks,
b) design a resource efficient computational architecture to
exploit parallelism & c) map the algorithm onto target hard-
ware. The steps are iterated to produce an optimised design.
Optimisations can be reached using profile driven approaches
to make small incremental improvements to dataflow graph
structures and actor implementation code (Section II).

In this paper we use the mean shift visual tracking algorithm
for single subject tracking [10] as a CV case study to assess the
suitability of dataflow as a model for parallel implementation
and optimisation of CV algorithms. This is a conscious choice
as it has a proven convergence criteria and has substantial
execution costs in computing 2D matrix operations and ex-
hibits dynamic behaviour when estimating subsequent object
tracking positions using an iterative optimisation. The RVC-
CAL language [11] is used to implement mean shift. The
contributions of this paper are threefold:

• We express a well known CV tracking algorithm using
the dataflow model and implement a naive version in the
RVC-CAL dataflow language .

• We use runtime tracing and dataflow profiling techniques
for identifying and eliminating bottlenecks and imple-
ment optimised variants. The optimised versions reduces
runtime of 43% on a 4 core CPU.

• We trade off CPU runtime performance with FPGA
resource utilisation for all dataflow optimisations of the
naive mean shift version, and discuss the portability of
dataflow optimisation strategies.

II. PROFILE DRIVEN DATA-FLOW OPTIMISATION

Profile guided optimisation is used to shorten execution
runtimes and to improve hardware resource utilisation across
different architectures. Profilers have been embedded into
compilers e.g., for automatic function inlining [12], into profile
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Fig. 1. Choices for dataflow profiling

Fig. 2. Example of single target mean shift visual tracking.

guided JIT compilers that compile bytecode of frequently
used methods to native code [13], into runtime systems to
reduce memory access latency on NUMA architectures using
automatic page placement [14] and into IDE tool support
for semi-automatic parallel refactorings e.g., by introducing
parallel algorithmic skeletons [15]. Profilers either trace a
program’s execution on a target hardware platform to identify
runtime costs and resource utilisation, or they predict runtime
costs or resource utilisation without executing machine code.
Moreover, profilers can either be scoped to a specific model of
computation such as the dataflow model, or can be hardware
target specific, e.g., profiling FPGAs or CPUs (Fig. 1).

Orcc [16] is primarily a compiler for the RVC-CAL dataflow
language, though it also includes a CPU based runtime profiler
for the C backend that traces action firings and workload on
actors and connections. TURNUS [17] is a dataflow profiler
that extends the Orcc profiling of RVC-CAL with behavioural
predictions of dataflow graphs. In contrast, other profilers
are not restricted to one abstract model of computation and
instead profile domain agnostic source code at runtime. Intel
VTune [18] traces software performance analysis on x86
CPUs, and assists in code profiling using stack sampling,
thread profiling and hardware event sampling. Xilinx ISE
[19] is a software tool for synthesis and analysis of HDL
designs targeting FPGAs. It calculates perform timing analysis
and statically predicts resource utilisation values unique to a
particular FPGA models. Two of these profilers are used to
identify bottlenecks in the naive mean shift implementation
for optimisation opportunities in Section IV.

III. DATAFLOW MODELLING OF MEANSHIFT TRACKING

A. The algorithm

Mean shift [10] is a feature-space analysis technique for
locating the maxima of a density function. An example of
applying mean shift to image processing for visual tracking
is shown in Fig. 2. The target is successfully tracked from
the initial frame on the left, to the final frame on the right.
The algorithm is a kernel based method normally applied
using a symmetric Epanechnikov kernel within a pre-defined

Input: Target position y0 on 1st frame;
Compute Epanechnikov kernel;
Calculate target color model qu(y0)

(e.g., using RGB color histogram);
repeat

Input: Receive next frame;
Calculate target candidate color model: pu(y0);
Compute similarity function ρ(y) between qu(y0) & pu(y0);
repeat

Derive the weights ωi for each pixel
in target candidate window;

Compute new target displacement y1;
Compute new candidate colour model qu(y1);
Evaluate similarity function ρ(y) between qu(y0) & pu(y1);
while ρ(y1) < ρ(y0) do

Do y1 ← 0.5(y0 + y1);
Evaluate ρ(y) between qu(y0) & pu(y1);

end
until |y1 − y0| < ε (near zero displacement);
Output: y1 (Target position for current frame);
Set y0 ← y1 for next frame;

until end of sequence;
Algorithm 1: Summary of Mean-shift tracking

Fig. 3. Mean-shift tracking algorithm actor network.

elliptical or rectangular window. The target region of an initial
image is modelled with a probability density function (a colour
histogram) identifies a candidate position in the next image
by finding the minimum distance between models using an
iterative procedure. A summary is given in Algorithm 1.

B. Functional decomposition with dataflow actor network

Our dataflow versions of mean shift have been imple-
mented in the RVC-CAL dataflow language. It is a port of
an existing sequential implementation in C++ [20]. Coarse
grained functional components were de-coupled and mapped
into separate actors that communicate computation results
using token passing, shown in Fig. 3.

The Epanechnikov kernel and its derivatives are calculated
in Actor kArray evaluation and kArray derv, respectively.
Their constant values are computed once because they depend
only on the size of the target window. These values are
passed as streaming tokens cyclically to the update model f1,
update model and displacement actors. The update model f1



and update model actors calculate the colour models qu(y0)
& pu(y). The update model actor calculates the histogram as
a collection of bins. The histogram function is used to assign
a particular RGB value to a bin in the feature space using the
3 values as an index into a 3D space modelled using a 1D
array. Each bin u in the model is the normalised sum of all
kernel values for the pixels in that bin.

Once the model qu is calculated for the initial centre
position on the first frame, subsequent frames are used to
calculate the displacement y1 on each frame using a feedback
loop representing steps in Algorithm 1. The update weight
actor derives the weights wi for each pixel in the target
candidate window, while the displacement actor computes the
displacement y1 by Eq. (1).

y1 =

∑N
i=1 xiwig()∑N
i=1 wig()

, (1)

where N is the number of pixels in the target window, x
is each pixel’s relative position, its weight wi and g() is
the kernel derivative function. This is iterated by actors
Centre XY and Final Centre XY until the convergence criteria
(|y1 − y0| < ε) is met and uses a feedback loop controlled
by boolean tokens passed to the loop status port in the
update model actor. To read and write video streams (Fig. 3),
two smaller actor networks have been developed (not shown)
to a) convert raw YUV video streams into RGB channels,
and b) emit raw YUV video streams with a red rectangle
highlighting the tracking window on every frame.

IV. OPTIMISATIONS

A. Abstract Dataflow Optimisations

The Orcc profiler (Section II) is used to identify mean shift
bottlenecks in the context of high-level dataflow execution, by
identifying actions on the critical path through the dataflow
graph and finding where FIFOs are being starved of tokens.

1) FIFO Depth Reduction: A FIFO size of 32768 is needed
to stream two consecutive YUV frames through the naive
mean shift dataflow graph. Attempting to pass more frames
through the graph deadlocked execution, suggesting that the
naive version does not fully support the streaming model
which is required for continuous tracking. For example, in
order to pass 42 frames through the graph required a FIFO
size of 1048576 and to pass 130 frames through required
a FIFO size of 16777216. The Orcc profiler identified a
starvation of tokens in the FIFO between the R, G and B
ports and the update model actor, because the tokens were
not being consumed at the same rate by the update model
and update model f1 actors. The update model f1 was using
RGB values to compute qu(y0) only once on the first frame,
whereas the update model was computing pu(y) iteratively
for consecutive frames. The remedy was to fuse both actors,
merging their finite state machines (FSM) into update model.
The FSM was modified so that the action to compute qu(y0)
is fired only once. The optimisation recovers the FIFO size
back to 32768 to process any number of frames, and the

algorithm now supports the streaming model for which results
are presented in Section V.

2) Language Use Refinement: Tracing the naive mean shift
version with the profiler shows intensive scheduling of actors
that have only a small number of computationally inexpensive
actions. For example, the workload of the kArray evaluation
actor was profiled at 12.2%, despite there being only two
actions in the actor, one of which computed the Epanech-
nikov kernel with no token passing and another action called
sendData transmitting the kernel values to colour model
actors. The latter was initially implemented as a transmission
action looping over the kernel size. The optimisation was
to opt for a builtin RVC-CAL language construct repeat
in the implementation of sendData. The profiler reports a
workload reduction of 82% for the kArray evaluation actor.

B. CPU Optimisations

The Intel VTune profiler (Section II) is used to trace CPU
clock cycles for every line of C code for both actors and
the runtime scheduler that the Orcc compiler generates, and
identifies bottlenecks in the CPU scheduler and hotspots within
action implementations.

1) CPU Runtime System IO: The naive mean shift was first
profiled to identify the most severed bottlenecks. The mean
runtime of computing mean shift over a sequence of 130 YUV
frames of dimension 176× 144 is 24.6s. The profile reported
41% of overall runtime was executing an actor responsible
for writing YUV frames to file. We fixed the suspect IO
operation by replacing costly fseek and fwrite calls with
a putc call in the runtime system, and the Orcc compiler was
patched with this fix. The mean runtimes using this fix is 2.97s,
a speedup of 8.3 reducing runtime by 88%. All remaining
optimisation runtimes are measured using this runtime system
scheduler optimisation.

2) Actor Fusion: In Orcc’s C backend, FIFOs are imple-
mented as lock-free C structs shared between the source
and sink actors that it connects. These become bottlenecks if
token passing frequency between two actors is high either in
the absence of a multicore CPU or because the computational
granularity of the actors is too small. A solution is to fuse
multiple actors to eliminate FIFO bottlenecks and the schedul-
ing overheads of computationally inexpensive actors [21]. The
primary cost of actor fusion is code modularity and reuse.
Fusion optimisation is applied to the naive version, which
uses three separate actors to 1) draw a tracking rectangle, 2)
convert RGB values to the YUV colour space and 3) merging
individual YUV channels into a single stream. The profiler
reports runtimes of 0.25s, 0.26s and 0.29s respectively — a
total of 0.8s. The optimisation involved fusing the FSMs of
the three actors into a new single actor, and profiling reports a
runtime of 0.33 for this actor — a runtime reduction of 59%.

C. FPGA Optimisations

1) Task Parallelism: Additional actors are introduced as a
task parallelism optimisation for embedded dataflow hardware.
By observing the dependencies between actors, and between



Fig. 4. Introduction of task parallel actors.
actions within actors, we identified the displacement actor
as a candidate for a streaming optimisation. Its actions were
unfolded into smaller independent actor due to the absence
of data dependencies between these actions. This actor com-
putes Eq. (1) which is decomposed into six actors, shown
in Fig. 4. The CurPixelWeight actor maintains the interface
with preceding actors using ports weights and kDervArray,
and broadcasts the current pixel weight, and X and Y values
to three new actors WeightSum, XSUM and YSUM. Actors
XSUM and YSUM compute the numerator of Eq. (1) in the
X and Y direction respectively. The WeightSum calculates the
denominator of Eq. (1) used by actors Cal DX and Cal DY
to compute the displacement y1.

2) Pipeline Parallelism and Memory Tuning: A major chal-
lenge of porting sequential algorithms to the dataflow model
is availability of limited memory. Stream processing on FP-
GAs can overcome memory bottlenecks by pipelining opera-
tions. Dataflow imposes a share-nothing memory architecture.
Therefore image processing algorithms must be refactored to
reshape large N dimensional data structures into pipelines
of isolated memory regions in actors. The naive RVC-CAL
implementation used memory inefficiently in its faithful port of
the C++ version. We adapt this FPGA optimisation technique
by modifying the way YUV frames are streamed into the
network of actors that compute tracking. For example, an actor
is responsible for drawing a rectangular window around the
tracked target. In the naive version, this actor stored all R,
G and B values for an entire frame before using the tracking
location to determine which pixels must be highlighted. The
optimisation uses tracking location to highlight pixels on-the-
fly if their position is within the tracking window criteria.

V. RESULTS AND DISCUSSION

The naive and optimised versions of meanshift algorithm are
used to track a single target with a window size of 20×26 over
130 QCIF YUV444 frames from a standard tracking sequence
from PETS dataset [22] (S2.L1). They have been run on an
Intel Core 2 Quad CPU at 2.8GHz with 6Gb DDR3 memory,
running the 64bit Linux 3.15 kernel, and the C was compiled
with gcc 4.8.3. They are also synthesised for the Virtex 6
XC6VLX550T FPGA board. The high level synthesis (HLS)
Orcc backend was used, and the VHDL was synthesised with
Xilinx ISE 14.7.

The results are in Table I. It shows the CPU runtime and
FPGA device utilisation for the naive mean shift version, each

Version
CPU FPGA

Runtime FPS Slice LUT Slice registers BRAM/FIFO
(/343680) (/687360) (/632)

Naive 2.97s 43.8 58973 114404 109

FIFO reduction 2.06s 63.1 82608 201510 94
Task parallelism 3.17s 41.0 169165 421464 110
Pipeline parallelism 2.96 43.9 132572 316115 53
Actor fusion 2.67s 48.7 94017 234423 85
Language refinement 2.34s 55.6 112157 260002 94

Combined 1.70s 76.5 52884 127609 34

TABLE I
MEAN SHIFT OPTIMISATION CPU SPEEDUP AND FPGA UTILISATION

optimisation and then for all optimisations combined. CPU
runtimes are reduced in four out of five cases. The FIFO
optimisation yields a 31% shorter runtime compared the naive
version using a FIFO size of 32768 instead of 16777216, a
change enabled by this optimisation. Actor fusion reduced
runtime by 10% and using the repeat RVC-CAL construct
reduced runtime by 21%. Combining all optimisations gives
a runtime of 1.70s using a FIFO size of 131072, a 43%
runtime improvement over the naive version. The optimal
mean shift version is available online [23]. The task parallel
optimisation introduced six additional actors connected with
12 FIFOs, which is a potential CPU bottleneck and shared
memory contention on RAM which is reflected in a 7% longer
runtime.

The CPU optimisations to the dataflow graph result in big
differences in FPGA device utilisation. There are nearly three
times as many slice LUTs in the task parallelism optimisation,
due to the expansion of the displacement actor into multiple
actors. This change introduces an addition of six actors, 12
connections and 19 ports. The pipeline optimisation reduced
block RAM use by 51% and there was no change in CPU
runtime. The combination of all optimisations is a dataflow
graph that synthesises to use 10% fewer slice LUTs, 12%
more slice registers and 69% fewer block RAMs or FIFOs.

VI. CONCLUSIONS

This paper uses mean shift tracking to investigate profile
driven dataflow graph transformation trading off CPU runtime
performance with FPGA design space. Tuning the runtime sys-
tem yielded 88% shorter runtimes and optimising the dataflow
graph for CPU execution reduced runtimes by a further 43%
— an overall improvement of 93%. Combining all optimisa-
tions reduced FPGA memory utilisation by 69%. We will next
investigate formal methods for semi-automatic dataflow graph
transformation, using predictive and runtime dataflow profiling
to select optimal rewrite compositions. We will also investigate
hardware constrained dataflow transformation in the context of
an embedded image processing processor called IPPro we are
developing in the Rathlin project.
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