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Abstract—This paper considers the design of online power
allocation strategies for slotted energy harvesting point-to-point
communications systems. The objective is to minimize the com-
petitive rate gap that is defined as the maximum gap between
the optimal rates that can be achieved by the offline and online
policies over all possible energy arrival profiles. A lower-bound
on the competitive rate gap is derived and a new online policy is
presented. The new online policy is shown to perform very close
to the competitive rate gap lower-bound for any number of slots
and to outperform previously proposed online policies, such us
the myopic policy.

I. INTRODUCTION

Energy harvesting (EH) technology is considered as a major
component of future wireless networks. Harvesting energy
from the environment extends the lifetime of wireless devices,
and provides them untethered mobility, as batteries can be
charged without connecting to the power grid infrastructure.
However, despite such advantages, designing EH communi-
cation systems bring its own challenges. For many energy
sources, such as solar, vibration or electromagnetic, the charac-
teristics of the EH profile change over time. The time-varying
nature of the available energy motivates the need for designing
transmission polices that take into account the stochastic
nature of the energy arrival process, while optimizing a desired
performance criteria.

We model the EH process as a slotted packet arrival process,
in which the energy arrives in packets at each time slot, and
we study the problem of maximizing the achievable average
throughput over a fixed number of time slots. We assume that
the energy harvested during the course of the communication
is used only in the power amplifier of the transmitter.

Previous work addressing the design of transmission po-
lices for EH devices are typically classified based on the
assumptions made on the transmitter’s knowledge about the
EH process [1]. In the offline optimization framework the
transmitter is assumed to have access to all the future energy
packet arrival instants and packet sizes. The optimal offline
transmission policy maximizing the throughput for an EH
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point-to-point additive white Gaussian noise (AWGN) chan-
nel was first studied in [2] and, later extended to battery
capacity constraints and imperfections in [3] and [4], and also
to several multi-terminal communications channels, [5]–[9].
Offline designs serves as theoretical upper-bounds and have
also been proven useful in inspiring online policies, such us
the myopic policy [10]. However, practical interest in offline
polices is limited to scenarios for which the EH process is
more or less deterministic, or is random, but can be accurately
predicted. For example, solar based systems and shoe-mounted
piezoelectric devices.

The online optimization framework, instead, assumes that
the future energy arrivals are unknown. If the transmitter
has statistical knowledge of the underlying EH process then,
the optimization problem is modeled as a Markov decision
process, and the optimal policy can be determined through
dynamic programming [1], [11]. Most of the work in the
literature on the online optimization show performance results
that are very close to those achieved by optimal offline policies
[12], [13]. However, it is not yet clear how much of these
results can be attributed to the particular online policy chosen,
or the stochastic model considered for the EH process.

In this work, we adopt a competitive analysis framework,
for which the statistics of the EH process are not relevant.
Our main objective is to characterize the gap between the
optimal offline policy and online policy. Identifying this gap
independent of the EH statistics will determines the value of
the knowledge about the EH process. If the gap between the
optimal offline and online policies can be significantly large,
more effort should be put into characterizing and learning the
behaviour of the underlying EH processes [14]. Moreover, the
value of the gap will also let us know the value of the offline
results as a performance benchmark, a claim commonly used
in the literature.

The most related paper to our work is [15], in which the
authors introduce a competitive analysis for an EH com-
munication systems, and define the competitive rate ratio
as the maximum ratio between the optimal offline rate and
online rate. They consider point-to-point communications over
a slotted transmission interval and consider, both, arbitrary
energy arrivals and time-varying channel coefficients which
are known only causally at the transmitter. For this scenario,
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authors show that the optimal competitive ratio over N slots
is N . Here, we study the competitive rate gap rather than the
competitive ratio for a static channel setting. In our previous
work [16], we have shown that the optimal competitive rate
gap for N time slots is upper-bounded by log2(N) and show
that the myopic policy always obtain a lower rate gap. Here,
we provide a lower-bound on the competitive rate gap for
any number of slots and present a new online policy which
performs very close to the lower-bound derived.

The remainder of the paper is organized as follows. The sys-
tem model is described in Section II. The competitive analysis
framework is developed in Section III. The competitive rate
gap lower-bound is derived in Section IV, and the new online
policy is presented in and evaluated numerically in V. Finally,
concluding remarks are presented in Section VI.

II. SYSTEM MODEL

Consider the wireless transmission from a source to a
destination over a zero mean unit variance circularly sym-
metric additive white Gaussian noise (AWGN) channel. The
communication has a fixed time duration of T time units,
which is divided into N slots of equal duration T

N . We
consider the Shannon capacity function to relate the achieved
instantaneous rate to the power; that is, if the transmission
power at time t is p(t) then the instantaneous rate is given by
r(p(t)) = log2(1 + p(t)), and the total number of bits trans-
mitted over the period of time T is given by

∫ T

0 r(p(t))d(t).
The source terminal harvests energy from the environment

over time. The energy harvested during time slot n− 1 is first
stored into the battery, and is only available at the beginning
of slot n, and is denoted by En ∈ {0,R+}, n = 1, 2, . . . , N .

Denote by Un the energy allocated for transmission during
time slot n. It is well known that, due to the strict concavity
of the capacity function, the rate in each slot is maximized by
equally distributing the energy Un over the whole slot duration
T
N . Then, the total number of bits transmitted over slot n is
found as follows

Dn(Un) =
T

N
log2

(
1 +N

Un

T

)
.

After N time slots, the rate achieved is R =
1
T

∑N
n=1 Dn (Un). Due to the energy causality constraint,

the total energy used by the end of slot n cannot be more
than the energy harvested by the beginning of time slot n,
n = 1, 2, . . . , N , that is, Um values have to satisfy:

n∑
m=1

Um ≤
n∑

m=1

Em, ∀n ≤ N.

Hereafter, without loss of generatively, we consider T = 1.

III. COMPETITIVE ANALYSIS

Our goal is to study the rate gap between the rate achieved
by the optimal offline policy RO (E), which was first presented
in [2], and the rate RU (E) achieved by the online policy
maximized over all possible energy profiles. We want to

characterize the minimum value of this maximum rate gap,
the competitive rate gap (g), defined as

g = min
U

max
E∈{0,R+}N

RO (E)−RU (E) . (1)

For the minimization, we consider online policies U that make
their decisions based only on the past energy arrivals, and
make no assumption about the statistics of the EH process,
namely

U (〈E1, ..., EN 〉)= 〈U1, ..., UN〉 ,
where the energies spent at time slots n = 1, ..., N are defined
by the functions

Un (〈E1, ..., En〉) :
{
0,R+

}n → [0, Bn] ,

where En = 〈E1, ..., En〉 and Bn denotes the amount of en-
ergy in the battery at the beginning of time slot n. Notice that
Un is a fraction of Bn, which we can write for convenience
as

Un (En) = αn (En)Bn (2)

where 0 < αn (En) ≤ 1 and the battery state at time slot n,
can be computed recursively as

Bn = (1− αn−1)Bn−1 + En.

In general, solving (1) directly can be quite difficult, we
have instead derived upper- and lower-bounds on g. Upper-
bounds can be obtained by fixing a particular online policy
U∗ and solving instead

gU = max
EN∈E

RO −RU∗

By using this approach, we have shown in [16], that the
competitive rate gap is upper-bounded as

g ≤ log2 N (3)

and that, the myopic policy

Un =

n∑
l=1

El

N − l+ 1
, n = 1, ..., N (4)

which uses the offline optimization solution on the current
available energy as if there will be no further energy arrivals
is able to obtain a lower competitive rate gap.

Here, we derive a lower-bound on the competitive rate gap
and present an online policy, which is shown to obtain a com-
petitive rate gap very close to the lower-bound, outperforming
the rate gap obtained with the myopic policy.

IV. COMPETITIVE RATE GAP LOWER BOUND

To find a lower-bound on the competitive rate gap (1), we
maximize the rate gap only over a subset of all the possible
EH input sequences S ⊂ {0,R+}N , namely

g ≥ min
U

max
E∈S

RO (E)−RU (E) . (5)

We consider a particular subset of 2N−1 EH input sequences
of length N . To refer to each of these sequences, we use a
length-N vector of binary entries x = 〈x[1], ...,x[N ]〉, with
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x[1] =1 and x[n] ∈{0, 1} for n = 2, ..., N , and define the
EH sequences associated to x, as

Ex[n] =

{
lim

E1→∞
(E1)

n
, if x[n] = 1,

0, if x[n] = 0.
(6)

For each of these EH input sequences, the online rate is
denoted as RU|x = RU (Ex), and given by

RU|x =
1

N

N∑
n=1

log2
(
1 +NUn|xn

)
,

where Un|xn
= Un (Exn) denotes the energy allocated at time

slot n, which can be found as

Un|xn
= αn (Exn)Bn.

The optimal offline rate obtained with Ex is denotes as
RO|x. For the EH input sequences in (6), it can be shown
that, the optimal offline transmission policy [2] consists of
spending the energy received at time slot n, when x[n] = 1,
equally among the next consecutive slots m > n satisfying
x[m] = 0.

The rate gap associated to Ex is denoted as Gx = Gx (Ex),
and given by

Gx = RO|x −RU|x.

Finally, we can compute the competitive rate gap lower-bound,
by solving

gL = min
αn|xn

max
x

Gx

0 ≤ αn|xn
≤ 1, ∀xn and n = 1, ..., N.

(7)

For the sake of clarity, we solve (7) first for N = 3, and
then extend the result to any number of slots N .

For N = 3, the EH input sequences defined in
(6) are given by: E1,0,0 = lim

E1→∞
〈E1, 0, 0〉 , E1,0,1 =

lim
E1→∞

〈
E1, 0, E

3
1

〉
, E1,1,0 = lim

E1→∞
〈
E1, E

2
1 , 0
〉
, and

E1,1,1 = lim
E1→∞

〈
E1, E

2
1 , E

3
1

〉
. The online rates associated to

each of these EH input sequences are given by

RU|1,0,0 = lim
E1→∞

1

3
log2

(
33α1|1α2|1,0α3|1,0,0(

1− α1|1
)2 (

1− α2|1,0
)
E3

1

)
,

RU|1,0,1 = lim
E1→∞

1

3
log2

(
33α1|1α2|1,0α3|1,0,1

(
1− α1|1

)
E5

1

)
,

RU|1,1,0 = lim
E1→∞

1

3
log2

(
33α1|1α2|1,1α3|1,1,0

(
1− α2|1,1

)
E5

1

)
,

RU|1,1,1 = lim
E1→∞

1

3
log2

(
33α1|1α2|1,1α3|1,1,1E6

1

)
,

the offline rates are given by

RO|0,0 = lim
E1→∞

1

3
log2

(
33E3

1

)
,

RO|0,1 = lim
E1→∞

1

3
log2

(
33

22
E5

1

)
,

RO|1,0 = lim
E1→∞

1

3
log2

(
33

22
E5

1

)
,

RO|1,1 = lim
E1→∞

1

3
log2

(
33E6

1

)
,

and the rate gaps are

G1,0,0 = −1

3
log2

(
33α1|1α2|1,0α3|1,0,0

(
1− α1|1

)2 (
1− α2|1,0

))
,

G1,0,1 = −1

3
log2

(
22α1|1α2|1,0α3|1,0,1

(
1− α1|1

) )
,

G1,1,0 = −1

3
log2

(
22α1|1α2|1,1α3|1,1,0

(
1− α2|1,1

))
,

G1,1,1 = −1

3
log2

(
α1|1α2|1,1α3|1,1,1

)
.

Substituting Gx for all x into (7), it can be shown that the
minimum rate gap is obtained in the equality of all the rate
gaps G1,0,0 = G1,0,1 = G1,1,0 = G1,1,1. By solving the
resultant system of equations, we obtain

α3|1,1,1 = α3|1,1,0 = α3|1,0,1 = α3|1,0,0 = 1,

α2|1,1 = 1− Γ2α3|1,1,1,

α2|1,0 = 1− Γ3α3|1,0,1
1− α1|1

,

α1|1 = 1− Γ2α2|1,1 − Γ3α3|1,1,1

where Γl =
(l−1)l−1

ll
. Finally, given that the rate gaps are equal

for all x, we chose x = 〈1, 1, 1〉 obtaining

gL = −1

3
log2

(
α1|1α2|1,1α3|1,1,1

)
,

= −1

3
log2 (1− Γ2)− 1

3
log2 (1− Γ2 (1− Γ2)− Γ3) ,

= 0.335 01 bits/frame. (8)

For N time slots, it can be shown that, the gap associated
to the EH input sequence Ex is given by

Gx = − 1

N
log2

⎛
⎝ N∏

n=1

αn|xn

|zx|∏
i=1

(zx(i) + 1)
zx(i)+1

zx(i)∏
j=1

(
1− αox(j)|xj

)zx(i)+1−j

⎞
⎠

where ox is a vector containing the position of each one in x
and zx is a vector with the number of consecutive zeros after
each one. As an example, for x = 〈1, 0, 0, 1, 0, 1〉, ox=[1, 4, 6]
and zx = [2, 1].

Solving the system of equations defined by Gx = Gy for
all y 
= x, we have found the following solution to all αn|xn

and the competitive rate gap lower-bound: Let us denote the
last position of a one in xn as m(xn). For any two distinct
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binary input vectors xn and yn, if the last position of a one
in xn and in yn coincide, m(xn) = m(yn), then

αn|xn
= αn|yn

.

Observe that this equality implies that there are n distinct αn

instead of the 2n−1 possible αn|xn
. We define

α∗
n|m(xn)

= αn|xn

and compute α∗
n|m, for m ≤ n, and n = 1, ..., N , by first

obtaining α∗
n|n, iteratively, for n = N to n = 1 using

α∗
n|n = 1−

N+1−n∑
l=2

Γlα
∗
n+l−1|n+l−1. (9)

For m < n, we computed α∗
n|m, recursively, for n = 2 to

n = N and for m = 1 to m = n− 1, as

α∗
n|m = 1−

n−1∏
l=m

(
1− α∗

l|m
)−1

N+1−n∑
l=2

Γl+n−mα∗
n+l−1|n+l−1. (10)

Finally, by choosing x to be the vector of all ones, namely
x = 1N−1, we obtain

gL = − 1

N
log2

(
N∏

n=1

αn|xn

)
,

= − 1

N
log2

(
N∏

n=1

α∗
n|n

)
. (11)

V. ONLINE POLICY

Online policies consider that future energy arrivals are
unknown. The online rate maximization problem falls into
the category of Markov decision processes and the optimal
solution can be identified by dynamic programming. However,
the complexity of finding the solution with dynamic program-
ming grows exponentially with the variables of the system,
i.e. number of slots, possible energy arrival amounts, etc.
Simple online policies have also been proposed in the literature
without claiming optimality, such as the greedy policy, which
uses all the available energy in the next slot, Un = En, or
the myopic policy (4). Here, we present a new simple online
policy designed to approach the competitive gap lower-bound
in (11).

At each time slot n, using only the EH input sequence up to
time slot n, the online police decides on the fraction αn (En)
of the remaining energy in the battery Bn to be spent at time
slot n, namely

Un (En) = αn (En)Bn. (12)

At time slot n, αn (En) is chosen as one of the n possible
energy fractions αn|m m = 1, .., n defined in (9) and (10).
Observe that all αn|m, m ≤ n, and n = 1, ..., N can be pre-
computed and stored in a look-up table, as done in Table I,
for N = 5.

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

Number of slots (N)

m
ax

 R
O

−
R

U

 

 

Upper−bound
Myopic Policy
Proposed Policy
Lower−Bound

Fig. 1: Competitive rate gap analysis

TABLE I: Look-up table for the online policy with N = 5

m α1,m α2,m α3,m α4,m α5,m

1 0.5862 0.3730 0.3794 0.4912 1
2 0.6173 0.4340 0.5130 1
3 0.6644 0.5586 1
4 0.7500 1
5 1

At time slot n = 1, there is only one possible energy
fraction, and thus α1 (E1) = α1|1 for all E1. At time slot
n > 1, suppose that αn−1 (En−1) = αn|m then, the policy
evaluates the following condition

En ≥ 1

n−m+ 1

n∑
i=m

E
i
, (13)

and selects

αn (En) =

{
αn|n if (13) satisfied,
αn|m otherwise.

We conclude this section by providing a numerical assess-
ment of the competitive rate gap for N = 2, ..., 7 in Fig.1. To
that end, we limit the energy harvesting amounts to the discrete
set En ∈ [0, 10, 20, ..., 105], and compute the competitive rate
gap obtained with the myopic policy and with the online policy
here presented. The lower-bound in (11) and the upper-bound
in (3) are also depicted. Observe that, as opposed to the myopic
policy, the proposed online strategy is able to achieve the
competitive rate gap lower-bound for N ≤ 3, and is very
close to the rate gap lower-bound for any N .

VI. CONCLUSIONS

We studied the competitive rate gap for EH communica-
tion systems. For slotted point-to-point communications, we
provided a lower-bound on the competitive rate gap, which is
defined as the maximum difference between the rate obtained
with an offline power policy and an online power policy. Based
on the derivation of this lower-bound, we proposed an online
strategy, which is shown, via numerical evaluation, to obtain a
rate gap very close to the rate gap lower-bound for any number
of slots.
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