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Abstract—We address the problem of Compressed Sensing
(CS) with side information. Namely, when reconstructing a
target CS signal, we assume access to a similar signal. This
additional knowledge, the side information, is integrated into
CS via ℓ1-ℓ1 and ℓ1-ℓ2 minimization. We then provide lower
bounds on the number of measurements that these problems
require for successful reconstruction of the target signal. If the
side information has good quality, the number of measurements
is significantly reduced via ℓ1-ℓ1 minimization, but not so much
via ℓ1-ℓ2 minimization. We provide geometrical interpretations
and experimental results illustrating our findings.

Index Terms—Compressed sensing, basis pursuit,ℓ1-ℓ1 mini-
mization, ℓ1-ℓ2 minimization, Gaussian width.

I. I NTRODUCTION

Consider an unknown signalx⋆ ∈ R
n that is s-sparse,

i.e., at mosts entries are nonzero. Assume we takem < n
linear measurements ofx⋆: y = Ax⋆, whereA ∈ R

m×n.
Compressed Sensing (CS) [1] answers two fundamental ques-
tions: How to reconstructx⋆ from y? And how many mea-
surementsm do we need for successful reconstruction?If A
satisfies the RIP [2] or a null-space property [3], CS establishes
that x⋆ can be reconstructed by solvingbasis pursuit[4]:

minimize
x

‖x‖1
subject to Ax = y .

(1)

In particular, when the entries ofA are i.i.d. Gaussian,
then m > 2s log(n/s) + (7/5)s measurements guarantee
thatx⋆ is the unique solution of (1) with high probability [3],
a bound known to be tight for Gaussian matrices [5].

CS with side information. Suppose we have access toside
information, a vectorw ∈ R

n that is similar tox⋆. This occurs
when reconstructing sequences of signals (e.g., video [6]
and estimation problems [7]), or when we have access to
prior similar signals (e.g., sensor networks [8], multiview
cameras [9], and medical imaging [10]). Our goal is to answer
the same questions that CS does, but with the additional
knowledge of side information:How to reconstructx⋆ from the
measurementsy and the side informationw? And how many
measurementsm do we need for successful reconstruction?

Our strategy. Let g : Rn −→ R be a function that models
similarity betweenw andx⋆: the smallerg(x⋆−w), the higher
the similarity. A natural approach to integratew into (1) is to

minimize
x

‖x‖1 + β g(x− w)

subject to Ax = y ,

(2)
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whereβ > 0. We consider two models forg: g1(·) := ‖ · ‖1
andg2(·) = (1/2)‖ · ‖22; and refer to (2) withg = g1 asℓ1-ℓ1
minimization and to (2) withg = g2 as ℓ1-ℓ2 minimization.
Although instances and variations of (2) withg1 andg2 have
appeared in the literature (see Related work below), to the best
of our knowledge, no CS-like recovery guarantees have ever
been provided.

Assuming the entries ofA are i.i.d. Gaussian, we compute
bounds on the number of measurements above whichℓ1-ℓ1
and ℓ1-ℓ2 minimization reconstructx⋆ perfectly, with high
probability. When the side information is “good enough,” our
bound forℓ1-ℓ1 minimization is much smaller than the bounds
both for ℓ1-ℓ2 minimization and for classical CS. In addition,
our experiments confirm thatℓ1-ℓ1 minimization requires in
general less measurements for successful reconstruction than
both ℓ1-ℓ2 minimization and classical CS. We explain this
phenomenon using the underlying geometry of the problem.
Proofs of the results presented in this paper can be found
in [11]. For succinctness, we consider here only the caseβ = 1
in (2), but results forβ 6= 1 can be found in [11].

Related work. Several methods improve the performance
of CS by assuming access to side (or prior) information. The
majority, however, uses concepts of side information different
from ours, for example, estimates on the support ofx⋆ [12],
or its probability distribution [13]. The first work using side
information in our sense, namelyℓ1-ℓ1 minimization, appears
to be [10]. That work focuses on the application of computed
tomography and does not provide either any type of analysis or
a comparison with standard CS; see [14] for a recent related
approach. In [12], a problem similar toℓ1-ℓ2 minimization
appears as an extension of the main problem studied in that
paper. Although experimental results are presented, no analysis
is provided for theℓ1-ℓ2-type problem. Prior work also has
considered the Lagrangian version of (2) where there are
no constraints, but the extra termλ‖y − Ax‖22 is added to
the objective, withλ > 0. For example, [7] estimates the
state of a dynamical system using the previous instant’s state
as side information. The estimation problem is posed as the
Lagrangian version of (2) with bothg1 andg2. Although the
experimental results in [7] indicate thatℓ1-ℓ1-type of mini-
mization requires less measurements thanℓ1-ℓ2, no rationale is
given. Our theoretical results and geometrical interpretations
explain this phenomenon in the context of (2). Finally, the
work in [15] analyzes the performance of a message passing
algorithm to solve the Lagrangian version of (2) withg2.
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II. D EFINITIONS AND GEOMETRICAL INTERPRETATIONS

As mentioned before, [3] establishes tight bounds for CS.
The main tool is the concept ofGaussian width of a coneC ⊂
R

n, given byw(C) := Eg

[

supz{g⊤z : z ∈ C ∩Bn(0, 1)}
]

,
where g ∈ R

n has i.i.d. zero-mean, unit variance Gaus-
sian entries, andEg[·] is the expected value w.r.t.g. We
useBn(0, 1) := {x ∈ R

n : ‖x‖2 ≤ 1} to denote the unitℓ2-
norm ball inRn. The Gaussian width was originally proposed
in [16] for measuring the “width” (aperture) of a cone. Related
work using this concept includes [5], [17]–[27].

Theorem 1 (Corollary 3.3 in [3]). LetA ∈ R
m×n be a matrix

whose entries are i.i.d. zero-mean Gaussian random variables
with variance1/m, and letf : Rn −→ R be a convex function.
Assumey = Ax⋆ and thatm ≥ w(Tf (x

⋆))2+1, whereTf (x
⋆)

denotes the tangent cone off at x⋆. Consider

x̂ ∈ argmin
x

f(x)

s.t. Ax = y .

(3)

Then, x̂ = x⋆ is the unique solution of(3) with probability
at least1 − exp

(

− 1
2

[

w(Tf (x
⋆)) − λm

]2)
, whereλm is the

expected length of a zero-mean, unit-variance Gaussian vector
in R

m.

Recall that the tangent cone of a convex functionf at
a point x⋆ is Tf (x

⋆) := cone{x − x⋆ : f(x) ≤ f(x⋆)},
where coneC := {αc : α ≥ 0, c ∈ C} is the cone generated
by the setC. In other words,Tf(x

⋆) is the cone generated
by the sublevel setSf (x

⋆) := {x ∈ R
n : f(x) ≤ f(x⋆)}

from the pointx⋆, i.e., Tf (x
⋆) = cone(Sf (x

⋆) − x⋆). Note
that (3) becomes (1) whenf(x) = ‖x‖1 and becomes (2)
when f(x) = ‖x‖1 + g(x,w). Note also thatm/

√
m+ 1 ≤

λm ≤ √
m [3]. Theorem 1 states that (3) recoversx⋆ with

high probability if the number of measurements is larger than
the squared Gaussian width of the tangent cone off at x⋆.
The work in [3] then establishes:

Proposition 2 (Proposition 3.10 in [3]). Let x⋆ 6= 0 be an
s-sparse vector inRn. Then,

w
(

T‖·‖1
(x⋆)

)2 ≤ 2s log
(n

s

)

+
7

5
s . (4)

By upper bounding the squared Gaussian width
of T‖·‖1

(x⋆), Proposition 2 establishes a lower bound
on the number of measurements that (1) requires to
recoverx⋆ with high probability. Note that, sincew(Tf (x

⋆))
is usually unknown, Theorem 1 is not very informative
in practice. Proposition 2 instills it with operational
significance by upper boundingw(Tf (x

⋆))2 in terms of
the key signal parameterss and n. Our goal is to do
the same for the functionsf1(x) := ‖x‖1 + ‖x − w‖1
andf2(x) := ‖x‖1 + 1

2‖x− w‖22.
Good and bad components.Naturally, our bounds forℓ1-

ℓ1 and ℓ1-ℓ2 minimization are a function of the “quality” of
the side informationw. A way to measure the quality of
each component ofw arises naturally in the proofs of our
results, but it can be motivated geometrically, as we do next.

First, recall that the relationTf(x
⋆) = cone(Sf (x

⋆) − x⋆)
means thatTf (x

⋆) is composed of all the half-lines that
join x⋆ to a point of the sublevel setSf (x

⋆). Therefore, the
width of Tf(x

⋆) can be estimated by looking at the sublevel
set Sf (x

⋆). Fig. 1 shows the sublevel sets off1 and f2
for n = 2. In those plots,x⋆ is alwaysx⋆ = (0, 1), and we
consider four differentw’s: w(a) = (0, 1.6), w(b) = (0, 1.3),
w(c) = (0, 0.5), andw(d) = (0,−0.5). In Figs. 1(a) and 1(b)
the side information isw(a) and w(b), and in Figs. 1(c)
and 1(d) it isw(c) and w(d). Figs. 1(a) and 1(c) show the
sublevel sets off1, while Figs. 1(b) and 1(d) show the sublevel
sets off2. For reference, we show in all plots the sublevel
set of theℓ1-norm ball S‖·‖1

:= B2(0, ‖x⋆‖1). To represent

all the other sublevel sets, we use the notationS
(j)
fi

:= {x :

‖x‖1 + gi(x − w(j)) ≤ ‖x⋆‖1 + gi(x
⋆ − w(j))}, for i = 1, 2

and j = a, b, c, d. For example, the sublevel sets in Fig. 1(a)
are the line segmentsS(a)

f1
= {(0, x2) : 0 ≤ x2 ≤ 1.6}

and S
(b)
f1

= {(0, x2) : 0 ≤ x2 ≤ 1.3}. The tangent cone
they generate is the line{(0, x2) : x2 ∈ R}, which has
zero Gaussian width. This means that the nonzero components
of w(a) andw(b) do not contribute “any width” toTf1(x

⋆).
A careful inspection of the remaining figures reveals that the
tangent cones in Figs. 1(a) and 1(b) have smaller “geometrical
widths” (and thus Gaussian widths) than the cone generated
by S‖·‖1

. In Figs. 1(c) and 1(d), in contrast, the tangent cones
have either the same width as the cone generated byS‖·‖1

(Fig. 1(c)), or larger widths (Fig. 1(d)). Note, in particular that,
in Fig. 1(c),S(c)

f1
, S(d)

f1
, andS‖·‖1

all generate the same tangent

cone. In Fig. 1(d),S(c)
f2

andS(d)
f2

generate tangent cones with
widths larger than the cone generated byS‖·‖1

. Since we want
small widths, we say thatw2, the nonzero component ofw, is a
good componentin Figs. 1(a) and 1(b) and is abad component
in Figs. 1(c) and 1(d). The generic definition is:

Definition 1 (Good and bad components). Letx⋆ ∈ R
n be the

vector to reconstruct and letw ∈ R
n be the side information.

For i = 1, . . . , n, a componentwi is considered good if

x⋆
i > 0 and x⋆

i < wi or x⋆
i < 0 and x⋆

i > wi ,

andwi is considered bad if

x⋆
i > 0 and x⋆

i > wi or x⋆
i < 0 and x⋆

i < wi .

Fig. 1 gives the intuition whyℓ1-ℓ1 minimization requires
less measurements than standard CS andℓ1-ℓ2 minimization:
its good components induce less width inTf1(x

⋆), and its
bad components never induce more width inTf1(x

⋆) than the
absence of side information. Although Fig. 1 shows the impact
only of the componentswi for which x⋆

i 6= 0 andx⋆
i 6= wi,

the components for whichwi = x⋆
i 6= 0 and for whichwi 6=

x⋆
i = 0 also impact the Gaussian width, as shown next.

III. B OUNDS FOR ℓ1-ℓ1 AND ℓ1-ℓ2 M INIMIZATION

To state our results forℓ1-ℓ1 minimization, we need to define

h :=
∣

∣{i : x⋆
i > 0, x⋆

i > wi} ∪ {i : x⋆
i < 0, x⋆

i < wi}
∣

∣

ξ :=
∣

∣{i : wi 6= x⋆
i = 0}

∣

∣−
∣

∣{i : wi = x⋆
i 6= 0}

∣

∣ ,
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Figure 1. Sublevel setsS(j)
fi

:= {x : ‖x‖1 + gi(x − w(j)) ≤ ‖x⋆‖1 + gi(x⋆ − w(j))}, for i = 1, 2 and j = a, b, c, d, wherew(a) = (0, 1.6),

w(b) = (0, 1.3), w(c) = (0, 0.5), andw(d) = (0,−0.5). In both (a) and (b),w is w(a) andw(b), whose nonzero components are good. In both (c) and
(d), w is w(c) andw(d), whose nonzero components are bad. Theℓ1-norm sublevel setS‖·‖1 at x⋆ is also shown in all figures, and is associated with (1).

where| · | denotes the cardinality of a set. Note thath is the
number of bad components ofw. Naturally,h ≤ s, where the
differences−h = h+ r is the number of good componentsh
plus r := |{i : wi = x⋆

i 6= 0}|. The quantityξ is the
number of components wherew overestimates the support
of x⋆ minus r. Our bound forℓ1-ℓ1 minimization depends
on these two key parameters.

Theorem 3 (ℓ1-ℓ1 minimization). Let x⋆ ∈ R
n be the vector

to reconstruct and letw ∈ R
n be the side information.

Let f1(x) = ‖x‖1 + ‖x − w‖1, and assumeh > 0 and that
there exists at least one indexi for which x⋆

i = wi = 0. Let
the entries ofA ∈ R

m×n be i.i.d. Gaussian with zero mean
and variance1/m. Then,

w
(

Tf1(x
⋆)
)2 ≤ 2h log

( n

s+ ξ/2

)

+
7

5

(

s+
ξ

2

)

. (5)

Namely, ifm ≥ 2h log
(

n/(s + ξ/2) + (7/5)(s + ξ/2) + 1,
thenx⋆ is the unique solution of(2) with g = g1 and β = 1,
with probability at least1− exp

(

− 1
2 (λm −m)2

)

.

By upper bounding the squared Gaussian width of the
tangent cone off1, Theorem 3 provides a number of mea-
surements above whichℓ1-ℓ1 minimization reconstructsx⋆

with high probability. The assumption that there is at least
one bad component,h > 0, is necessary to guarantee that
the subdifferential∂f1(x⋆) equals the normal cone off1
at x⋆ [28], a relation used in the proof. Whenβ 6= 1, the
assumptionh > 0 can be relaxed; see [11]. It can be shown
that if, contrary to the theorem’s assumptions, there is no
index i for which x⋆

i = wi = 0, we can haven = s + ξ/2,
making the right-hand side of (5) evaluate to−∞ [11].

Notice that (4) and (5) have the same format and both
provide reconstruction guarantees with probability at least
1 − exp

(

− 1
2 (λm − m)2

)

. To compare (4) and (5), assume
first that ξ = 0. In that case, both bounds are equal, apart
from the terms multiplying thelog’s: 2s in (4) and2h in (5).
Since s − h = h + r ≥ 0, the larger the number of good
components,h, and the largerr (number of components
wherex⋆ andw coincide on the support ofx⋆), the smaller
is (5) with respect to (4). This confirms the interpretation

given in Fig. 1 and complements it with the intuitive fact
that a larger should decrease the number of measurements.1

In general, however,ξ 6= 0. In that case, ifn is much larger
thanξ ands, if h, r > 0, and ifξ is larger than a small negative
number, then2h log(n/(s+ ξ/2)), the dominant term of (5),
is smaller than2s log(n/s), the dominant term of (4). That is,
(5) is asymptotically smaller than (4).

To present our results onℓ1-ℓ2 minimization, we define

I :=
{

i : x⋆
i 6= 0

}

J :=
{

j : x⋆
j 6= wj

}

I+ :=
{

i : x⋆
i > 0

}

I− :=
{

i : x⋆
i < 0

}

, ,

andK := |{i ∈ Ic ∩ J : |wi| ≥ 1}|, whereIc is the comple-
ment ofI. We also defineq := |I∪J | andw := maxi∈Ic |wi|.
Note thatw ≤ ‖w‖∞.

Theorem 4 (ℓ1-ℓ2 minimization). Let x⋆, w ∈ R
n be as in

Theorem 3. Letf2(x) = ‖x‖1+ 1
2‖x−w‖22 and assumex⋆ 6= 0,

q < n, and that eitherw < 1 or that there existsi ∈ I ∩ J
such thatβ 6= sign(x⋆

i )/(wi − x⋆
i ). Assume also that

q − s

n− q
≤ |1− w| exp

(

2w log
(n

q

)(w

2
− 1

))

. (6)

Then,

w
(

Tf2(x
⋆)
)2 ≤ 2v log

(n

q

)

+ s+ 2K +
4

5
q , (7)

where

v :=
∑

i∈I+

(1+x⋆
i−wi)

2+
∑

i∈I
−

(1+wi−x⋆
i )

2+
∑

i∈I∩Jc

(|wi|−1)2 .

Theorem 4 not only requires assumptions stronger than the
ones in Theorem 3, but also provides a larger bound. The
assumptionq < n makes the right-hand sides of (6) and (7)
finite. The assumption thatw < 1 or that there existsi ∈ I∩J
such thatβ 6= sign(x⋆

i )/(wi − x⋆
i ) guarantees that∂f2(x⋆)

equals the normal cone off2 at x⋆ [28]. The case where
assumption (6) does not hold is also addressed in [11]. Note,

1Given thats − h = h + r, we could have defined the good components
as the componentsi for which x⋆

i > 0 andx⋆
i ≤ wi, or x⋆

i andx⋆
i ≥ wi. In

that case,s−h would be exactly the number of good components. This was
not done in [11] for technical reasons, and we kept the same notation here.
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Figure 2. Reconstruction rate of standard CS (1),ℓ1-ℓ1 minimization, and
ℓ1-ℓ2 minimization. The vertical lines are the bounds in (4), (5),and (7).

however, that it is easy to satisfy (6) in practice: its left-hand
side can be shown to equal|Ic∩J |/|Ic∩Jc|, i.e., the number
of components in whichx⋆ andw differ outsideI divided by
the number of components in whichx⋆ andw are both zero;
if x⋆ andw are sparse enough, this number is smaller than1.
And the right-hand side of (6) can be large wheneverw 6= 1.
The bound in (7) has the same format as (4) and (5). The
parameterv in (7), however, depends on the magnitude of
the components of bothx⋆ andw. This is contrast with (4)
and (5), whose parameters depend only on the signs ofx⋆

andx⋆ − w, but not on the magnitudes of their components.
This was expected from the interpretation of Fig. 1: the widths
of the tangent cones in Figs. 1(a) and 1(c) do not vary with
the magnitude of the nonzero component ofw, whereas the
widths in Figs. 1(b) and 1(d) do. It is not clear when (7) is
smaller than (4), but note that the term insidelog(·) is smaller
in (7), andv is always larger thans (e.g., if wi = x⋆

i for all
i ∈ I, v = s+

∑

I∩Jc(|wi| − 1)2 ≥ s).

IV. EXPERIMENTAL RESULTS

Our results are illustrated in two types of experiments whose
results are shown in Figs. 2 and 3. For Fig. 2, we generated a
70-sparsex⋆ ∈ R

n and a28-sparsew ∈ R
n, wheren = 1000;

see [11] for how they were generated. Although the supports
of x⋆ andw coincided in22 entries (and differed in6), they
were significantly different:‖w − x⋆‖2/‖x⋆‖2 ≃ 0.45 and
‖w − x⋆‖1/‖x⋆‖1 ≃ 0.25. This yieldedh = h = 11, r = 48,
ξ = −42, v ≃ 103.1, q = 76, andK = 1. Replacing these
parameters in the bounds (4), (5), and (7), we have that, for
perfect recovery with high probability, standard CS requires
at least 472 measurements,ℓ1-ℓ1 minimization requires at
least 136 measurements, andℓ1-ℓ2 minimization requires at
least666 measurements, respectively. These values are marked
by vertical lines in Fig. 2, which shows the experimental
performance of standard CS andℓ1-ℓ1 andℓ1-ℓ2 minimization.
Specifically, it depicts the success rate of each scheme as a
function of the number of measurementsm. For a fixedm, we
ran each algorithm50 times, each time for a different (Gaus-
sian) matrixA. The success rate is the number of successful
reconstructions over50, the total number of trials. Successful
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Figure 3. Solid lines: performance ofℓ1-ℓ1 minimization for 5 different
matrices versusβ. Dotted line: bounds in [11], of which (5) gives the particular
caseβ = 1 (vertical line). Horizontal line: bound in (4) for classical CS.

reconstruction here means‖x̂−x⋆‖2/‖x⋆‖2 ≤ 10−2, wherex̂
is a solution of (1) or (2). We see thatℓ1-ℓ1 minimization
required less measurements for successful reconstructionthan
standard CS orℓ1-ℓ2 minimization. The performance curves
of the last two, in fact, almost coincide, withℓ1-ℓ2 (line
with triangles) having a slightly sharper phase transition. The
figure also shows that, while theℓ1-ℓ2 bound (7) can be quite
loose, theℓ1-ℓ1 bound (5) is quite sharp. In other, unreported
experiments, wherew was not sparse, but‖w−x⋆‖2 was small,
a situation apparently very favorable toℓ1-ℓ2 minimization, we
noticed thatℓ1-ℓ2 minimization still has a performance similar
to CS; of course, in this case,ℓ1-ℓ1 performs worse than both.

Fig. 3 considersℓ1-ℓ1 minimization only. There,x⋆ ∈ R
500

is a 50-sparse vector andw was generated such thath = 11
andξ = −30; see [11] for details. We proceeded as follows:
we generated a Gaussian matrixA ∈ R

500×500 and computed
y = Ax⋆. For a fixedβ, we solvedℓ1-ℓ1 minimization using
only the first row ofA (and of y). If the relative error of
the solution was larger than10−2, we then used the first two
rows of A, and so on, until we found a minimal number of
measurementsm(β) such thatℓ1-ℓ1 minimization with the first
m(β) rows of A yielded a relative error smaller than10−2.
Fig. 3 showsm(β) versusβ. The solid lines correspond to5
different realizations of(A, y), and the dotted line corresponds
to the theoreticalℓ1-ℓ1 bounds in [11]. Note that (5) is the
bound forβ = 1. The plot shows thatβ = 1 minimizes both
the theoretical curve and the experimental ones. Also,β = 1
is the value for which the theoretical bound is the sharpest.

V. CONCLUSIONS

We integrate side information in CS viaℓ1-ℓ1 and ℓ1-ℓ2
minimization and establish bounds on the number of measure-
ments that guarantee successful reconstruction, for Gaussian
measurement matrices. Our bound forℓ1-ℓ1 minimization is
sharp and indicates that if the side information has reasonable
quality, ℓ1-ℓ1 minimization requires much less measurements
than both standard CS andℓ1-ℓ2 minimization. The underlying
geometry of the problem provides an explanation of this
phenomenon, and our experimental results also confirm it.
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