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Abstract—We address the problem of Compressed Sensingwheres > 0. We consider two models fag: g1(-) :== || - |1
(CS) with side information. Namely, when reconstructing a andg,(-) = (1/2)]| - ||3; and refer to[(R) withy = g, as¢;-¢;
target CS signal, we assume access to a similar signal. Th'sminimization and to[(2) withy = g» as¢1-¢> minimization.

additional knowledge, the side information, is integrated into . e X
CS via ¢1-¢1 and /¢;1-f2 minimization. We then provide lower Although instances and variations 0f (2) wigh andg. have

bounds on the number of measurements that these problems appeared in the literature (see Related work below), to éisé b
require for successful reconstruction of the target signalIf the of our knowledge, no CS-like recovery guarantees have ever
side information has good quality, the number of measuremets  peen provided.

is significantly reduced via,-¢, minimization, but not so much — Aggming the entries afl are i.i.d. Gaussian, we compute
via {1-(, minimization. We provide geometrical interpretations | 20 S T L L T whieh

and experimental results illustrating our findings. I . .

Index Terms—Compressed sensing, basis pursuit;-¢; mini- and ¢1-f2 minimization reconstruct* perfectly, with high
mization, ¢1-¢2 minimization, Gaussian width. probability. When the side information is “good enough,tou
bound for¢;-¢; minimization is much smaller than the bounds
both for ¢;-¢5 minimization and for classical CS. In addition,

Consider an unknown signat* € R that is s-sparse, our experiments confirm tha-¢; minimization requires in
i.e., at mosts entries are nonzero. Assume we take< n  general less measurements for successful reconstrutigon t
linear measurements of*: y = Az*, where A € R™*".  poth ¢,-¢, minimization and classical CS. We explain this
Compressed Sensing (CS) [1] answers two fundamental quggenomenon using the underlying geometry of the problem.
tions: How to reconstructz* from y? And how many mea- proofs of the results presented in this paper can be found
surementsn do we need for successful reconstructidhd i [11]. For succinctness, we consider here only the gasel
satisfies the RIR [2] or a null-space property [3], CS esthbl i @), but results for3 # 1 can be found in[[11].
that z* can be reconstructed by solvitgsis pursuit4]: Related work. Several methods improve the performance

minimize ||z, (1) of CS by assuming access to side (or prior) information. The
z majority, however, uses concepts of side information défifie
from ours, for example, estimates on the support0f12],
In particular, when the entries off are i.i.d. Gaussian, or its probability distribution[[13]. The first work usingds
then m > 2slog(n/s) + (7/5)s measurements guarantegnformation in our sense, namely-¢; minimization, appears
thatz* is the unique solution of {1) with high probability![3], to be [10]. That work focuses on the application of computed
a bound known to be tight for Gaussian matrices [5]. tomography and does not provide either any type of analysis o

CS with side information. Suppose we have accessstde 5 comparison with standard CS; séel[14] for a recent related
information a vectorw € R™ that is similar tox*. This occurs approach. In[[12], a problem similar t6-¢> minimization
when reconstructing sequences of signals (e.g., vidéo jpears as an extension of the main problem studied in that
and estimation problems[[7]), or when we have access g@per. Although experimental results are presented, ngsisa
prior similar signals (e.g., sensor networks [8], multivie js provided for thet;-f,-type problem. Prior work also has
cameras/[9], and medical imagirig [10]). Our goal is to answgpnsidered the Lagrangian version @1 (2) where there are
the same questions that CS does, but with the additiong) constraints, but the extra terij|ly — Az||? is added to
knowledge of side informatiofdow to reconstruct™ fromthe the objective, withA > 0. For example,[[7] estimates the

measurementg and the side informatiom? And how many state of a dynamical system using the previous instantte sta
measurements: do we need for successful reconstruction? a5 side information. The estimation problem is posed as the

_Our strategy. Let g : R" — R be a function that models | agrangian version of12) with boty and go. Although the
similarity betweenw andz*: the smallery(+* —w), the higher eyperimental results il [7] indicate thét-¢;-type of mini-
the similarity. A natural approach to integrateinto (1)) is to  ization requires less measurements thafy, no rationale is
minimize ||z|, + 8 g(z — w) (2) given. Our theoretical results and geometrical interpi@ta
L explain this phenomenon in the context bf (2). Finally, the
work in [15] analyzes the performance of a message passing
Work funded by EPSRC grant EP/K033166/1. algorithm to solve the Lagrangian version bf (2) with

I. INTRODUCTION

subjectto Az =vy.

subjectto Ax =y,
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Il. DEFINITIONS AND GEOMETRICAL INTERPRETATIONS  First, recall that the relatiod;(z*) = congSy(z*) — z*)

As mentioned before[ ]3] establishes tight bounds for c§'€ans thatly(z*) is composed of all the half-lines that
The main tool is the concept @aussian width of a cong ¢ 10 z* to a point of the sublevel sef;(z*). Therefore, the
R™, given byw(C) := B, [sup.{g"z : z € C N B,(0,1)}], width of Tf(:v*_) can be estimated by looking at the sublevel
where g € R™ has i.i.d. zero-mean, unit variance Gauss€l Sy(z*). Fig. [ shows the sublevel sets ¢i and f>
sian entries, andg,[] is the expected value w.ry. We for 7 = 2. In those plot,sa:* is alwaysz™ = ((3,1), and we
use B, (0,1) := {z € R" : |z} < 1} to denote the unit,- Consider four d|fferen§us: w@ = (0, 1.6), w® = (0,1.3),
norm ball inR”. The Gaussian width was originally proposeél”(c) = (0,0.5), aan( .) = (0,-0.5). In Figs.[1(@) and I(b)
in [16] for measuring the “width” (aperture) of a cone. Retat the side information 'Sw(:) and v, and in Figs.[1(¢)
work using this concept includes| [5], [17]=[27]. and[I(d) it isw®) and “’_( ). Figs.[1(@) and_I{f) show the

sublevel sets of;, while Figs[1(B) anf 1(#) show the sublevel

Theorem 1(Corollary 3.3 in[3]) LetA € R™*" be a matrix sets of f,. For reference, we show in all plots the sublevel
whose entries are i.i.d. zero-mean Gaussian random vaabket of the/;-norm ball S, = Ba(0,||z*[1). To represent

with variancel/m, and letf : R — R be a convex function.
Assumey = Az* and thatm > w(Ty(z*))%+1, whereTy (z*)
denotes the tangent cone ffat 2*. Consider

all the other sublevel sets, we use the notalﬂﬁ = {z:
2l + gi(e — w) < fJa*[ly + gi(a* —w?)}, for i = 1,2
andj = a,b,c,d. For example, the sublevel sets in Hig. 1(a)
# € argmin f(x) (3) are the line segmentﬁ‘}‘f) = {(0,z2) : 0 < 2o < 1.6}
st Az =vy. and Sffl’) = {(0,22) : 0 < a2 < 1.3}. The tangent cone
they generate is the lin¢(0,z2) : z2 € R}, which has
Then,@ = z* is the unique solution of3) with probability zero Gaussian width. This means that the nonzero components
at leastl — exp(—g [w(T¢(2*)) — Awm]”), whereX,, is the of (@) andw® do not contribute “any width” tdl’, (z*).
expected length of a zero-mean, unit-variance Gaussialoveca careful inspection of the remaining figures reveals that th
in R™. tangent cones in Figs. I[a) dnd 1(b) have smaller “geonagtric
Recall that the tangent cone of a convex functiprat widths” (and _thus Gaussian wic_iths) than the cone generated
a pointz* is Ty(z*) := condx — z* : f(z) < f(z*)} by SH'Hl_' In Figs[1(c) an@), in contrast, the tangent cones
where con€’ := {ac : a > 0, ¢ € C} is the cone generatedN@ve €ither the same width as the cone generated by
by the setC. In other words,T;(z*) is the cone generated_(F'g_-)v OV(L?rQ%)W'dthS (Fig. 1()). Note, in partieathat,
by the sublevel setS;(z*) = {z € R" : f(z) < f(z*)} N Fig.[1(c},S;’, S;,°, andsS).|, all generate the same tangent
from the pointz*, i.e., Tf(z*) = condS;(z*) — z*). Note cone. In Fig{__f@),S}g) and S;f;) generate tangent cones with
that [3) becomed [1) wheii(z) = |z|: and becomed]2) widths larger than the cone generateddjy, . Since we want
when f(z) = ||z||1 + g(z,w). Note also thatn/v/m +1 < small widths, we say that,, the nonzero component of, is a
Am < +/m [3]. Theorem[1 states thafl(3) recovers with good componernin Figs[1(a) anfl 1(b) and iskead component
high probability if the number of measurements is largenthan Figs.[1(c) and I(dl). The generic definition is:
the squared Gaussian width of the tangent con¢ aft z*.

The work in [3] then establishes: Definition 1 (Good and bad componentd)et z* € R™ be the

vector to reconstruct and lab € R™ be the side information.
Proposition 2 (Proposition 3.10 in[[3]) Let z* # 0 be an Fori=1,...,n, a componenty; is considered good if

- i n
s-sparse vector irk". Then, xF >0 and z} < w; or xf <0 and z} > w;,

7
w(Tu,Hl(:c*))Q < 2s log(g) +es (4) andw; is considered bad if

By upper bounding the squared Gaussian widthz; >0 and zf >w;  or  z7 <0 and 27 <w;.

of Tj.y,(«*), Proposition[P establishes a lower bound Fig 1 gives the intuition why;-¢; minimization requires
on the number of measurements tha (1) requires (s measurements than standard CSng minimization:
recoverz* with high probability. Note that, since (7 (")) its good components induce less width T, (z*), and its

is usually unknown, Theoreriil 1 is not very informativgq components never induce more widttrin (z*) than the

in practice. Proposition[]2 instills it with operationalypsence of side information. Although Fig. 1 shows the impac
significance by upper bounding)(T(x*))* in terms of oniy of the componentsy; for which % # 0 and 2 # w;,
the key signal parameters and n. Our goal is to do the components for which; = z* # 0 and for whichw; #

the same for the fimctionglrz(x) = |zl + |z — w1 xF = 0 also impact the Gaussian width, as shown next.
and fy(z) := flally + 3|z — w|f3. . B F (e M
Good and bad componentsNaturally, our bounds fof; - - BOUNDSFOR £1-61 AND £1-£2 MINIMIZATION

¢1 and /;-¢> minimization are a function of the “quality” of  To state our results faf -¢; minimization, we need to define
the side informationw. A way to measure the quality of
each component ofv arises naturally in the proofs of our
results, but it can be motivated geometrically, as we do.next § ‘= i+ wi # a7 =0} = [{i - wi = a7 # 0},

he=|{i:af >0, 2} >w}U{i:a} <0, 2] <w}
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Figure 1. Sublevel sets’) := {z : |lz1 + gi(z — w®) < [l2*|l1 + gi(2* — w@)}, fori = 1,2 andj = a,b, c,d, wherew(®) = (0, 1.6),
w® = (0,1.3), w(® = (0,0.5), andw(® = (0,—0.5). In both (a) and (b)w is w(®) andw(®, whose nonzero components are good. In both (c) and
(d), w is w() andw(?, whose nonzero components are bad. Theorm sublevel seb., atz* is also shown in all figures, and is associated wiih (2).

where| - | denotes the cardinality of a set. Note tftais the given in Fig.[1 and complements it with the intuitive fact
number of bad components af. Naturally,» < s, where the that a larger should decrease the number of measurentents.
differences — h = h+r is the number of good componerits In general, however # 0. In that case, if» is much larger
plus r := |{i : w; = zF # 0}|. The quantity{ is the than¢ ands, if h,r > 0, and if¢ is larger than a small negative
number of components where overestimates the supportnumber, ther2hlog(n/(s + £/2)), the dominant term of{5),
of * minus r. Our bound for¢;-¢; minimization depends is smaller thar2slog(n/s), the dominant term of{4). That is,
on these two key parameters. (B) is asymptotically smaller thail(4).

Theorem 3 (¢1-¢; minimization) Let 2* € R™ be the vector To present our results ofy -£; minimization, we define

to reconstruct and letw € R™ be the side information. Ii={i:z;#0} Ji={j : af #w;}
Let fl(a:)_ = ||zl + ||z — z_qu,' and assumé: > 0 and that Ip={i:ar>0) Io={i:af<0},,
there exists at least one indéxor which 27 = w; = 0. Let

the entries ofA € R™*" be i.i.d. Gaussian with zero meanand K := [{i € I°NJ : |w;| > 1}|, whereI° is the comple-
and variancel /m. Then, ment ofI. We also defing := |TUJ| and@ := max;e e |w;].

Note thatw < ||w||oo-

2 — n 7 I3
w(T, (z7))" < 2Nlog (S +5/2) TE (S T 5) - ) Theorem 4 (¢1-¢5 minimization) Let z*,w € R™ be as in
_ _ TheoreniB. Lef(z) = [|z]|1+5|lz—w]||3 and assume* # 0,
Namely, ifm > 2hlog (n/(s +£/2) + (7/5)(s +€/2) + 1, ¢ < n, and that eitherw < 1 or that there exists € I N .J

thenz* is the unique solution of2) with g = g1 and 3 =1, such thatg +# sign(a*)/(w; — 7). Assume also that
with probability at leastl — exp ( — (A — m)?).

q—S5 _ _ n\ /w

By upper bounding the squared Gaussian width of the n—gq <[ —wlexp (2w log (E) (5 B 1)) G
tangent cone off;, Theoren[ B provides a number of meashen
surements above which-¢; minimization reconstructa* '
with high probability. The assumption that there is at least w(Ty, (2*))” < 2vlog (ﬁ) st oK 4+ éq, @)
one bad component, > 0, is necessary to guarantee that q 5
the subdifferentiald f,(z*) equals the normal cone of; where
at z* [28], a relation used in the proof. Whe# # 1, the N 5 2 5
assumptiomh > 0 can be relaxed; seé [11]. It can be showA "~ Z(H'xi —w;) +Z(1+wi_xi) + Z (Jwi[=1)7.

that if, contrary to the theorem’s assumptions, there is no '+ iel- ielnJe
index ¢ for which zf = w; = 0, we can haver = s + £/2, Theoreni# not only requires assumptions stronger than the
making the right-hand side of](5) evaluate-tec [11]. ones in Theorenm]3, but also provides a larger bound. The

Notice that [#) and[{5) have the same format and bo#ssumptiory < n makes the right-hand sides ¢f (6) ahd (7)
provide reconstruction guarantees with probability atsieafinite. The assumption that < 1 or that there existse IN.J
1 —exp(—2(A\n —m)?). To compare[{4) and[5), assumesuch that3 # signz})/(w; — x}) guarantees thad f,(z*)
first that¢ = 0. In that case, both bounds are equal, apagtjuals the normal cone of, at z* [28]. The case where
from the terms multiplying théog’s: 2s in (@) and2h in (8). assumption[{6) does not hold is also addressed ih [11]. Note,
Sinces —h = h+r > 0, the larger the number of good Tiven i - d have defined th .
components,, and the largerr (number of components thg’i’;;‘ ;‘;zenﬁsﬂ; eri_c;;’gcvge>cguan g ;;’eg ii'?gr;?zr?é’% ;"l"gﬁﬂe“ts

Wherex*. andw coincide on th.e suppprt Ot*)’ the Sma”er_ that cases — h would be exactly the number of good components. This was
is (8) with respect to[{4). This confirms the interpretationot done in[[T1] for technical reasons, and we kept the sartatioo here.
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Figure 2.  Reconstruction rate of standard €IS ¢1)¢1 minimization, and Figure 3.  Solid lines: performance éf-¢; minimization for 5 different
£1-¢2 minimization. The vertical lines are the bounds[ih (£, @d (7). matrices versug. Dotted line: bounds i [11], of whiclil5) gives the partaul
caseB = 1 (vertical line). Horizontal line: bound if{4) for classioas.

however, that it is easy to satisfly] (6) in practice: its ledtnd

side can be shown to equdF N.J|/|[I¢N J¢|, i.e., the number reconstruction here meatj$ — z*||2/|lz*||> < 10~2, wherez

of components in which* andw differ outside! divided by IS @ solution of [(l) or[(2). We see thé{-¢, minimization
the number of components in whiatt andw are both zero; required less measurements for successful reconstrubtion
if 2* andw are sparse enough, this number is smaller than standard CS of;-¢, minimization. The performance curves
And the right-hand side of6) can be large whenewet: 1. of the last two, in fact, almost coincide, with-¢5 (line
The bound in[{7) has the same format Bk (4) did (5). THéth triangles) having a slightly sharper phase transitibine
parameterv in (7), however, depends on the magnitude dfgure also shows that, while tite-¢; bound [7) can be quite
the components of both* andw. This is contrast with[{4) 100se, the/;-{; bound [) is quite sharp. In other, unreported
and [5), whose parameters depend only on the signs*of €xperiments, where was not sparse, bijtv—z*{|> was small,
andz* — w, but not on the magnitudes of their component& situation apparently very favorabletg ¢, minimization, we
This was expected from the interpretation of [Fl. 1: the lgdt noticed that’;-¢; minimization still has a performance similar
of the tangent cones in Figs. 1i(a) gnd lL(c) do not vary witR CS; of course, in this casé,-¢; performs worse than both.
the magnitude of the nonzero componentugfwhereas the  Fig.[3 considerg,-¢; minimization only. Therez* € R>"
widths in Figs[Z(B) anl I(H) do. It is not clear whén (7) its ab0-sparse vector and was generated such that= 11

smaller than[{4), but note that the term insidg(-) is smaller and¢ = —30; see [11] for details. We proceeded as follows:
in (7), andv is always larger thas (e.g., if w; = 7 for all we generated a Gaussian matfixc R°°9*°** and computed

i€l v=s5+ ;s (lw| —1)% > s). 7 = Ax*. For a fixed, we solved;-¢; minimization using
only the first row of A (and of ). If the relative error of
IV. EXPERIMENTAL RESULTS the solution was larger thar0—2, we then used the first two

. . . rows of A, and so on, until we found a minimal number of
Our results are |I!ustr_ated in two types of experiments Who%easuremenm(ﬁ) such that’;-¢; minimization with the first
results are*shOV\;n in Figs] 2 api 3. FornFEg. 2, we generated as) yows of 4 yielded a relative error smaller thaif)—2,
70-spgrser € R" and a28-sparsew € R", wheren = 1000; Fig.[d showsmn(8) versuss. The solid lines correspond ®
see *[“'] for how they were generated. Although the SUPPOHgterent realizations of4,7), and the dotted line corresponds
of 2 andw coincided in22 entrles*(and d*n‘fered i), they ¢4 the theoretical;-¢, bounds in [IL]. Note tha{15) is the
were significantly differentijw — a*|lo/[lz*[2 ~ 0.45 and 504 forg — 1. The plot shows thas — 1 minimizes both
l[w = a*[|1/[[z*[] = 0.25. This yieldedh = h = 11, » = 48, he theoretical curve and the experimental ones. Alse; 1

{=—42,v=103.1, ¢ = 76, and K" = 1. Replacing these 5 16 yalye for which the theoretical bound is the sharpest.
parameters in the boundd (4] (5), ahd (7), we have that, for

perfect recovery with high probability, standard CS regsiir V. CONCLUSIONS

at least472 measurements(;-¢/; minimization requires at

least 136 measurements, an€l-/> minimization requires at We integrate side information in CS vi@-¢; and ¢;-(5
least666 measurements, respectively. These values are markaithimization and establish bounds on the number of measure-
by vertical lines in Fig[R, which shows the experimentahents that guarantee successful reconstruction, for @auss
performance of standard CS afd¢; and/;-¢> minimization. measurement matrices. Our bound fgr¢; minimization is
Specifically, it depicts the success rate of each scheme asharp and indicates that if the side information has reddena
function of the number of measurements For a fixedm, we  quality, /1-¢; minimization requires much less measurements
ran each algorithnm30 times, each time for a different (Gaus-than both standard CS a#ig-¢, minimization. The underlying
sian) matrixA. The success rate is the number of successfygometry of the problem provides an explanation of this
reconstructions oves0, the total number of trials. Successfubhenomenon, and our experimental results also confirm it.
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