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Abstract—This paper reports a robust scheme for topology
identification and control of networks running on linear dy-
namics. In the proposed method, the unknown network is
enforced to asymptotically follow a reference dynamics using the
combination of Lyapunov based adaptive feedback input and
sliding mode control. The adaptive part controls the dynamics
by learning the network structure, while the sliding mode part
rejects the input uncertainty. Simulation studies are presented in
several scenarios (detection of link failure, tracking time varying
topology, achieving dynamic synchronization) to give support to
theoretical findings.

Index Terms—LTI Networks, Topology Identification, Model
Reference Adaptive Control, Sliding Mode Control

I. INTRODUCTION

Complex networks are capable of modeling many real world
dynamical processes which can be described by a set of
interacting elements (nodes) having some sort of connections
or causal relationships (edges) among them. For example, in
molecular biology, complex networks are used to describe
regulatory relationships between transcription factors and their
target genes [1]. In a communication network, amount of
traffic flowing between nodes constitute a dynamical network.
[2]

In recent years, there has been an extensive attention to
topology identification and control of complex dynamical net-
works. Topology identification aims at finding the strength of
connections between nodes, such as protein-DNA interactions
in the regulation of various cellular processes. or detecting
failures or anomalies in connections. Also, the ability to
control the dynamic variables of nodes by external inputs is
another interesting issue which has appreciable applications
in, for example, synchronization of coupled oscillators [3], or
rate control in communication networks.

Topology identification of networks has been addressed
in various research works. In [4] for example, the topology
of the network is estimated on-line using Lyapunov based
adaptive feedback input. In [5], a node-knockout procedure is
proposed for the complete characterization of the interaction
geometry in consensus-type networks. In a different approach
addressed in [6] and [7], nodes are stimulated by wide-sense
stationary input of unknown power spectral density and the
topology of the network is identified via measuring cross
power spectral densities of the outputs, which encode the
direction and weights of the edges. The control of complex

networks has also been studied extensively. In [8], for example,
a linear state feedback controller is designed to synchronize
the states with a desired orbit.

The purpose of this paper is two fold. We address both
the control and topology identification of complex networks
running on linear dynamics and in presence of input un-
certainty. We assume that the topology of the underlying
graph is unknown or uncertain. We design the input of the
network so as to enforce the dynamic variables of the nodes to
track those of a predefined reference network, without having
the knowledge of the network topology. In this setting, the
unknown topology of the network is also estimated using
Lypunov theory and adaptive feedback gains. Next, we develop
the robust counterpart of the control-identification scheme
using sliding mode technique. With this method the additive
bounded disturbance to the input of the network is rejected,
translating into smooth tracking and estimation. The rest of
the paper is organized as follows: In section II the problem
is defined and the tracking controller and the identifier are
designed. In section III we robustify the algorithm through
incorporating additional sliding mode control law. In section
IV we provide simulations to verify the effectiveness of the
proposed approach. Concluding remarks are drawn is section
V.

II. SIMULTANEOUS IDENTIFICATION AND CONTROL

Consider the following linear time invariant dynamics on a
directed network:

ẋ(t) = Ax(t) + Bu(t) (1)

where A = [aij ] ∈ RN×N is the unknown weighted
adjacency matrix of the directed network with N nodes. aij
denotes the strength of connection from node j to node i,
and is zero when there is no connection. Positive or negative
weights refer to excitatory or inhibitory effect. In consensus
dynamics, the adjacency matrix A is replaced by the negative
Laplacian of the underlying network. Vector x(t) ∈ RN cap-
tures the evolution of the nodes which can be, for instance, the
transcription factor in gene regulatory networks or amount of
traffic entering each node in a communication network. Here,
without loss of generality, we are assuming scalar variables for
each node. Extention to multi variable nodes, where each node
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is represented by an LTI system, is straightforward. Boolean
matrix B = [bij ] ∈ Rn×m, bij ∈ {0, 1} determines which
nodes are accessible by external inputs, where bij = 1 when
input j drives node i and bij = 0 otherwise. External input
u(t) ∈ Rm is responsible for driving the states of the network.
The goal is to control the dynamic variables of the nodes
and to estimate the weights of connection between nodes.
For this goal to be possible, we need structural controllability
assumption of the pair (A,B). In the context of networks,
controllability translates into minimum number of driver nodes
that can uniquely determine the time evolution of all nodes [9].

Remark 1: If the topology of the network is completely
unknown, all nodes must be accessible for input injection,
i.e. B = IN . However, if the boolean structure is known
a priori and the weights of connections are unknown, fewer
nodes are required for input injection. In the development of
the identification algorithm, we consider the latter case.

To begin, we define the following reference network:

ẋm(t) = Amxm(t) +Br(t) (2)

where Am is the reference adjacency matrix, and r(t) is the
reference control input. If the pair (Am, B) is controllable, one
can generate the desired trajectory xm(t) using appropriate
input r(t).

Assumption 2: There exists matrices K∗ ∈ Rm×n such that
the algebraic equations A + BK∗ = Am is satisfied. For the
special case of B = IN , this assumption is held.

Consider the following input for the real network:

u(t) = K∗x(t) + L∗e(t) + r(t) (3)

Substituting Eq. (3) in Eq. (1) results in the following
dynamics for the real network:

ẋ(t) = (A+BK∗)x(t) +Br(t) +BL∗e(t) (4)

Subtracting (2) from (4) yields the error dynamics:

ė(t) = (A+BK∗)x(t)−Amxm(t) +BL∗e(t) (5)

Now if K∗ and L∗ are deigned such that A+BK∗ = Am
and Am + BL∗ is Hurwitz, the error dynamics reduces to
ė(t) = (Am+BL∗)e(t), translating to asymptotic convergence
of e(t) to zero.

It is clear that when matrix A is unknown or uncertain, the
feedback matrix K∗ cannot be designed. By estimating K∗

and using the identity A+BK∗, one can recover the unknown
topology. Denoting this estimate at time t by K(t), the closed
loop network admits the following dynamics:

ẋ(t) = (A+BK(t))x(t) +Br(t) +BL∗e(t) (6)

Similarly, by subtracting (2) from (6), the error dynamics
can be written as:

ė(t) = (Am +BL∗)e(t) +BK̃(t)x(t) (7)

where K̃(t) := K(t)−K∗ is the estimation residual.

Proposition 3: If K(t) satisfies the following differential
equation, the tracking error will asymptotically converge to
zero:

K̇(t) = ˙̃K(t) = −W−1BTPe(t)x(t)T , (8)

where P ∈ Sn×n++ and W ∈ Sn×n++ are positive definite
symmetric matrices.

Proof: We define the following Lyapunov function:

V =
1

2
eTPe+

1

2
tr(K̃TWK̃), (9)

The first term is the weighted two norm of the tracking error,
while the second terms is the weighted Forbenius norm of K̃
which vanishes only when K̃ is identically zero, resulting in
a well defined Lyapunov function. Taking time derivative of
Eq. (9) we see:

V̇ =− 1

2
eTQe+ xT K̃TBTPe+ tr(K̃TW ˙̃K)

=− 1

2
eTQe+ tr(K̃T (BTPexT +W ˙̃K)) (10)

Here in the first equality, we have used the fact that (Am +
BL∗)P + P (Am + BL∗)T = −Q for some positive definite
matrix Q for Hurwitz Am + BL∗. In the second equality,
we have used the identity xT K̃TBTPe = tr(K̃TBTPexT ).
Substituting Eq. (8) in (10) yields:

V̇ = −1

2
eTQe (11)

Let M be the set of all points for which V̇ = 0, i.e.
M = {(e, K̃)|e = 0}. According to Lasalle’s invariance
principle, all dynamic variables will asymptotically converge
to the largest invariant M, where e = 0, completing the proof.

The largest invariant set can be stated as:

ML = {(e, K̃)|e = 0, ˙̃K = 0, BK̃xm(t) = 0} (12)

According to Eq. 8, the learning process is stopped. In
order to have zero steady state estimation residual (K̃ in
(II)), matrix B must be full rank, and the reference signal
xm(t) must span the N-dimensional space in time, i.e. it must
satisfy the persistent excitation condition. Mathematically
speaking, the condition of persistent excitation translates

into the condition
t+T∫
t

xm(τ)xTm(τ)dτ ≥ αIN for some

α, T > 0 and all t ≥ 0 [10]. It can be readily verified that if
xm(t) = [sin(ω0t) sin(2ω0t)...sin(Nω0t)]

T PE condition is
satisfied with T = 2π

ω0
and α = π

ω0
.

Remark 4: In dynamic synchronization, i.e. when
x1(t) = x2(t) = ... = xN (t), the condition of persistent
excitation is failed and the network topology becomes
unidentifiable [11].



III. ROBUST TOPOLOGY IDENTIFICATION

In practical settings, there usually exists uncertainty or
disturbance to the input of the real network. In this case, the
perturbation adversely affects tracking and learning. In order
to reject this disturbance, we might add an additional control
input to robustify the adaptation process. To see this, consider
the following dynamics for the real network:

ẋ(t) = Ax(t) +B(u(t) + d(t)) (13)

where d(t) is the unknown additive disturbance with known
bound. We resort to sliding mode technique which is a robust
control scheme in order to reject this disturbance [12]. To
begin, we first define the following sliding surface:

s(t) , Γ

e(t)− t∫
0

(Am +BL∗)e(τ)dτ

 (14)

Where Γ ∈ Rm×N is a full rank matrix to be designed. By
this definition, it is clear that once s(t) = 0,∀t ≥ t0 for some
t0 ≥ 0 (or i.e. s(t) ≡ ˙s(t) ≡ 0), the tracking error would
follow a stable manifold toward the origin. Hence, tracking
becomes equivalent to regulation of s(t) to zero. Consider the
following input:

u(t) = K(t)x(t) + L∗e(t) + r(t)− ρM s(t)

‖s(t)‖
(15)

Here ‖.‖ refers to two norm. Substituting Eq. (15) in Eq. (13)
results in the following dynamics for the real network:

ẋ(t) = (A+BK(t))x(t) +B(r(t) + L∗e(t)

− ρM s(t)

‖s(t)‖
+ d(t)) (16)

Subtracting Eq.(2) from Eq. (16) results in the following error
dynamics:

ė(t) = (Am+BL∗)e(t)+B

(
K̃(t)x(t)− ρM s(t)

‖s(t)‖
+ d(t)

)
(17)

Proposition 5: Consider the control input (15). If K(t) sat-
isfies the differential equation (18), and ρ = ‖PΓB‖‖d(t)‖+ε
with ε > 0, the tracking error, as described by Eq. 17 will
asymptotically converge to zero.

K̇(t) = ˙̃K(t) = −W−1BTΓTPs(t)x(t)T (18)

Proof: Define the following Lypunov function candidate:

V =
1

2
sTPs+

1

2
tr(K̃TWK̃) (19)

Differentiating Eq. (19) w.r.t. time yields:

V̇ =sTPΓ [ė− (Am +BL∗)e]

=sTPΓB(d− ρM s

‖s‖
) + sTPΓBK̃x+ tr(K̃TW ˙̃K)

=sTPΓB(d− ρM s

‖s‖
) + tr(K̃T (BTΓTPsxT +W ˙̃K))

(20)

The differential equation (18) crosses out the second term of
V̇ . Now by choosing M = (PΓB)−1 we get:

V̇ =sTPΓBd− ρ‖s‖
≤‖s‖(‖PΓB‖‖d‖ − ρ)

≤− ε‖s‖ (21)

where the last inequality follows from the assumption ρ =
‖PΓB‖‖d‖ + ε. We maintain that inequality (21) ensures
asymptotic convergence of the tracking error to zero as

follows: Integrating the inequality 21 implies ε
t∫
0

‖s‖dτ ≤

(V (0) − V (t)). Since V̇ is negative semi-definite and V (t)
is lower bounded, lim

t→∞
V (t) exists and hence by Schwartz

inequality
∞∫
0

‖s‖2dτ ≤
(∞∫

0

‖s‖dτ
)2

, the function g(t) ,

1
2

t∫
0

‖s‖2dτ has finite limit at t = ∞. Also g̈(t) = sT ṡ is

bounded due to the boundedness of s and ṡ. By Barbalat’s
lemma [12] one can conclude that lim

t→∞
s(t) = 0; and by

the definition of s(t), Eq. (14) convergence of e(t) to zero
is guaranteed.

IV. NUMERICAL SIMULATIONS

In this section, we present a simulation study to validate
the effectiveness of the proposed approach. We consider a
weighted undirected network whose weights are realizations of
a uniform distribution in the unit interval, i.e. aij ∼ U(0, 1) for
i 6= j and aii = 0. Each node has its own input, i.e B = I5×5.
For the reference network, we assume Am = −I5×5 and
Bm = I5×5. We also set the weights of the Lyapunov function
as P = I5×5 and W = 10I5×5. The initial condition for the
network is chosen as x(0) ∼ N(0, 1). The initial condition for
the reference network is zero, xm(0) = 0. The initial condition
for the estimator K(t) is also set to zero, K(0) = 05×5. To
fulfill the persistence excitation condition, the reference input
is chosen as : ri(t) = r0isin(wit) where r0i ∼ U(1, 2) and
wi ∼ U(1, 2) Figure.1 illustrates the estimation of all elements
of the adjacency matrix A.

Fig. 1. Estimation of weights

The proposed topology estimator can also be used for
detecting link failures, i.e. sudden changes in the weights
of the links as well as tracking slow temporal variations in
the weights. Figure.2 depicts the scenario when there is an



abrupt failure in the link a12. Figure.3 shows the estimation
behavior when the link a12 has temporal variation a12(t) =
0.56cos2(2πt/800).

Fig. 2. Detection of link failure between node 1 and node 2

In order to show the robustness of the identifier when sliding
mode control is added, we consider a Gaussian disturbance
added to all inputs, d(t) ∼ N (0, 1). Figure.4 shows the
sensitivity of learning in presence of noise. Figure.5 verifies
that the estimator perfectly smooths out the disturbance with
the aid of sliding mode control. In figure.6 we plot the state of
node 1 along with the reference input and in presence of input
disturbance. Note that for tracking purposes, the reference
input may not be sufficiently rich, and hence the learning
process will become useless.
Application in Dynamic Synchronization: In order to show the
effectiveness of the control algorithm on achieving dynamic
synchronization, we choose the reference network as a dy-
namic consensus filter [13] : ẋm(t) = −Lxm(t) + r(t) where
L is the Laplacian matrix of a connected undirected graph.
Figure. 7 illustrates dynamic synchronization where r(t) is the
vector of unit step function and all nodes will asymptotically
agree on unit ramp function.

V. CONCLUSIONS

This papers deals with topology identification and control
of complex networks with linear dynamics. We used model
reference adaptive scheme to design the proper input so
as to drive the states of the nodes to desired trajectories.
The proposed method is capable of controlling the nodes
evolution without any information about the topology of the
graph. The topology estimator is shown, via simulation, to be
capable of tracking temporal variations in the weights of the

Fig. 3. Tracking time varying connection strength between node 1 and node
2

Fig. 4. Estimation of link a12 without disturbance rejection

Fig. 5. Estimation of link a12 with disturbance rejection

Fig. 6. Tracking the reference signal in node 1 with disturbance rejection

Fig. 7. Dynamic Synchronization in the unknown network

connections. By combining the learning controller with sliding
mode control, we could also robustify the algorithm to input
uncertainty.
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