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Abstract—The existing dictionary learning methods mostly
focus on 1D signals, leading to the disadvantage of incurring
overload of memory and computation if the size of training sam-
ples is large enough. Recently, 2D dictionary learning paradigm
has been validated to save massive memory usage, especially for
large-scale problems.

To address this issue, we propose novel 2D dictionary learning
algorithms based on tensors in this paper. Our learning problem
is efficiently solved by CANDECOMP/PARAFAC (CP) decompo-
sition. In addition, our algorithms guarantee sparsity constraint,
which makes that sparse representation of the learned dictionary
is equivalent to the ground truth. Experimental results confirm
the effectness of our methods.

Keywords—CANDECOMP/PARAFAC (CP) decomposition, Dic-
tionary learning, Sparse representation, Tensor

I. INTRODUCTION

Sparse representation (SR) has attracted much attention in
the literature due to its broad applications. SR describes a
signal of interest by few features in some analytic transformed
domain or learned dictionary; the latter is more appropriate for
applications with specific groups of signals, like classification,
denoising, and inpainting. The traditional (1D) model of dic-
tionary learning is expressed as Y = DX , where Y ∈ R

m×l

is the collected training data with yi (i’th column of Y ) being
a 1D training sample, D ∈ R

m×n is the dictionary we want to
learn, and X ∈ R

n×l is the corresponding sparse coefficient
matrix. In the 1D model, m is the length of training samples, l
is the number of training data, and n is the number of atoms.
Let di be the i’th atom of D. If n > m, D is called an
overcomplete dictionary. If training samples are not 1D, they
are reshaped into 1D vectors.

In the literature, K-SVD [1] and FDDL [2] focus on how to
learn overcomplete dictionary. However, their limitation is that
m cannot be large because of limited memory storage and
limited computational resources. This means that the dictionary
only captures local/insufficient or low-frequency information
that violate the need of many applications in requiring global
structure or detailed information.

Recently, Wang et al. [3] and Hawe et al. [4] extend dictio-
nary learning to 2D case and propose 2D SSM and SeDiL,
respectively. The advantage of 2D dictionary learning is to
save massive memory usage (e.g., saving 98% memory usage
with m = 64 and n = 256) based on the separable property
of the dictionary D, expressed as D = D2 ⊗ D1, where

⊗ is Kronecker product [5] and D1,D2 ∈ R
√
m×√

n. Under
Kronecker structure, the sizes of D1 and D2 are far smaller
than that of D and, thus, both can be learned in a separable
manner by popular K-SVD with low memory usage.

Technically, 2D SSM [3] cannot enforce sparsity constraint
and, thus, cannot guarantee that the atoms of learned dictionary
are the same with those of original dictionary. 2D SSM also
fails to learn both D1 and D2 simultaneously. In addition,
our method and SeDiL [4] exhibit different styles of learning
dictionary but SeDiL requires tuning several parameters to bal-
ance different constraints. We will further conduct performance
comparison among the three methods in Sec. IV.

In this paper, we propose two novel 2D dictionary algorithms
with and without the use of separable structure, respectively.
Our approaches are based on CANDECOMP/ PARAFAC (CP)
decomposition [6][7], which is a generalization of singular
value decomposition (SVD) from 2D matrices to tensors. For
non-separable learning, CP decomposition is directly applied
for learning atoms, while for separable learning, the coherence
between different atoms should be additionally considered
by modifying CP decomposition via Regularized Alternating
Least Square (RALS) [8].

II. PRELIMINARY

Notations and tensor decomposition will be introduced here
to ease descriptions later. ‖ · ‖0 denotes `0-norm. Bold font is

used for representing matrix or vector. Y ∈ R
√
m×√

m×l and

X ∈ R
√
n×√

n×l denote 3D matrices. These multi-dimensional
matrices are often called tensors. Y T

i is the transpose of Yi,

where Yi ∈ R
√
m×√

m is the i’th training sample in the training

set Y for 1 ≤ i ≤ l. dj
i is the i’th column of Dj . dji,k is the

k’th entry of d
j
i (these rules are also applied to Xi and Yi).

“◦,” “�,” and “⊗”, respectively, denote outer product, Khatri-
Rao product, and Kronecker product.

Y(k) is called mode-k (dimension-k) unfolding matrix, where

Y(1) ∈ R
√
m×√

ml is defined by arranging all the mode-
1 (dimension-1) vectors as columns of a matrix. Similarly,

Y(2) ∈ R
√
m×√

ml and Y(3) ∈ R
l×m. In addition, ⊗k is called

k-mode product of tensor. For instance, Y ⊗k D1 = D1Y(k).

CANDECOMP/PARAFAC (CP) decomposition [6][7][9] is a
tool for decomposing a tensor A ∈ R

n1×n2×n3 into the sum

of R rank-one tensors as: A ≈
∑R

i=1 ui ◦ vi ◦ wi, where R
is the rank of A, ui ∈ R

n1 ,vi ∈ R
n2 , and wi ∈ R

n3 .
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(a) (b)
Fig. 1. 2D sparse dictionary learning. (a) Non-separable model: Yi is a linear combination of 2D signals, αj,iBj (1 ≤ j ≤ n), where Bj is further decomposed

into αj,id
1
j ◦ d

2
j . Black and white blocks indicate zero and non-zero entries, respectively. (b) Separable model: Yi is decomposed into D1XiD

T
2 .

III. PROPOSED ALGORITHMS

We describe and compare the proposed separable 2D
dictionary learning model and its non-separable version.

A. Non-Separable 2D Dictionary Learning

A dictionary D is said to be non-separable if it cannot be
represented as D = (D2 ⊗D1). On the contrary, similar to
1D case, we consider that Yi is a linear combination of 2D

bases as
∑

j

αj,iBj (1 ≤ j ≤ n), where Bj ∈ R
√
m×√

m can

be approximated by rank-one matrix, namely Bj ' d1
j ◦ d

2
j

(see Fig. 1(a)), and αj,i is the corresponding sparse coefficient.
Note that Bj ' d1

j ◦ d
2
j is the necessary assumption for non-

separable 2D dictionary learning. If the assumption doesn’t
hold, it means that Bj can be decomposed into the sum of
more than one rank-one matrices and the number of non-zero
coefficient increases, leading to the result that Y is not sparse
in non-separable 2D dictionary.

Now, the objective function for 2D dictionary learning can
be formulated as:

δ = min
α̂j ,d̂

1

j
,d̂2

j

‖Y −
∑

j

d̂
1
j ◦ d̂

2
j ◦ α̂j‖, (1)

where α̂j = [α̂j,1, α̂j,2, ..., α̂j,l], as shown in Fig. 1(a). ‖ · ‖
is analogous to Frobenius norm, which calculates square root
of sum of square of all entries. If sparsity constraint is not
enforced (α̂j’s are not sparse), Eq. (1) can simply be solved
by CP decomposition. To ensure α̂j’s are sparse, we present
a two-step strategy like K-SVD [1].

Step 1: Compute sparse representation α̂j’s with the given

d̂1

j ’s and d̂2

j ’s by 2D OMP [10] that originally requires
separable dictionaries. However, it can be modified to fit non-

separable structure since it does not require D̂1 and D̂2 but

only B̂i,j generated from d̂1

i and d̂2

j is needed (see [10]).

Step 2: Given α̂j , update d̂1

j and d̂2

j . First, Eq. (1) can be
rewritten as:

‖Y −
∑

j

d̂
1

j ◦ d̂
2

j ◦ α̂j‖ = ‖Y −
∑

t 6=j

d̂
1
t ◦ d̂

2
t ◦ α̂t − d̂

1
j ◦ d̂

2
j ◦ α̂j‖

= ‖Ej − d̂
1
j ◦ d̂

2
j ◦ α̂j‖,

(2)

where Ej = Y −
∑

t 6=j

d̂1
t ◦ d̂

2
t ◦ α̂t. To ensure the sparsity of

α̂j’s, Ω(Ej) like the definition in K-SVD is a function used
to delete the i’th training sample of Ej when αj,i = 0. Let

Êj = Ω(Ej), where Êj ∈ R
√
m×√

m×‖α̂j‖0 only contains
training samples with non-zero coefficients. By employing CP

Algorithm 1 : Non-Separable 2D Dictionary Learning.

Input: Y ; Output: d̂1
j ’s, d̂2

j ’s;

01. Initialize d̂1
j , d̂2

j ∼ N(0, 1
m
), k = 0, δk = 0.

02. Do

03. Solve α̂j’s given d1
j ’s, d2

j ’s by 2D OMP;

04. for j = 1 to n
05. Compute Ej ;
06. Do CP decomposition of Ω(Ej) with R = 1;

07. and Update d̂1
j , d̂2

j , α̂j ;

08. end for

09. δk+1 = ‖Y −
n
∑

j=1

d̂1
j ◦ d̂

2
j ◦ α̂j‖, k = k + 1;

10. While (δk+1/δk > 1);

N(0, 1
m
) denotes a normal distribution.

decomposition on Êj with R = 1, we can find a solution, d̂1
j ,

d̂2
j , and update α̂j , that can minimize Eq. (2).

The proposed algorithm depicted in Algorithm 1 repeats
these two steps until δ in Eq. (1) cannot be further reduced.

B. Separable 2D Dictionary Learning

In separable dictionary learning model, Yi is decomposed
into D1XiD

T
2 , where Xi is sparse, as illustrated in Fig. 1(b).

Instead of alternatively fixing D1 or D2 to simplify this
problem, as done in 2D SSM [3], our proposed algorithm
aims to optimize D1 and D2 simultaneously. To this end, the
objective function is formulated as:

δ = min
X̂ ,D̂1,D̂2

‖Y − X̂ ⊗1 D̂1 ⊗2 D̂2‖, (3)

where X̂ ∈ R
√
n×√

n×l, D̂1 ∈ R
√
m×√

n, and D̂2 ∈
R

√
m×√

n. Y can be formulated and summarized as:

Y = (d1
j ◦ d

2
k ◦ xj,k) +

n
∑

a 6=j

(d1
j ◦ d

2
a ◦ xj,a)

+

n
∑

b 6=k

(d1
b ◦ d

2
k ◦ xb,k) +

n
∑

a 6=j

n
∑

b 6=k

(d1
a ◦ d

2
b ◦ xa,b),

(4)

where xj,k = [x1
j,k, x

2
j,k, ..., x

l
j,k]

T , to solve Eq. (3). Moreover,

let Ej,k = Y−
∑n

a 6=j

∑n

b 6=k(d
1
a ◦d

2
b ◦xa,b) = d1

j ◦d
2
k ◦xj,k+

∑n

a 6=j(d
1
j ◦ d

2
a ◦ xj,a) +

∑n

b6=k(d
1
b ◦ d

2
k ◦ xb,k).

Compared with non-separable learning model in Eq. (2),
d1
j , d2

k, and xj,k cannot be solved by directly performing

CP decomposition on Ej,k since the right-hand side does not
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Algorithm 2 : Separable 2D Dictionary Learning

Input: Y ; Output: D̂1, D̂2;

01. Initialize D̂1, D̂2 ∼ N(0, 1
m
), k = 0.

02. Do

03. Solve X̂ ’s given D̂1, D̂2 by 2D OMP;
04. for j = 1 to n
05. Compute Ej,j ;
06. Do Modified CP decomposition of Ω(Ej,j)

07. by RALS in Eq.(6)-Eq.(10) and Update D̂1, D̂2,

X̂ ;
08. end for

09. δk+1 = min
X̂ ,D̂1,D̂2

‖Y−X̂⊗1D̂1⊗2D̂2‖, k =
k + 1;
10. While (δk+1/δk > 1);

contain d1
j and d2

k only. On the contrary, we have to consider

not only d1
j , d2

k, and xj,k but also xj,a’s and xb,k’s.

To deal with this problem, CP decomposition with R = 1 is
modified and solved by Regularized Alternating Least Square
(RALS) [8]. To simplify notations, we let f = d1

j , g = d2
k,

and h = xj,k. Also let f t be the solution at the t’th iteration.
RALS will run until f t, gt, and ht no longer change. Please
refer to Appendix for our detailed derivations. The proposed
separable algorithm is depicted in Algorithm 2, where all
atoms in D1 and D2 are updated at each iteration.

C. Memory Usage and Computational Overhead Among Sep-
arable and Non-Separable Models, and K-SVD

Let 1D dictionary be denoted as D ∈ R
m×n and let

its corresponding 2D separable dictionaries be D1 and D2

(∈ R
√
m×√

n). In addition, in the non-separable model, the
learnt 2D dictionary is composed of d1

j ’s and d2
j ’s (1 ≤

j ≤ n). Apparently, non-separable learning model consumes
more memory usage than separable learning model in training
because each d1

j ◦d
2
j is independent of others, requiring more

storage. However, the performance of non-separable dictionary
is better due to less limitations.

More specifically, in the testing phase, memory usage
of separable and non-separable dictionaries only costs 2√

mn

and 2√
m

, respectively, of those required in K-SVD. In the

training phase, our approaches are a two-step framework
similar to K-SVD, as mentioned in Sec. III-A. In Step 1
(sparse signal recovery), 2D OMP, a necessary operation
in our approaches, requires 2√

mn
percent and 2√

m
percent,

respectively, of those required in 1D OMP [3] for separable and
non-separable cases. In Step 2 (dictionary updating), according

to Eq. (11), the 2D matrix, Ej,k, dominates the memory usage
since other operations only involve 1D operations. However,

we can simply compute each row of Ej,k multiplied by
(

(ht � gt)−
∑n

a 6=j(x
t
j,a � d2

a)
)

+λf t instead of storing the

whole Ej,k. In other words, CP decomposition based on RALS
only requires few extra memory.

Since dictionary learning is an off-line task, the time
complexity for learning dictionary is secondary and is not
a main issue in our proposed algorithm. Since CP decom-
position is well-known in tensor decomposition, however,

some researches focus on analyzing the complexity of CP
decomposition and speeding it up [11][12].

IV. EXPERIMENTAL RESULTS

Our approaches with separable and non-separable learning
strategies are denoted as S and NS, respectively. They were
compared with K-SVD [1], 2D SSM [3], and SeDiL [4].

We validate the performance of proposed algorithms for
denoising images corrupted by additive Gaussian noise with
standard deviation σnoise. Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) [13] were used as the
performance criteria. We first cropped noisy images into 10000
8×8 patches as training data with m = 64. Then, these patches
were used for learning dictionaries with n = 256, where
initial dictionaries were Gaussian random matrix. For denois-
ing purpose, we used 2D OMP [10] with stopping criteria,

|Yi−
∑

j

α̂j,id̂
1
j ◦ d̂

2
j | < σ2

noise and |Yi−D̂1X̂iD̂
T
2 | < σ2

noise,

for our methods NS and S, respectively. We can observe from
Table I that both our methods outperform 2D SSM and SeDiL.
Our separable algorithm is slightly inferior to K-SVD but
it saves much memory usage in training. Our non-separable
learning algorithm is comparable to K-SVD and better than
its separable counterpart.

In addition, we also validate the proposed algorithms in
terms of synthesis data. First, 1000 testing data, Xi for
1 ≤ i ≤ 1000, were produced, where ‖Xi‖0 = k and each
non-zero value is assigned to 1 or −1 randomly. Second, we
generated D1, D2 as Gaussian random matrices, where `2-
norm of each column was 1 and obtained true dictionary by
Dtruth = D2⊗D1. Third, Yi was obtained from D1XiD

T
2 .

In K-SVD, all 2D signals were reshaped into 1D signals.
Consequently, dictionary learning was conducted from Y .

Then, learned dictionary was used to reconstruct X̂ i from Yi.

We present a new criterion for estimating the similarity
between the learned dictionary and the ground truth, which is
equivalent to the correctness of sparse representation, as:

SIM(Dtruth, D̂) = max
P

tr
(

abs(DT
truth ∗ (D̂P ))

)

/n, (5)

where `2-norms of all atoms of the true dictionary Dtruth and

estimated one D̂ are normalized to 1, tr(·) and abs(·) denote
the trace and absolute operators, respectively, and P is the

permutation matrix that rearrange the columns of D̂.

Table II illustrates SIM versus variations of m
n

and k
n

under l = 1000 and n = 256. Thus, m and k are set according
to the ratios of m

n
and k

n
. We ignore the cases of m < k

(labeled as “none”) since they are meaningless. It can be
observed that our methods attain higher SIM values than both
K-SVD and 2D SSM and are comparable to SeDiL. Because
2D SSM does not enforce sparsity constraint, it cannot ensure
the correctness of sparse representation.

On the other hand, we validated that, compared to 1D
dictionary learning, the memory usage of 2D dictionary
learning is remarkably reduced, as shown in Fig. 2. Three
algorithms, including OMP with 1D dictionary, 2D OMP
with non-separable dictionary, and 2D OMP with separable
dictionary, were compared in terms of the peak of memory
cost. The y-axis in Fig. 2 denotes the memory cost rate when
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TABLE I. PERFORMANCE OF DENOISING VS. σnoise’S. THE LEFTMOST COLUMN SHOWS STD. DEVIATION\PSNR OF NOISY IMAGES. THE BEST

PERFORMANCE IS LABELED IN BOLD FONT.

σnoise\ PSNR

Boat Image Barbara Image

PSNR (dB) SSIM PSNR (dB) SSIM

[1] \ [3] \ [4] \ S \ NS [1] \ [3] \ [4] \ S \ NS [1] \ [3] \ [4] \ S \ NS [1] \ [3] \ [4] \ S \ NS

5 \ 34.16 37.24\37.01\37.00\37.08\37.17 0.940\0.938\0.937\0.939\0.943 37.94\37.02\37.82\37.60\38.13 0.963\0.938\0.962\0.962\0.971

10\28.11 33.64\32.13\32.85\33.47\33.61 0.883\0.875\0.870\0.874\0.886 34.10\33.01\33.62\34.03\34.19 0.931\0.907\0.926\0.930\0.932

20\22.12 30.37\29.83\29.22\30.19\30.43 0.804\0.784\0.772\0.786\0.805 30.32\28.89\29.45\30.27\30.35 0.870\0.827\0.853\0.869\0.881

30\18.11 28.40\27.63\26.86\28.12\28.51 0.743\0.720\0.697\0.722\0.749 27.92\27.02\26.16\27.94\27.93 0.806\0.781\0.757\0.804\0.815

60\12.56 25.03\24.25\24.07\24.92\25.14 0.623\0.596\0.591\0.618\0.627 23.59\23.16\23.06\23.64\23.84 0.638\0.613\0.612\0.638\0.650

TABLE II. SIM VS. VARIATIONS OF
m
n

AND
k
n

WITH n = 256.

P
P
P

P
P

m
n

k
n

0.1 0.2 0.3 0.4

[1] \ [3] \ [4] \ S \ NS [1] \ [3] \ [4] \ S \ NS [1] \ [3] \ [4] \ S \ NS [1] \ [3] \ [4] \ S \ NS

0.1 0.92\0.89\0.94\0.94\0.94 none none none

0.2 0.89\0.86\0.91\0.90\0.91 0.87\0.84\0.86\0.87\0.88 none none

0.3 0.86\0.86\0.88\0.88\0.90 0.81\0.76\0.83\0.83\0.83 0.76\0.75\0.78\0.79\0.80 none

0.4 0.85\0.80\0.86\0.85\0.87 0.79\0.73\0.81\0.81\0.83 0.77\0.72\0.77\0.77\0.78 0.73\0.70\0.76\0.75\0.75

0.5 0.82\0.69\0.82\0.83\0.84 0.77\0.69\0.79\0.79\0.80 0.75\0.67\0.75\0.76\0.76 0.71\0.66\0.74\0.73\0.75

compared with that required in 1D dictionary learning. For
example, 0.1 indicates that 1D dictionary learning needs 10
times memory cost than other methods. Note that the memory
cost of 2D SSM and SeDiL is the same with that of separable
dictionary.

Our results show that memory reduction is more obvious
when n is larger. In fact, for 1D Dictionary, the program
will run out of memory under n = 213. Nevertheless, in
non-separable and separable 2D dictionaries, they will fail
until n = 220 and n = 226, respectively. For big data like
video, a higher-dimensional dictionary is expected to save
more memory cost. Thus, 2D dioctionary learning is especially
helpful for large-scale problems.

Finally, we also conduct comparison in terms of compu-
tational time (results not shown here due to space limit). We
can observe that (1) our separable learning algorithm is faster
than other methods even though both m and n increase and
(2) our non-separable algorithm is slower than SeDiL and its
separable counterpart but is comparable to 2D SSM.

V. CONCLUSION

We have proposed novel 2D dictionary learning algorithms
based on the structure of tensors. We investigate how to learn
non-separable and separable dictionaries by CP decomposition.
Experimental results show that our methods generate accurate
sparse representation and converge to good solutions.
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APPENDIX: ITERATIVE RALS-BASED CP DECOMPOSITION

f
t+1 = argmin

f̂

‖Ej,k

(1) − f̂(ht � g
t)T −

n
∑

a 6=j

f̂(xt
j,a � d

2
a)

T ‖F

+ λ‖f̂ − f
t‖F ;

(6)

x
t+1
j,a = argmin

x̂j,a

‖Ej,k

(3) − h
t(gt � f

t+1)T − x̂j,a(d
2
a � f

t+1)T−

n
∑

c6=j,a

x
t
j,c(d

2
c � f

t+1)T ‖F for all a 6= j;

(7)
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Fig. 2. Comparison of memory usage between 1D OMP with 1D dictionary
and 2D OMP with non-separable/separable dictionar. The vertical axis denotes
the memory rate calculated by dividing the memory cost of 2D case by that of
1D case. Different parameter settings were represented as ∗ ( n

m
= 0.25 and

k
m

= 0.25), + ( n
m

= 0.25, k
m

= 0.125), and # ( n
m

= 0.125, k
m

= 0.25).

g
t+1 = argmin

ĝ
‖Ej,k

(2) − ĝ(ht � f
t+1)T −

n
∑

b 6=k

ĝ(xt
b,k � d

1
b)

T ‖F

+ λ‖ĝ − g
t‖F ;

(8)

x
t+1
b,k = argmin

x̂b,k

‖Ej,k

(3) − h
t(gt+1 � f

t+1)T − x̂b,k(g
t+1 � d

1
b)

T

−

n
∑

c6=k,b

x
t
c,k(g

t+1 � d
1
c)

T ‖F for all b 6= k;

(9)

h
t+1 = argmin

ĥ

‖Ej,k

(3) − ĥ(gt+1 � f
t+1)T −

n
∑

a 6=j

x
t+1
j,a (d2

a � f
t+1)T

−

n
∑

b 6=k

x
t+1
b,k (gt+1 � d

1
b)

T ‖F + λ‖ĥ− h
t‖F .

(10)
How to choose a good λ can refer to [8]. Since ‖ · ‖F is
differentiable, Eq. (6) is solvable by first derivative test. Due
to space limitation, we show the solution of f t+1 below as:

f
t+1 =

(

E
j,k

(1)

(

(ht � gt)−
∑n

a 6=j
(xt

j,a � d2
a)
)

+ λf t
)

S
,

(11)

where S = (ht� g
t)T (ht� g

t) +
∑n

a 6=j
(ht� gt)T (xt

j,a�d2
a)+

∑n

a 6=j
(xt

j,a � d2
a)

T (ht � gt) +
∑n

a 6=j

∑n

b 6=j
(xt

j,a � d2
b)

T (xt
j,a �

d2
b + λI).
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