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Abstract

Facing the challenge of meeting ever-increasing demand for wireless data, the industry is striving to

exploit large swaths of spectrum which anyone can use for free without having to obtain a license. Major

standards bodies are currently considering a proposal to retool and deploy Long Term Evolution (LTE)

technologies in unlicensed bands below 6 GHz. This paper studies the fundamental questions of whether

and how the unlicensed spectrum can be shared by intrinsically strategic operators without suffering from

the tragedy of the commons. A class of general utility functions is considered. The spectrum sharing

problem is formulated as a repeated game over a sequence of time slots. It is first shown that a simple

static sharing scheme allows a given set of operators to reach a subgame perfect Nash equilibrium for

mutually beneficial sharing. The question of how many operators will choose to enter the market is also

addressed by studying an entry game. A sharing scheme which allows dynamic spectrum borrowing and

lending between operators is then proposed to address time-varying traffic and proved to achieve perfect

Bayesian equilibrium. Numerical results show that the proposed dynamic sharing scheme outperforms

static sharing, which in turn achieves much higher revenue than uncoordinated full-spectrum sharing.

Implications of the results to the standardization and deployment of LTE in unlicensed bands (LTE-U)

are also discussed.
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I. INTRODUCTION

Hundreds of megahertz of unlicensed spectrum under 10 GHz is currently available and more

will likely be allocated in the near future. Unlike licensed frequency bands, an unlicensed band is

free to use by anyone as long as some basic constraints are satisfied. The constraints are usually

on the transmit power spectral density (PSD). In a few bands in several regions in the world,

an additional simple protocol (such as listen-before-talk) also needs to be followed. A lot of

work on unlicensed spectrum focused on WiFi offloading of cellular data [1]–[4]. In comparison

with WiFi, Long Term Evolution (LTE) technology has benefits of high efficiency and robust

mobility [5], [6]. Most operators and vendors believe that LTE in unlicensed spectrum (LTE-U)

will seamlessly extend cellular networks and require no separate management as WiFi offloading

would.

Challenging coexistence issues arise with multiple LTE-U and WiFi operators. It is a consensus

within the 3rd Generation Partnership Project (3GPP) that LTE-U should not disrupt concurrent

WiFi services [7], [8]. More importantly, since every LTE-U operator is incentivized to make the

maximum use of the free spectrum, without an effective scheme for cooperation, many operators

are likely to suffer from significant interference, leading to severely degraded spectral efficiencies,

also known as the tragedy of the commons [9]. Two fundamental questions are addressed in this

work: 1) Can intrinsically selfish and strategic operators cooperate for their mutual benefit? and

2) if so, how should strategic operators with dynamic traffic cooperate?

Given the sophisticated nature of wireless operators, it is natural to model them as strategic

players and cast the spectrum sharing problem in the framework of game theory and mechanism

design. There have been some game-theoretic studies of spectrum sharing among non-cooperative

parties (e.g., [10]–[21]). In particular, [13] laid the groundwork in a limited scenario where the

number of operators is fixed, the utility function is the Shannon rate, and each operator is subject

to a total transmit power constraint (in lieu of PSD constraints). The schemes in [13] and [14]

also need each operator to measure the exact power spectral profile of every other operator,

which is hard to implement in practice. The authors of [19] devised a pricing mechanism for

multiple operators to negotiate power usage in unlicensed spectrum. Spectrum sharing among

operators having similar rights for accessing spectrum was studied in [20], where an internal
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virtual currency in radio access network was used.

In this paper, we study coexistence of multiple non-cooperative operators with time-varying

traffic. Such traffic variations are likely to be quite pronounced in densely deployed small

cells [22]. A class of general utility functions is considered, with Shannon rate being a special

case. We start with sharing schemes for a simple scenario where a given fixed set of operators are

colocated and orthogonal spectrum sharing is preferred due to higher overall spectral efficiency.

We first establish the effectiveness of a simple static sharing scheme where each operator’s

spectrum use does not vary with traffic levels, and show that the proposed profile is a subgame

perfect Nash equilibrium (SPNE). Then, assuming operators arrive sequentially, we show that the

number of operators willing to invest a fixed cost in order to share the spectrum is limited and

depends on the investment cost and externalities. The study of static sharing is a straightforward

extension of our prior work [23].

With the total network revenue in mind, we then introduce a dynamic sharing scheme that

adapts to the operators’ traffic conditions. The sharing problem is formulated as a repeated game

with private information and communication. We devise a dynamic sharing profile, where the

operators share information about their traffic intensities, and in any slot, operators with low traffic

intensities loan spectrum to those operators with high traffic intensities (with anticipation that

borrowers will reciprocate). The proposed profile is shown to be a perfect Bayesian equilibrium

with truthful reporting of traffic intensities. The practical implication is that all LTE-U operators

are likely to enter such a mutually beneficial sharing agreement.

This study aims to provide a theoretical foundation for LTE-U standardization and deployment.

The proposed spectrum sharing schemes are simple and may serve as the basis for a practical

design. Devices generally do not have intelligence and are not strategic, thus the choice of the

actual equilibrium allocation is likely to be negotiated among the operators via standards bodies

such as the 3GPP and WiFi Alliance. All operators must agree to the selected utility vector in

advance and follow the profiles according to standards.1 A credible punishment scheme and/or a

violation reporting mechanism is needed (and can be implemented in devices) to deter deviation

from mutually beneficial coexistence. However, the punishment state will never be visited if all

1The allocations to different operators may or may not be equal. It is also conceivable to allow devices certain degrees of
freedom to negotiate the utility vector.
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operators consistently comply with the proposed schemes.

The remainder of the paper is organized as follows. The basic system model is presented in

Section II and a static sharing scheme is proposed in Section III. We study dynamic sharing

schemes that allow operators to trade spectrum in Section IV. Numerical results are shown in

Section V. Concluding remarks are given in Section VI.

II. SYSTEM MODEL

Assume n operators share a certain band or bands of unlicensed spectrum taken as a bounded

real number set S ⊂ R, which is in general a union of some finite intervals. The total amount

of spectrum is W =
∫
S 1df Hz. On the timescale of interest, it is conveniently assumed that the

spectrum in S is homogeneous. It is also assumed that the operators can monitor each other’s

PSD.2

We focus on a discrete-time formulation, where time is slotted and all operators are fully

synchronized at the slot level. The traffic intensity of operator i in slot t is defined as the traffic

level during slot t, and the intensity is revealed only to operator i at the beginning of slot t. Each

operator’s traffic condition is private information. We assume that the traffic intensity of operator

i is an exogenous random process denoted by {Λi
t, t ≥ 0} independent of the other operators.

Each operator determines its transmit PSD at the beginning of each slot based on its prior

information, and maintains the same PSD over the entire slot.3 For ease of notation, denote the

transmit PSD of operator i in slot t, normalized by the flat noise PSD, as pit(f). Throughout

this paper, it is assumed that the only exogenous constraint on the PSD is regulatory, where the

transmit PSD must be upper bounded by P , i.e., pit(f) ≤ P for all i, t, and f . In general, the

utility of operator i is a function of the PSDs chosen by all operators, as well as its own traffic

intensity λit, denoted as ui(pit, p
−i
t , λ

i
t), where p−it denotes collectively the PSDs of operators other

than i. The total revenue of operator i over the infinite time horizon is defined as

V i = (1− δ)
∞∑
t=0

δtui(pit, p
−i
t , λ

i
t) (1)

2It could be implemented by using LTE CRS (cell reference signal), which embeds the cell identity and could separate the
average received power of cells. Alternatively, an operator may infer about other operators’ usage based on its own quality of
service without active monitoring. This is not considered here.

3In a more nuanced setting, the selected PSD is a mask that constrains the actual PSD which can vary over a slot.
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where δ ∈ [0, 1) denotes the discount of future utility, and the factor (1− δ) makes it convenient

to compare the total revenue with a one-slot utility. In practice, an operator is concerned with

the utilities over the course of many slots (at least days), hence the discount factor is typically

very close to 1.

It is common in practice that operators deploy their transmitters on the same tower or the

towers close to each other. For simplicity, we assume for most of our discussion that the cells

of all operators completely overlap, all transmitters are colocated, and all receivers are one unit

distance away from the transmitters. The key principles here apply to more general scenarios with

partially overlapped cells [24]. For operator i, the signal-to-interference-and-noise ratio (SINR)

in slot t at frequency f is expressed as

γit(f) =
pit(f)

1 +
∑

j 6=i p
j
t(f)

. (2)

In general, let the “usefulness” per Hz at the vicinity of a certain frequency f be r(γi(f)), where

r(·) is strictly increasing (hence increasing the SINR makes the frequency more useful). In this

paper, we also assume that the system operates in the interference-limited regime. In particular,

r(·) satisfies:

r (P ) > sup
n≥2

[
n · r

(
P

(n− 1)P + 1

)]
. (3)

Condition (3) implies that the sum utility that multiple operators extract by simultaneously sharing

the same piece of spectrum with maximum transmit power is less than that can be extracted from

exclusive use of the spectrum. A practically relevant example of r(·) is r(γ) = log(1 + γ) so

that
∫
S r(γ

i
t(f))df is the Shannon capacity of the additive white Gaussian noise channel. In that

case, it is easy to show that if P > 1.62, then (3) is always satisfied.

For concreteness, we introduce a family of utility functions that depend on the accumulated

spectrum usefulness and the traffic intensity. Let the utility of operator i in slot t take the following

form:

ui(pit, p
−i
t , λ

i
t) = πi

(
1

r(P )

∫
S
r(γit(f))df, λit

)
(4)

which is bounded and non-negative. If the spectral efficiency on occupied spectrum is
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homogeneous, then the integral in (4) can be simplified by using the bandwidths. Under

orthogonal sharing, operator i maximizes its utility by transmitting at peak power over its

spectrum, yielding utility πi(wit, λ
i
t), where wit is the bandwidth occupied by operator i in slot

t. Indeed, the first argument on the right side of (4) can be viewed as the effective exclusive

bandwidth occupied by operator i that yields the same utility.

In this paper, we consider a class of functions πi satisfying some additional conditions:

a) πi(x, λ) is continuous, strictly increasing, and strictly concave in x for every λ. As a

consequence, the incremental utility of adding spectrum usefulness decreases as the initial

amount of spectrum usefulness increases. Precisely, for every x, λ, and ∆ > 0,

πi(x+ ∆, λ)− πi(x, λ) < πi(x, λ)− πi(x−∆, λ). (5)

b) πi(x, λ) is finite and strictly supermodular, that is, adding an incremental amount of spectrum

usefulness yields higher improvement in the utility when the traffic intensity is higher.

Precisely, for every x, ξ > λ, and ∆ > 0,

πi(x+ ∆, λ)− πi(x, λ) < πi(x+ ∆, ξ)− πi(x, ξ). (6)

Without coordination, each operator would prefer to transmit over the entire spectrum using

the maximum power, referred to as full-spectrum strategy. Clearly, if all operators employ the

full-spectrum strategy (the strategy profile is referred to as full-spectrum sharing), they all

suffer the maximum interference, which results in poor spectral efficiency. In particular, under

full-spectrum sharing, the utility of operator i in slot t is

πif (λ
i
t) = πi

(
W

r(P )
r

(
P

P (n− 1) + 1

)
, λit

)
, (7)

and the expected utility of operator i is

uif = E
[
πif (Λ

i
t)
]
. (8)

Alternatively, if the operators avoid interfering with each other by using different parts of the

spectrum, the spectral efficiency and the sum utility become much higher. This suggests that it
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may be beneficial for strategic operators to cooperate.

This paper addresses the general situation where operators’ traffic intensities vary over time.

Shorter slot duration leads to better tracking of traffic intensities, which results in higher revenues.

However, due to the limitations of techniques in spectrum monitoring and information exchange

among operators, the slot duration cannot be arbitrarily small. The slot duration should be chosen

to balance the benefit of spectrum agility with the cost, robustness, and other practical issues.

Throughout this paper, a fixed slot duration is assumed, which is conceived to be between a few

seconds to several minutes.

III. STATIC SHARING SCHEMES

In this section, we study static sharing schemes, where the PSD of an operator does not vary

with the traffic dynamics (even though the utilities do). The history of the realized actions (the

chosen PSDs) provides full information for choosing the strategy in the current slot. In particular,

the history does not affect the set of admissible actions or utilities in the future, and the strategy of

an operator is actually independent of the traffic intensities. In this context, the spectrum sharing

problem can be modeled as a repeated game with complete and perfect information over an

infinite sequence of slots. We begin with the simplest case of two operators in Section III-A, then

generalize to the case of an arbitrary fixed number of operators in Section III-B. In Section III-C,

we study the entry game, where an arbitrary number of users arrive sequentially.

The following simple observation is useful.

Lemma 1. If (3) holds, equal, orthogonal sharing achieves higher utility than full-spectrum

sharing for all operators.

Proof: Under equal, orthogonal sharing, the expected utility of operator i in one slot is

uio = E
[
πi
(
W
n
,Λi

t

)]
. By assumption (3),

Wr

(
P

1 + (n− 1)P

)
<
W

n
r (P ) . (9)

Since πi(x, λ) is increasing in x for every λ, we have πi
(
W
n
, λ
)
> πi

(
W
r(P )

r
(

P
P (n−1)+1

)
, λ
)

for

every λ. Hence, uio is larger than uif given in (8).
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A. The Two-Operator Case

First, consider a system with two operators who only operate for one slot with fixed PSDs. This

is referred to as the stage game. The action space P is the set of feasible PSDs. A strategy profile

(p1, p2) ∈ P×P is a strict Nash equilibrium of the stage game if an operator becomes worse off by

unilaterally deviating from it, i.e., u1(p1, p2, λ1) > u1(q, p2, λ1) and u2(p2, p1, λ2) > u2(q, p1, λ2)

for every λ1, λ2, and q ∈ P . The minimax utility of an operator is defined as the smallest utility

that the other operator can force it to receive, regardless of its strategy.

Lemma 2. In the stage game, all operators using the full-spectrum strategy is the unique (strict)

Nash equilibrium. In particular, πif (λ
i) is the minimax utility of operator i with traffic λi.

The proof is trivial because an operator’s utility increases as its PSD increases.

In practice, the stage game is repeated an infinite number of times and each operator can vary

its PSD over time. The players are the two operators; the action space P is the set of feasible

PSDs; at the end of each epoch, the operators can observe the action of the other operator and can

use the complete history of play to decide on future actions; the strategy space of an operator is

the set of complete plans of actions that define what PSD the operator will use in every possible

event where the operator needs to act; and the payoff is the expected total revenue over the

infinite time horizon expressed in (1). As was observed in [13], the repeated game allows a

much richer set of Nash equilibria than the stage game.

In this section, we consider profiles which constitute an SPNE. SPNE is a refined and stronger

notion than Nash equilibrium [25], in the sense that such equilibria cannot be merely the

consequence of non-credible threats, and thus are rationale and likely outcomes in practice.

In particular, a strategy profile is an SPNE if the restriction of the strategy profile yields a Nash

equilibrium from the start of each stage for each history [26]. In order to verify a profile as an

SPNE, we can use the one-shot deviation principle, which addresses the equivalence between

single-deviation optimality and strategy-deviation optimality. In particular, in an infinite-horizon

multi-stage game with perfect information, a strategy profile is an SPNE if and only if no operator

can gain by deviating from the profile in a single stage and conforming to the profile thereafter

[26, Theorem 4.2].
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Lemma 3. Let (u1, u2) be a feasible utility pair, i.e., there exists a pair of PSDs the two operators

can adopt to attain (u1, u2) as their utilities. If (u1, u2) > (u1
f , u

2
f ), then there is an SPNE where

the corresponding expected total revenue pair is (u1, u2) as long as the future discount factor δ

is sufficiently close to 1.

Proof: We construct such an SPNE. Let the utility pair (u1, u2) be attained by the PSD pair

(p1, p2), i.e., E [u1(p1, p2,Λ1
t )] = u1 and E [u2(p2, p1,Λ2

t )] = u2.

Profile 1. The strategy of each operator i ∈ {1, 2} is: Use PSD pi in slot 0 and continue to use

pi in each subsequent slot, as long as the other operator i′ (i′ 6= i) uses PSD pi
′

in the previous

slot; otherwise, transmit the maximum power over the entire spectrum hereafter.

It is convenient to refer to the slots in which the operators use (p1, p2) as the cooperation state,

and the remaining slots (if any) as the punishment state. The operators begin with the cooperation

state. Once an operator deviates from the cooperation state, the punishment is everlasting, so

that the operator suffers a net loss in revenue. Moveover, transmitting the maximum power over

the entire spectrum is the best response in the punishment state. Hence one-shot deviation is

undesirable and Lemma 3 holds.

The cooperation defined in Profile 1 is not robust in practice. In case of any perceived deviation,

even if due to false detection of the other operator’s spectrum usage, the operators will be trapped

in the punishment state. We next consider a profile that provides incentives for deviating operators

to return to the cooperation state. The idea is to return to the cooperation state after spending

sufficiently many slots in the punishment state. Denote

U
i
(λ) = sup

p,p̂

ui(p, p̂, λ). (10)

Choose the duration of punishment T such that for every λ and i = 1, 2,

U
i
(λ)− πi

(
W

2
, λ

)
< T (ui − uif ), (11)

which implies that one’s loss due to punishment is greater than the one-shot gain by deviating

if there is no future discount. To reduce the length of punishment, in practice we choose the

minimum T that satisfies (11).
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Profile 2. Operator i uses pi in slot 0. In each subsequent slot, the system state evolution and

the strategy of operator i ∈ {1, 2} depends on the state as follows:

I. Cooperation state: If the PSDs were (p1, p2) in the previous slot, then use pi in this slot;

otherwise, transit to the punishment state.

II. Punishment state: If any operator is detected to deviate from this profile in any state in the

previous slot, then use the maximum power over the entire spectrum for T slots and then

resume using pi and return to the cooperation state.

Lemma 4. For any feasible vector (u1, u2) > (u1
f , u

2
f ), Profile 2 is an SPNE that achieves the

expected total revenue pair (u1, u2), as long as the punishment duration T satisfies (11) and the

future discount factor δ is sufficiently close to 1.

The proof is similar to Theorem 2 in [25] for general repeated games. According to Lemmas 3

and 4, in order to achieve the total revenue vector (u1, u2) > (u1
f , u

2
f ), the operators announce

their strategies and agree to the selected utility vector in advance.

In general, there are an infinite number of equilibria, and hence an infinite number of

equilibrium utility tuples. In practice, the operators need to negotiate a favorable equilibrium

allocation, usually through some standard bodies. Once all operators agree on the equilibrium,

they monitor each other’s PSDs and respond accordingly without calculating (4). Although an

equilibrium allocation need not be orthogonal, an implication of Lemma 1 is that an orthogonal

allocation is in general favorable. In addition, it is much easier to verify orthogonal sharing by

monitoring the PSD support than the exact PSD of another operator. Furthermore, orthogonal

sharing allows an operator to use its share of the spectrum as if it were licensed. Therefore,

hereafter we consider orthogonal sharing. Without loss of generality, we also assume the chosen

equilibrium corresponds to equal partition of spectrum by the operators, even if their one-shot

utilities and traffic statistics are different. The key principles in this paper apply to general

equilibrium allocations.

Denote a set of PSDs corresponding to equal, orthogonal sharing as (pjo)
n
j=1 and let

uio = E [ui(pio, p
−i
o ,Λ

i
t)]. When n = 2, (u1

o, u
2
o) dominates (u1

f , u
2
f ). From Lemma 4, the expected

total revenue pair (u1
o, u

2
o) can be achieved by a Nash equilibrium in the repeated game, as

depicted in Fig. 1. According to the corresponding strategy, each operator transmits in an

10



Fig. 1: Static spectrum sharing with equal and orthogonal partitions of spectrum in the cooperation
state.

exclusive half of the unlicensed spectrum and has no incentive to deviate.

B. The n-Operator Case

The preceding sharing schemes can be easily extended to the case of n operators. According

to Lemma 1, we have uio > uif . Define the maximum utility of operator i with traffic intensity λ

in one slot as U
i
(λ) = supp,p−i ui(p, p−i, λ). We denote the equal-sharing bandwidth as

w =
W

n
. (12)

Then choose T such that for every i and λ,

U
i
(λ)− πi (w, λ) < T

(
uio − uif

)
. (13)

Consider the following straightforward generalization of Profile 2.

Profile 3. Operator i uses pi in slot 0. In each subsequent slot, the system state evolution and

the strategy of operator i ∈ {1, . . . , n} depends on the state as follows:

I. Cooperation state: If the PSDs were (p1, . . . , pn) in the previous slot, then use pi in this

slot; otherwise, transit to the punishment state.

II. Punishment state: If any operator is detected to deviate from this profile in any state in the

previous slot, then use the maximum power over the entire spectrum for T slots and then

resume using pi and return to the cooperation state.

Lemma 5. Profile 3 is an SPNE for n operators as long as (3) and (13) hold and the future

discount factor δ is sufficiently close to 1.
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The proof is a simple generalization of the 2-operator case (Lemma 4) and is omitted.

Lemma 5 implies that the operators have no incentive to deviate from equal, orthogonal

spectrum sharing. It is not difficult to show that if the operators agree on an unequal allocation,

equilibria can also be achieved under Profile 3.

C. Entry Problem

The preceding discussions are based on the assumption that a given fixed number of operators

share the spectrum in a given area. We now study the situation where an arbitrary number of

strategic operators may arrive in a sequential manner. An operator must make an investment (e.g.,

on network infrastructure) before using any spectrum. For simplicity, we assume all operators

have identical PSD constraints, utility functions, investment costs (assumed to be c) and traffic

intensity distributions, so the superscript will be dropped in this subsection. The analysis can be

easily extended to the case of heterogeneous operators. If n operators have invested to share the

spectrum, the expected utility of each operator in one slot is

uf (n) = E

[
π

(
W

r(P )
r

(
P

P (n− 1) + 1

)
,Λt

)]
(14)

under full-spectrum sharing or is

uo(n) = E [π (wr(P ),Λt)] (15)

under equal and orthogonal sharing. The difference here is that an incumbent operator may

change its action upon investment by a new operator. It is natural for each incumbent operator

to choose between two actions, ‘to punish’ and ‘to cooperate’, when a new operator begins to

use any spectrum. If all operators use full spectrum to punish the new operator, then everyone

achieves the utility of uf (n + 1); if all cooperate with the new operator by using 1
n+1

of the

spectrum, then each achieves the utility of uo(n+ 1).

According to Lemma 1, we have uo(n) − uf (n) ≥ 0 for every n. It is easy to verify that

both uf (n) and uo(n) vanish as n → ∞. Therefore, if uf (1) ≥ c, there exists n∗ such that

uf (n
∗ + 1) < c and uf (n

∗) ≥ c. If uf (1) < c, we let n∗ = 0. Evidently, larger c results in

smaller n∗. Denote U(λ) as the maximum utility of an operator with traffic λ, which is achieved

if the operator uses the full-spectrum strategy while other operators make no transmissions. Let
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T (n) be such that for every λ,

U(λ)− π (w, λ) < T (n) (uo(n)− uf (n)) . (16)

Profile 4. The i-th operator to arrive does not invest if i > n∗. If i ≤ n∗, the operator invests

and performs the following in each slot thereafter:

• If there are n ≤ n∗ active operators, use Profile 3 for n operators.

• If there are more than n∗ operators, always use the full-spectrum strategy.

Theorem 1. Profile 4 is an SPNE, as long as (3) and (16) hold and the future discount factor δ

is sufficiently close to 1.

Proof: By using the one-shot deviation principle in [26, Theorem 4.2], it suffices to show

that if an operator deviates from Profile 4 in a single slot and then returns to conform to Profile 4,

the operator suffers a net loss. For incumbent operators, first consider the one-shot deviation in

the cooperation state for n ≤ n∗. Assuming an operator deviates at slot t in the cooperation state

and conforms afterwards, the punishment starts at slot t + 1. If there is no new entrant during

the punishment slots, then the utilities are identical to the case with a fixed number of operators.

Hence the deviating operator’s utility decreases according to Lemma 5. On the other hand, if

a new operator starts transmission before the punishment ends, the new operator transmits the

maximum power over the entire spectrum, further reducing the payoff of the deviator. The same

arguments apply to the case where multiple new operators arrive before returning to cooperation.

Moreover, the preceding analysis applies to the situation where the new operator i ≤ n∗ starts

transmission but deviates by using a different PSD than required by the current state.

Since the minimax utility for incumbent operator with traffic λ is πf (λ), deviation in the

punishment state only lengthens the punishment and postpones the larger utility. For new entrant i,

if i ≤ n∗ (resp., i > n∗), the total revenue is greater (resp., less) than the investment cost. Hence,

(one stage) deviation from Profile 4’s investment decision is not profitable. Therefore, Profile 4

is an SPNE.

According to Theorem 1, under the proposed profile, there will be at most n∗ active operators

in the market and all of operators obtain larger revenue than full-spectrum sharing. The proposed
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profile provides a way to share the spectrum efficiently when there are an indefinite number of

strategic operators, thereby mitigating the effects of the tragedy of the commons.

IV. DYNAMIC SHARING SCHEMES

The static sharing strategies discussed in Section III are in general not the most efficient under

dynamic traffic conditions. At any given time, some operators may have light traffic and hence

excess spectrum, while others may have heavy traffic and hence experience a spectrum shortage.

In this section, we allow the operators to trade spectrum and adapt their spectrum usage to the

traffic conditions in each slot. To be consistent with the previous section, we assume that when

no trade happens, operators agree to equal, orthogonal sharing. The main principles here apply

to general unequal sharing.

Spectrum trade can take place either with or without monetary payment. Spectrum sharing

without monetary payment has a few advantages in some aspects. In comparison with monetary

trading, sharing without monetary payment may suppress spectrum “trolls”–operators who serve

few or no customer, yet demand payment so as to not cause interference. Besides, sharing without

monetary payment avoids pricing, metering, and billing for spectrum usage, which require efforts

beyond the physical layer and can be costly. This study is hence restricted to spectrum trade

without monetary payment. The basic idea is that an operator in need of extra spectrum may

borrow from another operator but needs to return the spectrum in the future.

A sharing scheme can be either direct or indirect. With a direct scheme, all operators report

their traffic intensities, and each operator uses a designated strategy according to all reported

traffic intensities. With an indirect scheme, each operator may report other signals (i.e., desired

actions) instead of traffic intensities, and then determine the spectrum to utilize according to

one’s own traffic intensity and other operators reports. By the Revelation Principle of Bayesian

games [27, Theorem 2], for every Nash equilibrium of an indirect scheme, there exists a direct

scheme that is payoff-equivalent and in which truthful reporting is a Nash equilibrium. Thus, in

this paper we focus on direct schemes where operators report their traffic intensities.

The spectrum sharing problem with dynamic traffic is formulated as a repeated game with

private information and communication. First, consider the stage game over a single slot. At the

beginning of the game, the traffic intensity of operator i is randomly generated. Each operator
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only knows its own traffic level. The operators report their traffic intensities (either truthfully or

not) through a common collaborative channel at the beginning of the slot. After the operators

receive all reported traffic intensities, each operator chooses a PSD for transmission. The one-shot

utility for operator i is defined the same as (4). An operator’s strategy consists of its reported

traffic intensity and its PSD for transmission over the slot. In analogy with Lemma 2, it is easy

to show that the Nash equilibrium of the stage game is full-spectrum sharing.

In practice, the stage game with incomplete information is repeated infinitely. In each slot, the

operators adjust their PSDs based on the reported traffic intensities and the history of realized

actions. The strategy space of an operator is the set of complete plans of actions that define what

traffic intensity the operator will report and what PSD the operator will use in every possible

event, and the payoff is the expected total revenue in (1).

The preceding game is an infinite game with incomplete information, due to possible untruthful

reporting. We shall show that the proposed strategy profiles are perfect Bayesian equilibria.

Perfect Bayesian equilibrium is a stronger notion than SPNE because in addition to being

subgame perfect, the equilibrium must be such that all operators expect other operators to

continue to play according to their respective equilibrium strategies even after some operators

deviate from the equilibrium path [26]. In other words, the strategies must be credible in every

step of the continuation game. Fudenberg and Tirole [28] provided the leading formal definition

of perfect Bayesian equilibrium, which applies to finite multi-stage games with observed actions

and independent private information. Several variants of perfect Bayesian equilibrium for finite

games ensued [29]–[31]. For infinite games, perfect Bayesian equilibrium was defined in [32]

by generalizing the reasonableness condition in finite games with observed actions in [28].

In search of an efficient perfect Bayesian equilibrium, we seek a direct scheme such that it is in

the best interest of every operator to truthfully report their traffic for spectrum borrowing/lending.

Denote the net spectrum balance of operator i at the beginning of slot t as bit. The assumption

bit > 0 (resp., bit < 0) means that by the end of slot t − 1 operator i has lent more (resp., less)

spectrum than borrowed. For simplicity, we set a balance constraint as |bit| ≤ b for all i and t to

preclude infinite borrowing (e.g., in the manner of a Ponzi scheme).

Throughout this section, we assume that in each slot, the traffic intensity of operator i is either
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high (Λi
t = 1) or low (Λi

t = 0). It is further assumed that (Λi
t)i,t are independent and identically

distributed for every i. The two-level traffic assumption is meaningful in practice where the

sharing protocol needs to be made simple. The main principles developed here can be extended

to more general traffic assumptions.

A. The Two-Operator Case

We begin with the two-operator case. Let ∆ ∈ (0, w] be the amount of spectrum that the

operator with high traffic intensity borrows from the operator with low traffic intensity in one

slot. Consider the following strategy profile.

Profile 5. The strategies of the two operators mirror each other. Let the system start from the

cooperation state with beginning balances b1
0 = b2

0 = 0. Operator 1’s strategy in slot t depends

on the state as follows:

I. Cooperation state:

a. Reveal its own traffic intensity λ1
t , and learn λ2

t from operator 2.

b. If λ1
t > λ2

t and b1
t − ∆ >= −b̄, then use w + ∆ Hz for transmission and reduce the

balance to b1
t+1 = b1

t − ∆; if λ1
t < λ2

t and b1
t + ∆ <= b̄, then use w − ∆ Hz for

transmission and increase the balance to b1
t+1 = b1

t + ∆; otherwise, let b1
t+1 = b1

t and

use w Hz for transmission.

II. Punishment state: If any operator is detected to deviate from this profile in any state in

the previous slot, then use the maximum power over the entire spectrum for T slots and

then return to the cooperation state. The balances remain unchanged during the punishment

state.

Because spectrum trade occurs only if there is sufficient balance, the balance bit remains within

[−b, b] at all times. Without loss of generality, let b = k∆ where k is a positive integer. There are

two types of deviations: undetectable deviation, i.e., lying about one’s own traffic, and detectable

deviation, i.e., using a different amount of spectrum than dictated by the profile.

We shall show that Profile 5 constitutes a perfect Bayesian equilibrium as defined in [32].

An operator’s information set is a set that establishes all the possible moves that could have

taken place in the game so far, given what the operator has observed [26]. If the game has
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perfect information, every information set contains only one element, namely the point actually

reached at that stage of the game. Otherwise, it is the case that some operators cannot be

exactly sure about some unobserved variables in the game so far. Denote H as the collection of

all information sets. A perfect Bayesian equilibrium includes a strategy profile which describe

actions at every information set, and a system of beliefs on strategy profiles which captures the

operator’s conjecture about both how each information set is reached and what will happen from

the information set. The system of beliefs µµµ is defined as the collection of beliefs µ(h), for every

h ∈ H, where the belief µ(h) is a distribution on pure strategy profiles with support on the set

of pure strategy profiles that reach information set h.

Provided that Profile 5 is used, the proper system of beliefs µµµ is constructed as follows: The

beliefs at an information set are concentrated on the strategy profiles with the actions that have

been observed and the prescribed actions at information sets that have not yet been observed. In

particular, the belief on the profiles with the prescribed actions at unobserved information sets

must be consistent with traffic intensity distribution.

Theorem 2. There exist ∆ > 0 and T such that Profile 5 along with the system of beliefs µµµ

is a perfect Bayesian equilibrium, as long as (3), (5) and (6) hold, P(Λ1
t = 0,Λ2

t = 1) > 0,

P(Λ1
t = 1,Λ2

t = 0) > 0, and the future discount factor δ is sufficiently close to 1.

To prove Theorem 2, we shall verify the three sufficient conditions for achieving

perfect Bayesian equilibria [32], namely, plain consistency (µµµ must follow a consistent

conditional-probability updating), sequential rationality (at each information set, the operator

cannot gain by deviating in one slot and thereafter conforming), and that µµµ must conform to

Profile 5. We relegate the detailed proof of Theorem 2 to Appendix A.

B. The n-Operator Case

The sharing scheme introduced in Section IV-A can be easily extended to the case of multiple

operators. A trading policy needs to be set up, so that the borrowers know who the respective

lenders are. Assume operators have perfect recall of trading history. This implies that each

operator knows the current balances of all operators.

We will discuss a scheme for n operators sharing W Hz unlicensed spectrum. Denote the set
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of operators who report a high traffic intensity and have balance no less than −b+ ∆ as A1, and

the set of operators who report a low traffic intensity and have balance no greater than b−∆ as

A0. The trading policy Q is that the operator with the i-th largest balance in A1 borrows ∆ Hz

from the operator with the i-th smallest balance in A0, for any i ≤ min{|A1|, |A0|}. This pairing

and subsequent trade is one possible scheme. In general, we can map the current balances and

reported traffic conditions to a desired spectrum allocation, where the key findings remain the

same.

Profile 6. Let the system start from the cooperation state with bi0 = 0, for all i. Operator i’s

strategy in slot t depends on the state as follows:

I. Cooperation state:

a. Reveal the traffic intensity λit and learn traffic intensities from other operators;

b. If chosen to trade by the trading policyQ and λit = 1, then use w+∆ Hz for transmission

and let bit+1 = bit−∆; if chosen to trade and λit = 0, then use w−∆ Hz for transmission

and let bit+1 = bit + ∆; if not chosen, let bit+1 = bit and use w Hz for transmission.

II. Punishment state: If any operator is detected to deviate from this profile in any state in

the previous slot, then use the maximum power over the entire spectrum for T slots and

then return to the cooperation state. The balances remain unchanged during the punishment

state.

Provided that Profile 6 is used, we construct the proper system of beliefs µµµ in the similar way

as the two-operator case.

Theorem 3. There exist ∆ > 0 and T such that Profile 6 along with the system of beliefs µµµ is

a perfect Bayesian equilibrium, as long as (3), (5) and (6) hold, the future discount factor δ is

sufficiently close to 1 and for every i, there exists j such that P(Λi
t > Λj

t) > 0.

Theorem 3 is proved in Appendix B.

In this section, we have shown the existence of perfect Bayesian equilibria with dynamic

spectrum sharing. Profiles 5 and 6 constitute perfect Bayesian equilibria with truthful reporting

of traffic intensities when the future discount is sufficiently close to 1. Dynamic sharing schemes

can achieve substantial improvement in spectral efficiency in comparison with static sharing
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Fig. 2: The maximum number of active operators for different investment costs in the entry
game.

schemes.

V. NUMERICAL RESULTS

In this section, some numerical results are presented for the proposed schemes. Let

r(γ) = log2(1 + γ), δ = 0.99, and W = 100 MHz.

First we show some numerical results for the entry game. Assume πi(x, λ) = λr(P )x, P = 100

(i.e., 20 dB), and EΛi
t = 1

2
for every t and i. Here the maximum number of active operators n∗

is the integer that satisfies

50 log2

(
1 +

100

100(n∗ − 1) + 1

)
≥ c ≥ 50 log2

(
1 +

100

100n∗ + 1

)
. (17)

Fig. 2 shows the relationship between n∗ and the investment cost (c). The trend in Fig. 2 appears

to be approximately exponential. More operators are willing to invest as the cost goes down.

Evidently, if the entry cost is 0, there will be infinitely many operators, who all receive zero

revenue.

Next, we present numerical results for the proposed static and dynamic schemes. We consider

two operators and assume that the traffic intensity of an operator is either high (Λi
t = 1) or

low (Λi
t = 0). Let πi(x, λ) = (24λ + 1)0.5(r(P )x)0.9, where πi(·, ·) is a simple example of

the Cobb-Douglas production function, which is widely used in economics to represent the
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Fig. 4: Improvement in total revenue by the proposed dynamic sharing for different balance
limits: log2(1 + P ) = 8.

technological relationship between the amount of output and the amounts of multiple inputs

(traffic and spectrum here) [33]. Assume that the traffic conditions of the two operators are

independent and the probabilities of low traffic intensity for the two operators are 0.75 and 0.5,

respectively. The expected total revenues from full-spectrum sharing for the operators are

2
(
w log2

(
1 + P

P+1

))0.9 and 3
(
w log2

(
1 + P

P+1

))0.9; The expected total revenues in the proposed

static scheme (Profile 2) for the two operators are 2 (w log2 (1 + P ))0.9 and 3 (w log2 (1 + P ))0.9.
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In the proposed dynamic scheme (Profile 5), ∆ is chosen to maximize the sum revenue of both

operators and let Profile 5 be a perfect Bayesian equilibrium.

We compare the proposed static and dynamic schemes with full-spectrum sharing in Fig. 3.

The proposed sharing schemes outperform full-spectrum sharing dramatically. As γo goes up,

the gain of the proposed sharing schemes increases. The proposed static scheme is better than

full-spectrum sharing when P > 2.1 dB, and the proposed dynamic scheme offers additional gain

over the static sharing. When P = 30 dB, the proposed dynamic scheme has 400% improvement

over full-spectrum sharing and 16% improvement over the proposed static scheme. Fig. 4 shows

the improvement from the proposed dynamic scheme over full-spread sharing under different

balance limits. As b goes up, the gain approaches 500% when log2(1 + P ) = 8. Even if b is

small, the proposed dynamic scheme still provides a significant improvement.

VI. CONCLUSION

In this paper, we have studied unlicensed spectrum sharing by multiple strategic operators in

a game theoretic framework. A static sharing scheme was first proposed for operators to share

the spectrum in a given area and was shown to reach a subgame perfect Nash equilibrium. It

has also been shown that the number of strategic operators willing to invest is limited due to

entry barriers and externalities. A dynamic scheme for trading bandwidth has also been proposed,

where operators with low traffic loads lend spectrum to those with high traffic loads, subject to a

cumulative balance constraint on loaned bandwidth, which induces truthful reporting. Numerical

results show that the proposed schemes can provide a substantial increase in spectral efficiency

relative to full (uncoordinated) spectrum sharing. It is worth noting that a credible punishment

scheme is in general necessary to deter deviation from the cooperation state.
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APPENDIX A

PROOF OF THEOREM 2

According to [32], Profile 5 along with the system of beliefs µµµ is a perfect Bayesian equilibrium

if Profile 5 and µµµ satisfy the plain consistency conditions, the conditions that the operators’ beliefs

at the beginning of the game conform to the behavior strategy of Profile 5, and that the strategy

profile is sequentially rational given µµµ. From the definition of µµµ, the belief at the beginning

of the game constructed based on Profile 5, so it conforms to the behavior strategy directly.

According to operator i’s belief at its information set h ∈ H, operator i believes that the actions

at different information sets are independent. Also, from the definition of µµµ, the strategy at any

unobserved or off-path information set does not depend on the observations. Therefore, it is

straightforward that the proposed system of beliefs µµµ satisfies the conditions of plain consistency

in [32, Definition 7]. Therefore, to prove this theorem, it is sufficient to show that there exist

∆ > 0, and T such that Profile 5 is sequentially rational given µµµ, as long as the conditions in

the theorem hold.

This notion of sequential rationality is defined in terms of what is commonly called “one-shot

deviations”, meaning that we evaluate operator i’s rationality at a given information set by looking

at alternative choices only at this information set. In particular, the strategy profile is sequentially

rational given µµµ if for every h ∈ H, provided that information set h is reached and operator i

moves at h, any one-shot deviation at h results in no gain for operator i given µµµ. Because the total

revenue is the sum of utilities in all slots, and the belief at each information set is concentrated

on the strategy profiles described in Profile 5, it is equivalent to show that any one-shot deviation

of Profile 5 results in no gain if it happens on the path of the profile. The remainder of the proof

consists of two parts, which address undetectable and detectable deviations, respectively.

1) In this part, we discuss the one-shot deviation of reporting a false traffic intensity, which is

not directly detectable. After the deviation, both operators conform to Profile 5. The subsequent

actions of both operators are functions of the balance and the random traffic conditions. The

key to the proof is to recognize that, because it is the most beneficial for an operator to borrow

(resp., lend) when spectrum is most (resp., least) needed, an operator cannot gain by unilaterally

lying about its own traffic.
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Without loss of generality, suppose operator 1 lies about its traffic intensity, whereas operator 2

reveals its true traffic intensity. Throughout the proof, we analyze the case where operator 1

deviates, so the superscript will be dropped when it is for operator 1 hereafter. The traffic loads

(λt, λ
2
t ) have four possible realizations: (0,0), (0,1), (1,0), and (1,1). We discuss the case of

λt = λ2
t = 0 in detail. The other three cases are similar and hence are omitted. If bt ≥ −b + ∆

and operator 1 lies to report high traffic, then operator 1 borrows spectrum to use bandwidth

w+∆; otherwise, operator 1 uses bandwidth w. Hence, when operator 1 lies to report high traffic

in slot t, operator 1 may benefit by using ∆ more bandwidth. The one-slot gain of operator 1

by lying is

G =


π(w + ∆, 0)− π(w, 0), if bt ≥ −b+ ∆

0, otherwise.
(18)

We develop a detailed proof with full justification (especially of the change of limits). If

operator 1 does not use more spectrum from lying, i.e., G = 0, the deviating case is identical

to the truth-telling case, so operator 1 does not gain by lying in this case. Hence we assume

otherwise subsequently. If operator 1 uses more spectrum by lying, then due to the balance

constraint, there will be one slot in the future, denoted as t∗, when operator 1 either borrows ∆

less (because it first hits the minimum balance) or lends ∆ more (because it first hits the maximum

balance) in comparison with the truth-telling case. The actions after slot t∗ are the same as in

the truth-telling case.

Let pτ (resp., qτ ) denote the probability that the first time operator 1 borrows less (resp., lends

more) than the truth-telling case is τ slots after deviation. Clearly,
∑∞

τ=1(pτ + qτ ) = 1. Note that

pτ and qτ implicitly depend on the balance at the time of deviation. Since P(Λt = 0,Λ2
t = 1) > 0

and P(Λt = 1,Λ2
t = 0) > 0, we have

∑∞
τ=1 pτ > 0 and

∑∞
τ=1 qτ > 0. Define the expected loss

at the slot with τ slots after deviation as

mτ = pτ (π(w + ∆, 1)− π(w, 1)) + qτ (π(w, 0)− π (w −∆, 0)) . (19)

By assumption, π(·, ·) is increasing in the first argument, so mτ > 0. The total expected loss in
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the future is

L =
∞∑
τ=1

δτmτ . (20)

We show that L > G if δ is sufficiently close to 1, i.e., the loss exceeds the one-slot gain.

By (6) and the continuity of π,

π(w, 0)− π(w −∆, 0) < π(w, 1)− π(w −∆, 1) (21)

= π(w + ∆, 1)− π(w, 1) + o(∆). (22)

Hence there must exist ∆ > 0 which satisfies

π(w, 0)− π(w −∆, 0) < π(w + ∆, 1)− π(w, 1). (23)

Then,
∑∞

τ=1mτ is upper bounded, since from (19) and (23)

∞∑
τ=1

mτ <
∞∑
τ=1

(pτ + qτ ) (π(w + ∆, 1)− π(w, 1)) (24)

= π(w + ∆, 1)− π(w, 1). (25)

Since mτ ≥ 0,
∑l

τ=1mτ is nondecreasing in l. Due to monotonicity and boundedness,
∑l

τ=1 mτ

converges as l goes to infinity. Also, |δτmτ | ≤ mτ since δ ∈ [0, 1). According to [34,

Theorem 7.10],
∑l

τ=1 δ
τmτ converges uniformly. Also, by [34, Theorem 7.11], we have

lim
δ→1

lim
l→∞

l∑
τ=1

δτmτ = lim
l→∞

lim
δ→1

l∑
τ=1

δτmτ (26)

= lim
l→∞

l∑
τ=1

mτ . (27)

Thus, by (19), (20), (23) and (27),

lim
δ→1

L=
∞∑
τ=1

mτ (28)

>
∞∑
τ=1

(pτ + qτ ) (π(w, 0)− π (w −∆, 0)) (29)

= π(w, 0)− π (w −∆, 0) . (30)
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Because L increases with δ, there exists δ0, such that for every δ > δ0,

L > π(w, 0)− π (w −∆, 0) . (31)

Due to (5), (18) and (31), we have L ≥ G. Therefore, if both operators have low traffic intensities,

then operator 1 suffers a net loss in the revenue by reporting high traffic intensity. Using similar

arguments, one can show that an operator always suffers a net loss by unilaterally lying in the

traffic under all traffic conditions.

2) In this part, we consider detectable one-shot deviation, which will trigger the punishment

state. We shall show that when the duration of punishment is sufficiently long, it wipes out more

than the gain from one-shot deviation.

Denote the maximum utility of operator 1 with traffic λ in one slot as U(λ) given by (10). Let

the expected total revenue of operator 1 starting from balance b without deviation be denoted as

V (b). Because it is a repeated game where the only memory in the system is the balance, V (b)

does not depend on time.

Consider a detectable one-shot deviation, where operator 1 deviates in the cooperation state

in slot t and then conforms thereafter. Operator 1 receives at most U(λt) in the slot when

operator 1 deviates, experiences the punishment for T slots and achieves V (bt+1) thereafter. The

total revenue of operator 1 from deviation is upper-bounded by

Vdev(bt) = U(λt) +
t+T∑
τ=t+1

δτ−tπf (λτ ) + δT+1V (bt+1). (32)

If each operator conforms to the profile, operator 1 obtains

V (bt) = π(wt, λt) +
t+T∑
τ=t+1

δτ−tπ(wτ , λτ ) + δT+1V (bt+T+1) (33)

where wt is the bandwidth of operator 1 in slot t when both operators conform. The gain by the

deviation is less than

Vdev(bt)− V (bt) = U(λt)− π(wt, λt) + δT+1 (V (bt+1)− V (bt+T+1))

−
t+T∑
τ=t+1

δτ−t(π(wτ , λτ )− πf (λτ )).
(34)
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We first show that U(λt) − π(wt, λt) and δT+1 (V (bt+1)− V (bt+T+1)) in (34) are upper

bounded. Since the utility function is finite, U(λt) − π(wt, λt) is upper bounded, assuming the

upper-bound is z1. If both operators conform, operator 1’s utilities starting from balance b and

b+ ∆ are only different at one slot in the future, denoted as t∗. Thus,

V (b+ ∆)− V (b)

=


δt
∗
(π(w + ∆, 1)− π(w, 1)), if it first hits the minimum balance

δt
∗
(π(w, 0)− π(w −∆, 0)), if it first hits the maximum balance.

(35)

From (23), (35) and the fact that δ < 1,

V (b+ ∆)− V (b) ≤ π(w + ∆, 1)− π(w, 1). (36)

From (36) and the fact that k = b
∆

and δ < 1,

δT+1 (V (bt+1)− V (bt+T+1)) ≤ V (bt+1)− V (bt+T+1) (37)

≤ V (b)− V (−b) (38)

=
2k∑
m=1

(
V (−b+m ·∆)− V (−b+ (m− 1) ·∆)

)
(39)

≤ 2k(π(w + ∆, 1)− π(w, 1)). (40)

Thus, δT+1 (V (bt+1)− V (bt+T+1)) is upper bundered by z2 = 2k(π(w + ∆, 1)− π(w, 1)).

In the following, we show that
∑t+T

τ=t+1 δ
τ−t(π(wτ , λτ ) − πf (λτ )) in (34) can be arbitrarily

large for sufficiently large T and δ. By the assumption that π(x, λ) is supermodular, for any

ξ > λ,

π(w, ξ)− πf (ξ) > π(w, λ)− πf (λ). (41)
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According to (5) and (41), we have

π(w + ∆, 1)− πf (1) > π(w, 1)− πf (1) (42)

> π(w, 0)− πf (0) (43)

> π(w −∆, 0)− πf (0). (44)

From Lemma 1, there exist ∆ > 0 and z3 > 0 such that the right side of (44) is bigger

than z3. Since π(wτ , λτ ) takes value from {π(w + ∆, 1), π(w, 1), π(w, 0), π(w − ∆, 0)} when

both operators conform,

π(wτ , λτ )− πf (λτ ) ≥ z3. (45)

There exists T such that z1 + z2 − z3T < 0, i.e., the loss by punishment is larger than the gain

by one-shot deviation.

Therefore, if T is large enough and δ is sufficiently close to 1, the detectable one-shot deviation

in the cooperation state results in a lower revenue.

If operator 1 deviates in the punishment state in slot t, operator 1 obtains at most πf (λt) in

the slot when operator 1 deviates, since πf (λt) is the min-max utility. Then the deviation only

lengthens the punishment and postpones the larger utility in coordination state. Therefore, any

detectable one-shot deviation is undesired.

To summarize, if δ is sufficiently close to 1, any one-shot deviation by operator 1 is

non-profitable. The same conclusion applies to operator 2 by symmetry. Therefore, there exist

∆ > 0 and T , such that if δ is sufficiently close to 1, one-shot deviation on the path of the

profile results in no gain. Profile 5 is sequentially rational given µµµ. Thus, Profile 5 along with

the system of beliefs µµµ is perfect Bayesian equilibrium.

APPENDIX B

PROOF OF THEOREM 3

With the same arguments as in the proof of Theorem 2, the belief at the initial information

set conforms to the behavior strategy of Profile 6 for each operator and the proposed system of

belief µµµ satisfies the conditions of plain consistency in [32, Definition 7].
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In order to prove the theorem, it is sufficient to show that there exist ∆ > 0, and T such that

Profile 6 is sequentially rational given µµµ, as long as the conditions in Theorem 3 hold. Similarly,

it is equivalent to show that any one-shot deviation on the path of Profile 6 results in no gain.

Both undetectable and detectable deviations need to be addressed. The proof for the case of

detectable deviation is essentially the same as that in Theorem 2. Hence, here we only discuss

the one-shot deviation of reporting a false traffic intensity, which is undetectable.

For the 2-operator case, an operator can access at most ∆ more spectrum in one slot by lying

in comparison with truthful reporting. However, for the n-operator case, it is possible for an

operator to be chosen for trade no matter what the operator reports. If an operator is chosen to

borrow (lend), the operator uses ∆ Hz more (less) spectrum. Thus, an operator can access up to

2∆ Hz more spectrum in one slot by lying.

Without loss of generality, we analyze the case where operator 1 deviates, so the superscript

will be dropped when it is for operator 1. Consider the event where the traffic intensity of

operator 1 is low. Denote the event that operator 1 would be chosen as a borrower if it lies to

report a high traffic intensity by F . Denote the event that operator 1 would be chosen as a lender

if it tells the truth by E. When operator 1 lies to report a high traffic intensity, operator 1 may

benefit by using more bandwidth in comparison with the truth-telling case. The gain by lying to

report high traffic intensity is expressed as follows depending on the sub-events:

G =



π(w + ∆, 0)− π(w, 0), if F ∩ E

π(w, 0)− π (w −∆, 0) , if F ∩ E

π(w + ∆, 0)− π(w −∆, 0), if F ∩ E

0, if F ∩ E.

(46)

All operators conform to Profile 6 after the one-shot deviation. Similar as in the proof of

Theorem 2, due to the balance constraint, if operator 1 uses more bandwidth by lying, operator 1

either borrows less (because it first hits the minimum balance) or lends more (because it first

hits the maximum balance) in the future in comparison with the truth-telling case.

It suffices to show that an operator cannot gain by lying about its own traffic for different cases

in (46). The proofs of the cases of F ∩E and F ∩E are similar to that of Theorem 2. In the case
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of F ∩E, there is no change in spectrum use and revenue by lying. If F ∩E occurs, operator 1

uses 2∆ Hz more spectrum when the deviation occurs. According to Profile 6, operator 1 will

use ∆ Hz less spectrum in two slots in the future. Using the analogous argument as in (31)

in Theorem 2, we can show that in each of the two slots when the loss occurs, the expected

one-shot loss is greater than π(w, 0)−π (w −∆, 0). Thus, the expected total loss of the one-shot

deviation is greater than

2(π(w, 0)− π (w −∆, 0)). (47)

From (5),

2(π(w, 0)− π (w −∆, 0)) > π(w + ∆, 0)− π(w, 0) + π(w, 0)− π (w −∆, 0) (48)

> π(w + ∆, 0)− π (w −∆, 0) . (49)

That is, the expected total loss is greater than the one-shot gain when F ∩ E happens. Thus, if

operator 1 has a low traffic intensity, to report a high traffic intensity brings no gain.

The case where the traffic intensity of operator 1 is high can be treated similarly, and hence is

omitted. Thus, if δ is sufficiently close to 1, any one-shot undetectable deviation by operator 1

is non-profitable.

To summarize, one-shot deviation on the path of the profile in no gain. Profile 6 is sequentially

rational given µµµ. Therefore, Profile 6 along with the system of beliefs µµµ is a perfect Bayesian

equilibrium.
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