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Abstract—We consider the effects of decoding costs in energy
harvesting communication systems. In our setting, receivers, in
addition to transmitters, rely solely on energy harvested from
nature, and need to spend some energy in order to decode their
intended packets. We model the decoding energy as an increasing
convex function of the rate of the incoming data. In this setting,
in addition to the traditional energy causality constraints at the
transmitters, we have the decoding causality constraints, where
energy spent by the receiver for decoding cannot exceed its
harvested energy. We first consider the point-to-point single-user
problem where the goal is to maximize the total throughput by
a given deadline subject to both energy and decoding causality
constraints. We then consider the multiple access channel (MAC)
where the transmitters and the receiver harvest energy from
nature, and characterize the maximum departure region.

I. INTRODUCTION

Energy harvesting communications offer the promise of en-
ergy self-sufficient, energy self-sustaining operation for wire-
less networks with significantly prolonged lifetimes. Energy
harvesting communications have been considered mostly for
energy harvesting transmitters, see e.g., [1]–[26], with fewer
works on energy harvesting receivers, see e.g., [27]–[30]. In
this paper, we consider energy harvesting communications
with both energy harvesting transmitters and receivers.

The energy harvested at the transmitters is used for data
transmission according to a rate-power relationship, which is
concave, monotone increasing in powers. The energy harvested
at the receivers is used for decoding costs, which we assume
to be convex, monotone increasing in the incoming rate [31],
[32]. The transmission energy costs and receiver processing
costs could be comparable, especially in short-distance com-
munications, where high rates can be achieved with relatively
low powers, and the decoding power could be dominant.

We model the energy needed for decoding at the receivers
via decoding causality constraints: the energy spent at the
receiver for decoding cannot exceed the receiver’s harvested
energy. We already have the energy causality constraints at the
transmitter: the energy spent at the transmitter for transmitting
data cannot exceed the transmitter’s harvested energy. There-
fore, for a given transmitter-receiver pair, transmitter powers
need now to adapt to both energy harvested at the transmitter
and at the receiver; the transmitter must only use powers, and
therefore rates, that can be handled/decoded by the receiver.
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Fig. 1. Single-user channel with an energy harvesting transmitter and receiver.

The most closely related work to ours is [27], where the
authors consider a general network with energy harvesting
transmitters and receivers, and maximize a general utility
function, subject to energy harvesting constraints at all ter-
minals. Reference [27] carries the effects of decoding costs to
the objective function. If the objective function is no longer
concave after this operation, it uses time-sharing to concavify
it, leading to a convex optimization problem, which it then
solves by using a generalized water-filling algorithm.

In this paper, we consider a similar problem with a spe-
cific utility function (throughput), for two specific network
structures (single-user channel and MAC). For the single-user
channel, we observe that the decoding costs at the receiver
can be interpreted as a gate keeper at the front-end of the
receiver that lets packets pass only if it has sufficient energy
to decode. We show that, we can carry this gate effect to the
transmitter as a generalized data arrival constraint. Therefore,
the setting with decoding costs at the receiver is equivalent to
a setting with no decoding costs at the receiver, but with a
(generalized) data arrival constraint at the transmitter [1]. We
also note that the energy harvesting component of the receiver
can be separated as a relay between the transmitter and the
receiver; and again, the problem can be viewed as a setting
with no decoding costs at the receiver but with a virtual relay
with a (generalized) energy arrival constraint [9]–[14].

Next, we consider a two-user MAC with energy harvesting
transmitters and receiver, and maximize the departure region.
We show that the boundary of this region is achieved by
solving a weighted sum rate maximization problem that can be
decomposed into an inner and an outer problem. We solve the
inner problem using the results of single-user fading problem
[3], and the outer problem using a water-filling algorithm.



II. SINGLE-USER CHANNEL

As shown in Fig. 1, we have a transmitter and a receiver,
both relying on energy harvested from nature. The time is
slotted, and at the beginning of time slot i ∈ {1, . . . , N},
energies arrive at a given node ready to be used in the same
slot. Let {Ei}Ni=1 and {Ēi}Ni=1 denote the energy harvested at
each slot for the transmitter and the receiver, respectively, and
{pi}Ni=1 denote the transmitter’s powers. We assume that nodes
have infinite rechargeable batteries to store their energies.

Without loss of generality, we assume that the time slot
duration is normalized to one time unit. The physical layer is
a Gaussian channel with unit noise variance. The objective is
to maximize the total amount of data received and decoded by
the receiver by a given deadline N . Our setting is offline in the
sense that all energy amounts are known prior to transmission.

The receiver must be able to decode the kth packet by the
end of the kth slot. A transmitter transmitting at power pi in
the ith time slot will send at a rate g(pi) , 1

2 log2 (1 + pi),
for which the receiver will spend ϕ(g(pi)) amount of power
to decode, where ϕ is generally an increasing convex function.
In the sequel, we will also focus on the specific cases of linear
and exponential functions, where ϕ(r) = ar + b, with a ≥ 0
and b ∈ R, and ϕ(r) = c2dr + e, with c, d ≥ 0 and e ∈ R.
Continuing with a general convex increasing function ϕ, we
have the following decoding causality constraints:

k∑
i=1

ϕ(g(pi)) ≤
k∑

i=1

Ēi, k = 1, . . . , N (1)

Therefore, the problem is formulated as

max
p≥0

N∑
i=1

g(pi)

s.t.
k∑

i=1

pi ≤
k∑

i=1

Ei, ∀k

k∑
i=1

ϕ(g(pi)) ≤
k∑

i=1

Ēi, ∀k (2)

where p denotes the vector of powers. Note that the problem
above in general is not a convex optimization problem as (1) in
general is a non-convex constraint since ϕ is a convex function
while g is a concave function [33]. Applying the change of
variables g(pi) = ri, and defining f , g−1 (note that f is a
convex function), we have

max
r≥0

N∑
i=1

ri

s.t.
k∑

i=1

f(ri) ≤
k∑

i=1

Ei, ∀k

k∑
i=1

ϕ(ri) ≤
k∑

i=1

Ēi, ∀k (3)

which is now a convex optimization problem that can be solved
by standard techniques [33]. We note that the constraints in

(1), i.e.,
∑k

i=1 ϕ(ri) ≤
∑k

i=1 Ēi, place upper bounds on the
rates of the transmitter by every slot k. This resembles the
problem addressed in [1] with data packet arrivals during the
communication session. In fact, when ϕ(r) = r and Ēi = bi,
where bi is the amount of data arriving in slot i, these are
exactly the data arrival constraints in [1]. A general convex
ϕ generalizes this data arrival constraint. We characterize the
solution of (3) in the following three lemmas and the theorem.
The proofs of these lemmas rely on the convexity of f and ϕ
as in [1], and are omitted here due to space limitations.

Lemma 1 {r∗i } is monotonically increasing.

Lemma 2 In the optimal policy, whenever the rate changes
at a given time slot, at least one of the following events occur:
1) the transmitter consumes all of its harvested energy in
transmission, or 2) the receiver consumes all of its harvested
energy in decoding, up to that time slot.

Lemma 3 In the optimal policy, by the end of the transmission
period, at least one of the following events occur: 1) the
transmitter’s total power consumption in transmission is equal
to its total harvested energy, or 2) the receiver’s total power
consumption in decoding is equal to its total harvested energy.

Theorem 1 Let ψ , ϕ−1. A policy is optimal iff it satisfies
the following

rn = min

{
g

(∑in
j=1Ej −

∑in−1

j=1 pj

in − in−1

)
,

ψ

(∑in
j=1 Ēj −

∑in−1

j=1 pj

in − in−1

)}
(4)

where

in = arg min
in−1<i≤N

{
g

(∑i
j=1Ej −

∑in−1

j=1 pj

i− in−1

)
,

ψ

(∑i
j=1 Ēj −

∑in−1

j=1 pj

i− in−1

)}
(5)

with i0 = 0, and n = 1, . . . , N .

Theorem 1 shows that decoding costs at the receiver are
similar in effect to having a single-user channel with data
arrivals during transmission and no decoding costs. This stems
from the fact that the transmitter has to adapt its powers
(and rates) in order to meet the decoding requirements at the
receiver. Therefore, the receiver’s harvested energies and the
function ϕ control the amount of data the transmitter can send
by any given point in time.

Alternatively, we can view the single-user setting with
an energy harvesting receiver, as a two-hop setting with a
virtual relay between the transmitter and the receiver, with
a non-energy harvesting receiver. To this end, we separate the
decoding costs of the receiver, which are subject to energy
harvesting constraints, as a relay which is subject to energy
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Fig. 2. Two-user MAC with energy harvesting transmitters and receiver.

harvesting constraints in its transmissions, and consider the
receiver as fully powered [9]–[14]. The receiver will only
receive data if the relay has sufficient energy to forward them.
In addition, this energy harvesting virtual relay has no data
buffer, thus its incoming data rate equals its outgoing data rate.
The rate through this relay is controlled by Ēi and ϕ. Thus, the
decoding function ϕ puts a generalized energy arrival effect
to this relay, in a similar way that it puts a generalized data
arrival effect to the transmitter through Theorem 1.

III. MULTIPLE ACCESS CHANNEL

We now consider a two-user Gaussian MAC as shown
in Fig. 2. The two transmitters harvest energy in amounts
{E1i}Ni=1 and {E2i}Ni=1, respectively, and the receiver harvests
energy in amounts

{
Ēi

}N
i=1

. The received signal is

Y = X1 +X2 + Z (6)

where Xi is the ith transmitter’s signal, and Z is the Gaussian
noise with zero-mean and unit-variance. The capacity region
for this channel is given by [34]: r1 ≤ g(p1), r2 ≤ g(p2),
r1 + r2 ≤ g(p1 + p2), where p1 and p2 are the powers used
by the first and the second transmitter, respectively.

In addition to the usual energy harvesting causality con-
straints on the transmitters, we impose a receiver decoding
cost on the sum rate, i.e., the two transmitters can only send
at rates whose sum can be decoded at the receiver. This can
be the case, for instance, if the receiver employs simultaneous
decoding [34]. Let pji denote the power used by the jth
transmitter in time slot i. A policy {p1i, p2i}Ni=1 is feasible
if the following are satisfied

k∑
i=1

p1i ≤
k∑

i=1

E1i,
k∑

i=1

p2i ≤
k∑

i=1

E2i,

k∑
i=1

ϕ (g (p1i + p2i)) ≤
k∑

i=1

Ēi, ∀k (7)

Let Bj denote the total departed bits from the jth user by
time slot N . Assuming that both transmitters are infinitely
backlogged, our aim is to characterize the maximum departure

Fig. 3. Departure region of a two-user MAC.

region, D(N), which is the region of (B1, B2) the transmitters
can depart by time slot N , through a feasible policy. The
following lemmas characterize this region [5].

Lemma 4 The maximum departure region, D(N), is the
union of all (B1, B2), over all feasible policies {p1i, p2i}Ni=1,
where for any fixed power policy, (B1, B2) satisfy

B1 ≤
N∑
i=1

g(p1i), B2 ≤
N∑
i=1

g(p2i)

B1 +B2 ≤
N∑
i=1

g(p1i + p2i) (8)

Lemma 5 D(N) is a convex region.

Each point on the boundary of D(N) can be characterized
by solving a weighted sum rate maximization problem subject
to feasibility conditions (7). Let µ1 and µ2 be the non-negative
weights for the first and the second user rates, respectively, and
let us examine three cases separately.

A. µ1 = µ2

In this case, the aim is to maximize the sum rate. Let us
define pi , p1i+p2i, and relax the problem by treating the two
users as one by adding up their harvested energies to obtain a
relaxed problem which is given as in (2) with Ei = E1i+E2i.
We refer to this problem as the sum rate problem. This is a
single-user problem whose solution is given by (4) and (5).
Then, we can choose to divide p∗i in infinitely many ways to
get p1i and p2i. For each division choice, we get a different
pentagon, but all pentagons share the same dominant face. Our
next goal is to get the boundary points of this dominant face,
denoted by points 1 and 2 in Fig. 3.

Towards this, let us focus on point 1 without loss of
generality. To get a policy that achieves point 1, we need
to maximize the rate of the first transmitter, subject to its
energy causality constraints, decoding causality at the receiver,
and additional constraints from the solution of the sum rate
problem. Adding these last set of constraints will force the first
transmitter’s power to follow a certain pattern that might not
be optimal with respect to its single-user rate, but is essential
to guarantee that the sum rate of the two transmitters will lie



on the maximum dominant face acquired from the sum rate
problem. For instance, as we showed in Lemma 2 for a single-
user channel, whenever the rate changes, either the transmitter
or the receiver consumes all of its harvested energy. Therefore,
there might be some instants, where the first transmitter is
obligated to deplete its battery in order to keep track with the
solution of the sum rate problem.

B. µ1 = 0 or µ2 = 0

Without loss of generality, we assume µ2 = 0. The op-
timization problem for p∗1i becomes a single-user problem,
whose solution is given by (4) and (5). From here on, we
assume a specific structure for the decoding function ϕ. In
particular, we assume that it is exponential with parameters
c = 1, d = 2 and e = −1, i.e., ϕ(r) = g−1(r) = 22r − 1.
Therefore, in order to get point 3 in Fig. 3, we need to solve:

max
p2≥0

N∑
i=1

g (p∗1i + p2i)

s.t.
k∑

i=1

p2i ≤
k∑

i=1

Qi, ∀k (9)

where p∗1i is the solution of the single-user problem for user
1, and the modified energy levels Qi are defined as follows

Qi =Mi −Mi−1,

Mi = min


i∑

j=1

E2j ,
i∑

j=1

Ēj − p∗1j

 , M0 = 0 (10)

We observe that (9) is a single-user energy-harvesting maxi-
mization problem with fading, whose solution is via directional
water-filling of {Qi}Ni=1 over the inverse of the fading levels
{1 + p∗1i}Ni=1 as presented in [3].

C. General µ1, µ2 > 0

We now aim at characterizing the rest of the region given
by the dotted lines in Fig. 3. To do so, we need to solve the
weighted sum rate maximization problem for general µ1 ̸= µ2

with µ1, µ2 > 0. Without loss of generality, assume µ1 >
µ2, and let us define µ , µ2

µ1−µ2
. We then need to solve the

following optimization problem

max
p1,p2≥0

N∑
i=1

g(p1i) + µ
N∑
i=1

g(p1i + p2i)

s.t.
k∑

i=1

p1i ≤
k∑

i=1

E1i, ∀k

k∑
i=1

p2i ≤
k∑

i=1

E2i, ∀k

k∑
i=1

p1i + p2i ≤
k∑

i=1

Ēi, ∀k (11)

We note that the above problem resembles the one formulated
in [16]. In the following, we approach the problem in a similar
manner. First, we state a necessary condition of optimality for

the above problem. The proof follows through a contradiction
argument and is omitted here due to space limitations.

Lemma 6 In the optimal solution for (11), by the end of the
transmission period, at least one of the following occur: 1)
both transmitters consume all of their harvested energies in
transmission, 2) the receiver consumes all of its harvested
energy in decoding.

We decompose the optimization problem (11) into two
nested problems. First we solve for p2 in terms of p1, and
then solve for p1. Let us define the following inner problem:

G(p1) , max
p2≥0

N∑
i=1

g(p1i + p2i)

s.t.
k∑

i=1

p2i ≤ Qi, ∀k (12)

where Qi is as defined in (10) for the given first user’s powers
p1i. Then, we have the following lemma.

Lemma 7 G(p1) is a decreasing concave function in p1.

Proof: G is a decreasing function of p1 since the feasible
set shrinks with p1. To show concavity, let us choose two
points p

(1)
1 and p

(2)
1 , and take their convex combination pθ

1 =

θp
(1)
1 + (1 − θ)p

(2)
1 for some 0 ≤ θ ≤ 1. Let p(1)

2 and p
(2)
2

denote the solutions of the inner problem (12) at p(1)
1 and p

(2)
1 ,

respectively. Now let pθ
2 , θp

(1)
2 + (1 − θ)p

(2)
2 , and observe

that, from the linearity of the constraint set, pθ
2 is feasible with

respect to pθ
1. Therefore, we have

G
(
pθ
1

)
≥

N∑
i=1

g
(
pθ1i + pθ2i

)
≥

N∑
i=1

θg
(
p
(1)
1i + p

(1)
2i

)
+ (1− θ)g

(
p
(2)
1i + p

(2)
2i

)
= θG

(
p
(1)
1

)
+ (1− θ)G

(
p
(2)
1

)
(13)

where the second inequality follows from the concavity of g.
�

Next, we solve the outer problem given by

max
p1≥0

µG (p1) +
N∑
i=1

g(p1i)

s.t.
k∑

i=1

p1i ≤
k∑

i=1

Ti, ∀k (14)

where we define the water levels Ti = Li − Li−1, with
Li = min

{∑i
j=1E1j ,

∑i
j=1 Ēj

}
, and L0 = 0. The min-

imum is added to ensure feasibility of the inner problem.
Note that, by the results of Lemma 7, the outer problem is
a convex optimization problem that can be solved by standard
techniques [33]. For instance, a water-filling algorithm similar
to the one proposed in [16] converges to the optimal solution.
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[23] M. Gregori and M. Payaró, “Optimal power allocation for a wireless
mutli-antenna energy harvesting node with arbitrary input distribution,”
in IEEE ICC, June 2012.

[24] Y. Luo, J. Zhang, and K. B. Letaief, “Training optimization for energy
harvesting communication systems,” in IEEE Globecom, December
2012.

[25] A. Nayyar, T. Basar, D. Teneketzis, and V. V. Veeravalli, “Optimal
strategies for communication and remote estimation with an energy
harvesting sensor,” IEEE Transactions on Automatic Control, vol. 58,
no. 9, pp. 2246–2260, September 2013.

[26] C. Huang, R. Zhang, and S. Cui, “Optimal power allocation for outage
probability minimization in fading channels with energy harvesting
constraints,” IEEE Transactions on Wireless Communications, vol. 13,
no. 2, pp. 1074–1087, February 2014.

[27] K. Tutuncuoglu and A. Yener, “Communicating with energy harvesting
transmitters and receivers,” in UCSD ITA, February 2012.

[28] H. Mahdavi-Doost and R. D. Yates, “Energy harvesting receivers: Finite
battery capacity,” in IEEE ISIT, July 2013.

[29] R. D. Yates and H. Mahdavi-Doost, “Energy harvesting receivers:
Optimal sampling and decoding policies,” in IEEE GlobalSIP, December
2013.

[30] H. Mahdavi-Doost and R. D. Yates, “Fading channels in energy-
harvesting receivers,” in CISS, March 2014.

[31] P. Grover, K. Woyach, and A. Sahai, “Towards a communication-
theoretic understanding of system-level power consumption,” IEEE
Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1744–
1755, September 2011.

[32] J. Rubio, A. Pascual-Iserte, and M. Payaró, “Energy-efficient resource
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