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ABSTRACT

We consider the problem of sampling from data defined on the nodes
of a weighted graph, where the edge weights capture the data corre-
lation structure. As shown recently, using spectral graph theory one
can define a cut-off frequency for the bandlimited graph signals that
can be reconstructed from a given set of samples (i.e., graph nodes).
In this work, we show how this cut-off frequency can be computed
exactly. Using this characterization, we provide efficient algorithms
for finding the subset of nodes of a given size with the largest cut-off
frequency and for finding the smallest subset of nodes with a given
cut-off frequency. In addition, we study the performance of random
uniform sampling when compared to the centralized optimal sam-
pling provided by the proposed algorithms.

Index Terms— Sampling, Graph signal processing, cut-off fre-
quency, spectral graph theory

1. INTRODUCTION

Graphs arise as a natural way to represent large datasets obtained
in many practical contexts, such as social, biological, and sensor
networks [1–3]. For a graph G = (V,E), the data can be embedded
as scalar or vector-valued labels on the vertices v ∈ V , while the
weights we of the edges e ∈ E represent some underlying structure
in the data. As an example, one can think of a graph where each
vertex corresponds to a different movie title, and the edge weights
represent a measure of similarity between the movies. In this case,
the graph data can be the ratings given by a person to each movie
title, and one would expect movies connected by edges with large
weights to be given similar scores.

Particularly in big data scenarios, a natural question is how well
a given sample of the data points can be used to estimate the remain-
der of the data. In other words, is it possible to predict the data point
at one vertex by interpolating the data from another set of points? In
the context of the movie ratings data, this can be viewed as the cele-
brated “Netflix” challenge [4], or more in general as data prediction
problems for recommendation systems. Other applications include
semi-supervised learning of categorized data [5] and ranking prob-
lems [6].

Intuitively, the reason why this graph data interpolation should
be at all possible is that the graph contains information about the
underlying data structure; thus, a set of samples together with the
graph edge weights should reveal information about the missing data
points. As pointed out in [7], this can be viewed as assuming that
the graph data is slow-varying or smooth on the graph. Therefore,
analogous to the classical signal processing domain, where a smooth
signal (i.e., a signal with a small bandwidth) can be recovered from
a small set of samples, smoother graph signals should have a higher
degree of redundancy in their data, and should be recoverable from
a smaller set of samples. These ideas are part of what motivates the

emerging field of signal processing on graphs [8] and, in particular,
the graph data sampling theory [9].

Classical sampling theory states that a signal with bandwidthW
can be recovered if we sample at a rate 2W . Therefore, given a sam-
pling rate, one can compute the cut-off frequency; i.e., the highest
frequency component that a given signal may have so that it is recov-
erable from the samples, which is known as the Nyquist frequency.
In [9], the authors seek a similar characterization in the context of
graph signals, by using tools from spectral graph theory. The notion
of frequency is introduced via the eigenvalues and eigenvectors of
the graph Laplacian. In order to obtain a sampling theorem for graph
signals, they consider two questions: What is the maximum possible
bandwidth (the cut-off frequency) of a graph signal such that it can
be recovered from a given subset of nodes, and conversely, what is
the smallest possible subset of nodes that allows the correct recovery
of all signals up to a given bandwidth?

Several works prior to [9] already dealt with these questions to
some extent. For example, in [10], the cut-off frequency is estab-
lished for bipartite graphs. For arbitrary graphs, sufficient conditions
for unique recoverability from a sampling set are stated in [11], and
then used to derive a lower bound on the cut-off frequency in [7].
In [9], the authors make significant progress towards establishing
a sampling theory for graph signals. They present linear-algebraic
necessary and sufficient conditions for a given set of samples to cor-
rectly recover signals up to a given bandwidth, which is then used
to obtain an increasing sequence of lower bounds on the cut-off fre-
quency of a given sampling set. The drawback of such a charac-
terization is that it is unclear in general whether this method can
indeed provide arbitrarily close approximations to the cut-off fre-
quency and, if so, how far in the sequence of lower bounds one needs
to go.

In this work, we show that the linear-algebraic conditions from
[9] can be used in a different way, which yields an exact character-
ization of the cut-off frequency. This is done in Section 3. Then,
in Section 4, we show that this characterization can be used to pro-
vide efficient algorithms for finding optimal sampling sets, in two
senses. First, what is the subset of nodes of a given size with the
largest cut-off frequency? Second, what is the smallest subset of
nodes with a given cut-off frequency? In addition, in Section 5, we
study the performance of random uniform sampling when compared
to the centralized optimal sampling provided by the proposed algo-
rithms.

2. NOTATION AND BACKGROUND

In this section, we introduce the notation and basic notions of spec-
tral graph theory we will need. We let G = (V,E) be a sim-
ple, undirected graph with |V | = n nodes, and we assign a non-
negative weight wi,j to each (i, j) ∈ E. The degree di of a node
i ∈ V is given by di =

∑
j:(i,j)∈E wi,j , and we let D be an
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n × n diagonal matrix with di as the (i, i) entry. The adjacency
matrix W of the graph is an n × n matrix with wi,j as the (i, j)
entry, and we define the Laplacian matrix as L = D −W . We will
also be interested in the normalized adjacency and Laplacian ma-
trices, given by W = D−1/2WD−1/2 and L = D−1/2LD−1/2

respectively. Both L and L are symmetric positive semi-definite
matrices, and L has eigenvalues λ1, ..., λn that in addition satisfy
0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2. We also let {u1,u2, ...,un} be
the set of orthonormal eigenvectors of L, and U be an n× n matrix
whose ith column is ui. We will use S to denote a subset of the
nodes in the graph, and Sc = V −S to denote the remaining nodes.
A graph signal is a function f : V → R, which can also viewed as
a vector f ∈ Rn with components indexed by the nodes in V . In
addition, we let f(S) be the vector in R|S| with components f(i),
i ∈ S.

The eigenvalues and eigenvectors of L (or L) can be interpreted
as defining a frequency domain for graph signals on G. Analogous
to the classical signal processing setting where the Fourier trans-
form converts a time-signal into the frequency domain, the graph
Fourier transform (GFT) converts a graph signal f into the basis
{u1,u2, ...,un}. More precisely, we let f̃ = UT f be the GFT of
f . It is known that the eigenvalues indeed provide an intuitive no-
tion of frequencies for the graph signal, where the eigenvectors are
the corresponding eigenfunctions. In fact, a higher eigenvalue cor-
responds to an eigenvector that, when seen as a graph signal on G,
presents a faster variation across the edges, or is less smooth [8].
Therefore, it makes sense to define the bandwidth of a graph signal
f to be the largest eigenvalue λi for which the component of f along
ui is nonzero (i.e., fTui 6= 0). We define the Paley-Wiener space as

PWω(G) = span(ui : λi ≤ ω); (1)

i.e., the subspace of Rn with all ω-bandlimited signals.

3. CHARACTERIZING THE CUT-OFF FREQUENCY

In order to define the cut-off frequency of set S, we first need to
define the concept of a uniqueness set. Intuitively, S should be a
uniqueness set for some set A ⊂ Rn if, from the samples in S, one
can correctly reconstruct all graph signals in A. More precisely, we
use the following definition from [9, 11]:

Definition 1. A set S ⊂ V is called a uniqueness set for A ⊂ Rn
if, for any f ,g ∈ A, f(S) = g(S) implies f = g.

We can now define the cut-off frequency.

Definition 2. The cut-off frequency ωc(S) of a set S is the largest ω
such that S is a uniqueness set for PWω(G).

One of the contributions of [9] is the characterization of when
S is a uniqueness set for PWω(G), or more in general for a linear
space M . Let L2(Sc) be the space of all vectors in Rn that are zero
at all components corresponding to nodes in S. In [9], the following
lemma is proved (for the case where M = PWω(G)).

Lemma 1. S is a uniqueness set for a linear space M ⊂ Rn if and
only if

M ∩ L2(Sc) = {0}. (2)

Proof. Suppose that h ∈ M ∩ L2(Sc) with h 6= 0. Then, for any
f ∈ M − {0}, we have g = f + h ∈ M . But this implies that
f(S) = g(S) and f 6= g. By Definition 1, S is not a uniqueness

set for M . Conversely, suppose M ∩ L2(Sc) = {0}. Take any
f ,g ∈M with f(S) = g(S). Then we must have f(S)−g(S) = 0,
and f − g ∈M ∩ L2(Sc), implying that f = g.

In [9], the authors utilize the characterization of a uniqueness set
given by Lemma 1 to estimate the cut-off frequency of a set S. More
precisely, they show that S is uniqueness set for PWω(G) for any
ω ≤ Ωk , (σ1,k)1/k, where σ1,k denotes the smallest eigenvalue
of the reduced matrix (Lk)Sc , obtained by restricting Lk to the rows
and columns corresponding to nodes in Sc. Since, as shown in [9],
(σ1,k)1/k is increasing in k, it provides an increasing sequence of
lower bounds on the cut-off frequency ωc(S).

As it turns out, Lemma 1 can be used in a different way in order
to characterize ωc(S) exactly. Notice that, from (2), S is a unique-
ness set for PWω(G) if and only if PWω(G) ∩ L2(Sc) = {0}.
Now, since L2(Sc) = span{ej : j ∈ Sc}, where ej is the jth
standard basis vector, characterizing the largest λi for which (2)
holds with M = PWλi(G) can be done by simply testing, for
i = 1, ..., n, whether

span(u1, ...,ui) ∩ span(ej : j ∈ Sc) = {0}. (3)

This can in fact be done easily for each i by noticing that

dim (span(u1, ...,ui) ∩ span(ej : j ∈ Sc))
= i+ |Sc| − dim span(u1, ...,ui, ej : j ∈ Sc)
= dimN [u1, ...,ui, ej : j ∈ Sc], (4)

which implies that (3) holds if and only if the matrix [u1, ...,ui, ej :
j ∈ Sc] is full column rank. Therefore, the cut-off frequency ωc(S)
can be calculated exactly as described above and we have the fol-
lowing result:

Theorem 1. For a graph G with normalized Laplacian L with
eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn and corresponding eigenvec-
tors u1, ...,un, the cut-off frequency of a subset of nodes S is given
by

ωc(S) = max {λi : dimN [u1, ...,ui, ej : j ∈ Sc] = 0} .

Hence S is a uniqueness set for PWω(G) if and only if ω ≤ ωc(S).

The advantage of computing the cut-off frequency using Theo-
rem 1 in comparison to the previously known estimate is illustrated
in Fig. 1. We randomly generated a 300-node graph by adding each
edge with probability 0.4 and choosing the weight of each existing
edge independently and uniformly at random from (0, 1). We then
selected a set S with 30 nodes at random, and compared ωc(S) to
the lower bound given by Ωk = (σ1,k)1/k for increasing values of
k. As shown in Fig. 1(a), the lower bound does seem to converge
to ωc(S) but it seems to require large values of k to be arbitrarily
close. In addition, we point out that more important than the actual
value of ωc(S) is the number of eigenvalues ofL below ωc(S). That
corresponds to the dimension of the subspace PWωc(S)(G), which
is the set of graph signals that can be correctly reconstructed from
S. While for k = 120, the approximation given by Ωk to ωc seems
to be good, as shown in Fig. 1(b), it implies that S can reconstruct
signals in a subspace of dimension 17, as opposed to 30. Therefore,
if we use the true cut-off frequency value as opposed to its estimate
in an interpolation technique such as the one described in [7], a bet-
ter prediction of the missing data can be obtained. Finally, we notice
that since |S| = 30, by dimensionality considerations we cannot ex-
pect S to reconstruct signals in a space with dimension larger than
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Fig. 1. (a) Cut-off frequency for a random set S and the previously
known lower bound. (b) Number of eigenvalues below the cut-off
frequency ωc(S) and below the lower bound Ωk = (σ1,k)1/k.

30. Hence, S is optimal in the sense of having maximum cut-off
frequency, even though it was chosen at random. As we discuss in
Section 5, this seems to be the expected behavior, provided that the
graph is connected.

4. FINDING OPTIMAL SAMPLING SETS

Besides characterizing the cut-off frequency of a set S, the approach
from the previous section can be used to answer two optimization
questions related to finding optimal sampling sets. Notice that find-
ing an optimal sampling set, i.e., a set S with the highest cut-off
frequency under some constraint, has significant practical relevance,
since in big datasets, we are often interested in finding a small yet
representative sampling set. The following two results and their
proofs can be understood as providing approaches to selecting opti-
mal sampling sets from the point of view of their cut-off frequencies.

The first problem we consider is to find, for a given ω, the small-
est set S with ωc(S) ≥ ω.

Corollary 1. For a graph G with normalized Laplacian L with
eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn and corresponding eigen-
vectors u1, ...,un, the problem

min
S
|S| subject to ωc(S) ≥ ω,

can be solved in polynomial time and an optimal S has size |S| = m,
where λm is the smallest eigenvalue of L such that λm ≥ ω.

Proof. Let λm be the smallest eigenvalue of L such that λm ≥
ω. Then, since the set {u1, ...,um} is linearly independent, by the
Steinitz exchange lemma, we can find vectors ej1 , ..., ejn−m in the
standard basis of Rn such that {u1, ...,um, ej1 , ..., ejn−m} is a ba-
sis for Rn. Hence, if we let S = {1, ..., n} − {j1, ..., jn−m}, we
have L2(Sc) = span(ej1 , ..., ejn−m), and by following (4),

dim
(
span(u1, ...,um) ∩ span(ej1 , ..., ejn−m)

)
= m+ |Sc| − dim span(u1, ...,um, ej1 , ..., ejn−m)

= dimN [u1, ...,um, ej1 , ..., ejn−m ] = 0.

From Theorem 1, we conclude that wc(S) ≥ λm ≥ ω. Moreover,
for any S ′ with |S ′| < m, we will have |(S ′)c| > n −m, and we
must have

dimN [u1, ...,um, ej : j ∈ (S ′)c] ≥ 1,

and Theorem 1 now implies that ωc(S ′) ≤ λm−1 < ω.
Computing a set S of minimum size satisfying ωc(S) ≥ ω re-

quires first performing the eigendecomposition of L, and then con-
structing the basis [u1, ...,um, ej1 , ..., ejn−m ] as described in Al-
gorithm 1, all of which can be done in polynomial time, since L is
positive semidefinite.

Algorithm 1 Computing minimal S with ωc(S) = λm

S ← ∅
[b1 · · · bn]← [e1 · · · en]
for u = u1,u2, ...,um do

Write u as u =
∑n
i=1 αibi

`← arg maxi/∈S |αi|
S ← S ∪ {`}
b` ← u

end for

The second optimization question is to find, for a given size, the
sampling set S with the maximum cut-off frequency. As it turns out,
the same algorithm provides an efficient solution to this problem.

Corollary 2. For a graph G with normalized Laplacian L with
eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn and corresponding eigen-
vectors u1, ...,un, the problem

max
S

ωc(S) subject to |S| ≤ m,

can be solved in polynomial time and the optimal S has ωc(S) =
λm.

Proof. We know from the previous corollary that we can find a set
S of size |S| = m and cut-off frequency ωc(S) = λm using Algo-
rithm 1 in polynomial time. Moreover, for any S with |S| ≤ m, we
have |Sc| ≥ n−m, and Theorem 1 implies that ωc(S ′) ≤ λm.

In Fig. 2, we illustrate the application of Algorithm 1 to find the
optimal set S in two scenarios. First we consider a random graph
with 200 nodes on the plane, where edges are added between nodes
whose distance is below a fixed threshold and all edges have weight
1. In Fig. 2(a), we see the optimal set S with |S| = 25. As intuition
would suggest, the nodes in S try to cover the graph evenly, and the
number of nodes in each connected component seems proportional
to its size. In Fig. 2(b), we consider a cycle with 200 nodes and
additional edges connecting a set A of 4 consecutive nodes to a set
B of 40 consecutive nodes. We see that an optimal set S contains
one node in A and is essentially evenly distributed over the nodes in
V −B, since nodes in B are close to the one node chosen from A.

5. PERFORMANCE OF RANDOM SAMPLING

As we noticed in Section 3, for the example illustrated in Fig. 1(b), a
random set S of size |S| = 30 has ωc(S) = λ30. From Corollary 2,
this is in fact an optimal choice of S under the constraint |S| ≤ 30.
Theorem 1 in fact suggests that this should be the case under fairly
general conditions, since it is reasonable that by picking a set of
n−m standard basis vectors ej1 , ..., ejn−m at random we will have

dimN [u1, ...,um, ej1 , ..., ejn−m ] = 0.

Notice however that, if the graph has disconnected components, ran-
dom sampling may lead to one of the components not being sampled
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Fig. 2. (a) Optimal set S with |S| = 25 (nodes in red) for graph
with 200 nodes. (b) Optimal set S with |S| = 20 (nodes in red) for
200-cycle with additional edges.

at all and, as illustrated in the example in Fig. 2(a), the optimal sam-
pling set tries to keep the number of samples per connected compo-
nent proportional to the size of the component. We conjecture the
following:

Conjecture 1. Consider a connected graph G = (V,E) and an
arbitrary set S ⊂ V with |S| = m. For almost all assignments of
the edge weights, if we let 0 = λ1 ≤ ... ≤ λn be the eigenvalues of
the normalized Laplacian L,

dimN [u1, ...,um, ej : j ∈ Sc] = 0,

implying that ωc(S) = λm.

Numerical experiments where we assign the weights to the
edges of a connected graph at random give strong support for this
claim. If true, this shows that, in terms of the cut-off frequency,
sampling uniformly at random from the nodes in a graph is optimal.
From a practical point of view this is significant since it would ob-
viate the need for a centralized algorithm such as Algorithm 1 to
determine an optimal sampling set.

Nonetheless, this also shows a drawback of choosing a sampling
set solely based on the cut-off frequency. For example, consider
the graph in Fig. 3(a). The left half of the 100 nodes is densely
connected, while the right half is not. As intuition suggests, the
optimal sampling set of size |S| = 30 picks many more points from
the right half of the graph. In Fig. 3(b), we consider adding links of
very small weights (shown in yellow) between any two nodes. For
the resulting connected graph, according to Conjecture 1, any set
with |S| = 30 would be optimal from a cut-off frequency point of
view. This suggests that the cut-off frequency is not a robust metric
for choosing the best sampling set. Nonetheless, we point out that in
Algorithm 1, by choosing ` to be arg maxi/∈S |αi| as opposed to any
i with αi 6= 0, we try to make sure that the vectors in the resulting
basis are “as orthogonal as possible” to each other. This makes the
algorithm’s output set robust to small variations in the weights and,
as shown in Fig. 3(b), the optimal sampling set is the same as in
Fig. 3(a).
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Fig. 3. (a) Optimal set S with |S| = 30 (nodes in red) for a graph
with 100 nodes divided into a dense part and a sparse part. (b) Opti-
mal set S for the same graph after adding edges of very small weight
(shown in yellow) between all pairs of nodes.
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