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Abstract—An average healthy person does not perceive the
world in just black and white. Moreover, the perceived world is
not composed of pixels and through vision humans perceive struc-
tures. However, the acquisition and display systems discretize
the world. Therefore, we need to consider pixels, structures and
colors to model the quality of experience. Quality assessment
methods use the pixel-wise and structural metrics whereas color
science approaches use the patch-based color differences. In this
work, we combine these approaches by extending CIEDE2000
formula with perceptual color difference to assess image quality.
We examine how perceptual color difference-based metric (PCDM)
performs compared to PSNR, CIEDE2000, SSIM, MS-SSIM and
CW-SSIM on the LIVE database. In terms of linear correlation,
PCDM obtains compatible results under white noise (97.9%), Jpeg
(95.9%) and Jp2k (95.6%) with an overall correlation of 92.7%.
We also show that PCDM captures color-based artifacts that can
not be captured by structure-based metrics.

Index Terms—color-difference, perceptual quality, objective
quality metrics, color artifacts

I. INTRODUCTION

The phrase ”quality of experience” in the image processing
literature indicates the perceived quality of images. Therefore,
perception matters as much as the fidelity for consumer elec-
tronics applications. Images are commonly analyzed in terms
of pixels and structures in the image processing literature.
However, color science literature mostly focus on large patches
that are functions of visual fields. In our view, in order to
model the full quality of experience, we need to consider the
literature of both image processing and color science. The
proposed approach contributes to the literature by utilizing the
color label differences in the quality of experience estimation.

Objective quality metrics are used in the image processing
literature to estimate the quality of experience or to quantify
distortions. Pixel-wise fidelity metrics focus on the exact
differences between pixels of the images. As an example, root-
mean-square error and peak signal-to-noise ratio (PSNR) are
commonly used in the literature because of their simplicity. In-
stead of calculating the pixel-wise fidelity, structural fidelity of
images are also used to estimate the quality. SSIM calculates
the local statistics of images over a single scale whereas MS-
SSIM follows a multi-scale approach to calculate SSIM over
different resolutions using Laplacian pyramid as described in
[1]. CW-SSIM [2] also follows a multi-scale approach but
instead of calculating the local statistics in the spatial domain,
wavelet coefficients are used. Most of these quality metrics use

the luminance components or grayscale images and neglect the
color channels.

In contrast to the luminance-based image quality measures,
color information is commonly used in the color science
literature to detect the differences between similar color tones
[3]. The International Commission on Illumination (CIE) is re-
sponsible for the international coordination of lighting related
technical standards including color difference. CIEDE2000
color difference equation was developed by the CIE technical
committee and it is one of the state of the art metrics in
the color science literature as described in [4], [5]. Color
differences and similarities can be used as descriptors of the
images. The authors in [6] propose learning color names from
real-world images, which can be used for object recognition
and image classification as described in [7]. Color naming
descriptors are also used in image classification in terms of the
aesthetics quality of the images as explained in [8]. Moreover,
color naming descriptors are used in [9] to perform color-based
edge detection.

Color difference formulas are commonly used in tone
matching for color reproduction. The authors in [10] use a
color difference-based metric to predict texture visibility of
printer halftone patterns. The way color difference is used
in [10] can be considered as a transition in the application
field of color difference equations from basic tone matching
to textured image comparisons. In [11], the authors discuss the
connections between image quality, difference and appearance.
Even color image quality is discussed in these approaches,
authors consider the problem from the point of color science
and leave the discussion limited without fully studying the
objective quality metrics and their performance under different
kinds of distortions such as compression and communication
errors. The authors in [12] take the difference equations one
step further and describe a calibration process for the color
difference equations under experimental conditions as well
as the usage of CIEDE2000 as an image quality metric.
However, a very fundamental characteristic of the difference
equations is overlooked. In principle, CIEDE2000 is designed
for tone matching between similar colors that are bounded by,
at most, medium differences and not utilized for significant
tone differences.

In this paper, we augment the range of CIEDE2000 formula
with perceptual color difference as in [9] to generalize the
method proposed by the authors in [12]. In Section II, we de-



Fig. 1. Perceptual Color Difference-based Metric Pipeline
scribe the main blocks in the proposed quality metric pipeline.
We discuss the experimental setup, results and observations in
Section III and conclude our discussion in Section IV.

II. COLOR-BASED IMAGE QUALITY ASSESSMENT

The pipeline of the proposed image-quality assessment
method is given is Fig. 1. Since human visual system is less
sensitive to the color compared to the structure, color-based
image quality can be calculated over the smoothed version
of the image. Images are downsampled using the defaults of
bicubic interpolation and anti-aliasing. Sampling rate is set
to 0.05 after exhaustively simulating the range from 0.02 to
0.25. The effect of downsampling is explained in Section III-B.
After downsampling, the RGB images are converted to the Lab
domain to represent pixels in a perceptually correlated color
space. Color descriptors are calculated for each pixel as it is
described in Section II-A. We explain the usage of the Earth
Mover’s Distance (EMD), the CIEDE2000 formula and the
logistic-based fusion function in Section II-B.

A. Color Naming

Linguistic color names are used to label image pixels with
perceived color classes. The authors in [6] introduced color
naming as a 11−D image descriptor. Each dimension in the
descriptor corresponds to the probability of that pixel to be
perceived as one of the 11 basic colors. These basic color
names are: black, blue, brown, grey, green, orange, pink,
purple, red, white and yellow. In order to determine the pixel
values for the finite color vocabulary, Google Image is used to
obtain the training set, which also includes the wrongly labeled
images. Color names are learned from the noisy data using the
variants of the probabilistic latent semantic analysis model as
explained in [6]. In addition to 11−D color descriptors, we
have also experimented 25−D and 50−D descriptors that
span a wider color range. However, we have not observed a
significant increase in the estimation accuracy.

B. Color Difference

The CIEDE2000 color difference equation is designed to
calculate the difference between similar colors with low level
variations. In the proposed metric, we keep the display and
viewing related parameters constant to make the metric inde-
pendent of acquisition and display configurations. In order to
limit the calculation of CIEDE2000 to low-level differences,
a threshold is set for color difference values and the result is
divided by the same threshold to normalize the difference to be
between 0 and 1. S-CIELab [13] color difference equation is

not used in the proposed metric to eliminate parameter tuning
including but not limited to spatial and color calibration.

The Earth Mover’s Distance (EMD) is designed to calculate
the difference between two distributions. The basic idea behind
EMD is to calculate the minimal cost that is required to
transfer one distribution into the other [14]. In [9], EMD is
calculated between two 11−D color naming descriptors where
the flow between each color label probability is calculated
to obtain the cost. Instead of using the uniform distance, the
flow between color labels is scaled according to the perceived
color distance. We can calculate this distance by using the
joint distribution of basic color terms in the Lab color cube
as explained in [6]. The visualization of the perceived distance
is depicted in Fig. 2.

Fig. 2. Perceived distance between basic color categories.

EMD considers all flow scenarios from the source to the
target color descriptor to minimize the total cost. We can
formulate the EMD expression as in Eq. 1 where i is the index
of the color label in the reference color descriptor and j is the
index of the compared color descriptor. Flow from the ith color
probability in the reference to the jth color probability in the
compared descriptor is represented by fi j and the perceived
distance between the color terms in the dictionary is shown
with di j.

EMD = min
fi, j

{
11

∑
i=1

11

∑
j=1

di, j fi, j

}
(1)

The authors in [9] combined CIEDE2000 with EMD [14]
using a logistic function to obtain a perceptually correlated
difference function as formulated in Eq. 2. The difference
function is used to detect edges. Si is the Lab value and Pi is
the color naming descriptor corresponding to a single pixel of
the image indexed with i. al pha is set to 0.5 to equivalently
combine CIEDE2000 and EMD and and z is set to 10 as in
[9]. The parameters in the logistic-bsaed fusion are selected
independent from the tested image database.

1

1+ e−z(((α)CIEDE(S1,S2)+(1−α)EMD(P1,P2))− 1
2 )

(2)



In the proposed pipeline, we asses the perceived quality
of the images by extending the range of the color difference
equation. CIEDE2000 is unreliable when the color difference
is more than 7 CIELAB. Therefore, we threshold the color
difference equation for high level differences and just use the
transportation distance between the color descriptors that are
inherently used for images significantly different from each
other. The scope of the proposed metric is to introduce the
perceptual color differences into image quality estimation. As
a future work, other distance metrics can also be used to
quantify the difference between color descriptors.

III. EXPERIMENTAL EVALUATION

A. Experimental Setup

In this paper, we use the release 2 version of the LIVE
image database for the validation of the proposed metric. The
resolution of most of the images in the database is 768x512 and
images are interpolated (bicubic) to 1024x768 for subjective
tests. There are 29 reference images and 779 distorted images.
JPEG, JPEG2000 (Jp2k), White Noise (Wn), Gaussian Blur
(Gblur) and Simulated Fast Fading Rayleigh Channel errors
(FF) are the main sources of degradation in the image database.
A more detailed information related to LIVE image database
can be found in [15]. As it is explained in [15], the non-linear
regression formulated in Eq. 3 is applied to each objective
quality metric to make a fair comparison.

S = β1

(
1
1
− 1

2+ exp(β2(S0−β3))

)
+β4S0 +β5 (3)

PCDM is used to refer to the proposed perceptual color
difference-based metric in the rest of the paper. We compare
the performance of PCDM with PSNR, CIEDE2000 SSIM, MS-
SSIM and CW-SSIM, which were described in Section I.

B. Results

The scatter plots of PCDM under different distortion types
are given in Fig. 3. Solid lines correspond to the ideal scenario
where quality estimation is equivalent to the average subjective
scores. Dashed lines are located one standard deviation away
from the solid line and dotted lines are two standard devia-
tions away. Linear correlation coefficient (CC) and root-mean-
square error (RMSE) are calculated between the quality metric
estimates and the difference mean opinion scores (DMOS)
after non-linear regression. High CC values mean that the
relation between the estimates and the subjective scores are
highly linear. Low RMSE values indicate the proximity of the
estimates to the DMOS values.
PCDM accurately estimates the subjective results under

White Noise with a CC of 0.979 and RMSE of 5.08 as shown
in Fig. 3(d). In the cases of Jpeg and Jp2k, nearly all of the
estimates are in the distance of one standard deviation with
CC values around 0.95 and RMSE values ranging from 7.10
to 7.49 as given in Fig. 3(b)-(c). However, when the images
are distorted with Gaussian Blur and Fast Fading, some of
the PCDM-based estimates exceed the one standard deviation
boundary with CC values less than 0.9 and RMSE values

0 50 100
−50

0

50

100

150
CC: 0.926 RMSE: 8.67

PCDM

D
M

O
S

(a) Full Image Set

0 50 100
−50

0

50

100

150
CC: 0.956 RMSE: 7.49

PCDM

D
M

O
S

(b) Jp2k Compression

0 50 100
−50

0

50

100

150
CC: 0.959 RMSE: 7.10

PCDM

D
M

O
S

(c) Jpeg Compression

0 50 100
−50

0

50

100

150
CC: 0.979 RMSE: 5.08

PCDM

D
M

O
S

(d) White Noise

0 50 100
−50

0

50

100

150
CC: 0.873 RMSE: 10.7

PCDM

D
M

O
S

(e) Gaussian Blur

0 50 100
−50

0

50

100

150
CC: 0.849 RMSE: 11.9

PCDM

D
M

O
S

(f) Rayleigh Fastfading
Fig. 3. Scatter plots of DMOS versus PCDM after non-linear regression.

higher than 10.0 as shown in Fig. 3(e)-(f). The performance
comparison between PCDM and other objective quality metrics
are given in Table I.
PCDM, CIEDE2000, SSIM and MS-SSIM are close to each

other in terms of accurately estimating the subjective results
under Jp2k, Jpeg and Wn distortions. However, both of the
color-based metrics perform poorly compared to SSIM and
MS-SSIM under FF and Gblur. PCDM performs better than
CW-SSIM under all types of distortions and it performs
better than PSNR under all of the distortion types except
FF. Extending the range of CIEDE2000 with perceptual color
difference leads to a decrease of 0.35 in the RMSE value and
an increase of 0.07 in the CC value.

TABLE I
PERFORMANCE OF THE OBJECTIVE QUALITY METRICS

Metrics Jp2k Jpeg Wn Gblur FF All
Pearson CC (Linear)

PSNR 0.923 0.913 0.945 0.843 0.887 0.898
CIEDE2000 0.954 0.956 0.981 0.892 0.850 0.920

SSIM 0.963 0.957 0.976 0.940 0.956 0.945
MS-SSIM 0.962 0.961 0.977 0.943 0.948 0.946
CW-SSIM 0.926 0.927 0.949 0.768 0.835 0.872

PCDM 0.956 0.959 0.979 0.873 0.849 0.927
RMSE

PSNR 9.92 10.10 8.34 11.80 10.22 10.12
CIEDE2000 7.61 7.79 5.64 11.33 11.92 9.02

SSIM 7.11 7.74 8.65 7.54 6.45 7.52
MS-SSIM 7.12 7.30 8.38 7.38 7.04 7.43
CW-SSIM 9.75 9.30 9.24 14.45 13.62 10.87

PCDM 7.49 7.10 5.08 10.73 11.96 8.67

The authors in [15] examine quality versus distortion param-
eter distributions for the LIVE database. In the case of Fast
Fading, data points are distributed all around the scatter plot
with a high variation. Because there is not a high correlation
between the distortion parameters and DMOS, it is expected
that PCDM would not be a good model to estimate Fast Fading.
However, there is a high correlation between the distortion



parameters and DMOS in Gaussian Blur and hence PCDM is
expected to model the Gaussian Blur distortions.

(a)Reference Image (b) Distorted Image
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Fig. 4. Reference image, distorted image and corresponding distortion maps.
SR: sampling rate, Res:Residual

We randomly selected the bikes image from the LIVE
database to visualize the distortion maps. However, the same
observations are also valid for other images. Reference and
distorted images are shown in Fig. 4. Circular-symmetric 2-D
Gaussian kernel with a standard deviation of 1.3 is used to
degrade the reference image. In general, overall quality of the
images is calculated by taking the average over the distortion
maps. However, in Fig. 4, we directly show the distortion maps
calculated by SSIM and PCDM to examine how the metrics
perform. Residual of PCDM is plotted for a fair comparison
since high PCDM corresponds to low quality and vice versa.

SSIM detects the observable degradations which are mostly
around the textured regions as shown in Fig. 4(c). We examine
the effect of downsampling by varying the sampling rate in
PCDM model from 0.05 to 0.50 and then to 1.00. A sampling
rate of 0.05 results in oversampling of the image and PCDM
does not work well as shown in Fig. 4(d). When we increase
the sampling rate to 0.5 and to 1.0, PCDM captures the
degradations around the textured regions as shown in Fig.
4(e)-(f). We can obtain higher CC and lower RMSE with a
higher sampling rate. However, the proposed method becomes
infeasible because of the time-complexity. We summarize the
changes in the average residual PCDM and the execution time
per single image under varying sampling rate in Table II. We
used an Intel(R) Core(TM) i7-3770 CPU @3.50 GHz with
32.0 GB ram.

TABLE II
PCDM UNDER VARYING SAMPLING RATE

PCDM Sampling Rate Avg. Res. PCDM Execution Time (sec)
0.05 0.98 1.3
0.50 0.96 120.5
1.00 0.93 479.5

Quality metrics such as SSIM, MS-SSIM and CW-SSIM
estimate the perceived quality based on the structural cues
by neglecting chroma information. However, PCDM utilizes

both luma and chroma. In order to examine how metrics
perform under structural and color artifacts, Jpeg compressed
image with a bpp of 0.208 is used. In the visualization,
compression artifacts are preferred over Gaussian Blur and
White Noise because compression corresponds to a more
realistic degradation scenario. The distorted image is converted
from the RGB color space to the YCbCr color space. We
replace the chrominance channels (Cb and Cr) in the distorted
image with the reference to obtain Intensity distortion as
given in Fig. 5(a) and we replace the distorted luminance
(Y) channel with the error-free channel in the reference to
obtain the Chroma distortion as given in Fig. 5(b). Chroma
distortion results in loss of color information around some
connected regions such as the soil surface and the grass
region. We also observe tonal changes over some objects and
small regions. Whereas, Intensity distortion leads to blockiness
artifacts all over the image especially around textured regions.
SSIM detects the blockiness in Intensity distortion whereas
PCDM does not capture the distortions with a sampling rate of
0.05. However, PCDM detects color losses at the background
region and the tonal changes around foreground objects in the
Chroma distortion, which are overlooked by SSIM.

(a)Intensity Distortion (b) Chroma Distortion
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Fig. 5. Intensity and chroma distortion with corresponding distortion maps

IV. CONCLUSION
In this paper, we extended the CIEDE2000 formula using a

perceptual color difference metric to estimate the subjective
quality of images. We have shown that perceptual color
difference metric results highly correlate with DMOS and it
performs better than the pixel-wise fidelity metrics and the
CIEDE2000 formula in terms of correlation and root-mean-
square error. However, structural metrics perform better than
color-based metric under Fast Fading and Gaussian Blur due
to the oversampling in PCDM. When the sampling ratio is
increased, PCDM performs better but it also increases the
time-complexity significantly. We started combining color and
structure based metrics to estimate the quality of experience
for the end user and the hybrid metric already leads to
promising results in LIVE and TID2013 image databases.



REFERENCES

[1] Z. Wang, E. P. Simoncelli and A. C. Bovik, ‘ Multi-Scale Structural
Similarity for Image Quality Assessment’, Proceedings of the 37th IEEE
Asilomar Conference on Signals, Systems and Computers,Pacific Grove,
CA, Nov. 2003.

[2] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik and M. K. Markey,
‘Complex Wavelet Structural Similarity: A New Image Similarity Index’,
IEEE Transactions on Image Processing, vol. 18, no. 11, Nov. 2009.

[3] G. Wyszecki and W. S. Stiles, ‘Color Science: Concepts and Methods,
Quantitive Data and Formulae’, Wiley, 1982.

[4] M. Luo, G. Cui and B. Rigg, ‘The Development of the CIE 2000 Colour-
Difference Formula: CIEDE2000’, Color Research & Application, 2001.

[5] G. Sharma, W. Wu and E. Dalal, ‘The CIEDE2000 Color-Difference For-
mula: Implementation notes, Supplementary Test Data and Mathematical
Observations’, Color Research & Application, 2005.

[6] J. Van De Wijer, C. Schmid, J. Verbeek and D. Larlus, ‘Learning
Color Names for Real World Applications’, IEEE Transactions in Image
Processing, 2009 2000.

[7] J. van de Weijer and C. Schmid , ‘Applying color names to image
description ’, IEEE International Conference on Image Processing, Sep.
2007.

[8] D. Temel and G. AlRegib, ‘A Comparative Study of Computational
Aesthetics’, IEEE International Conferernce in Image Processing, 2014.

[9] O. Pele and M. Werman, ‘Improving Perceptual Color Difference using
Basic Color Terms’, CoRR, 2012.

[10] X. Zhang and D.A. Silverstein and J.E. Farrell, and B.A. Wandell, ‘Color
image quality metric S-CIELAB and its application to halftone texture
visibility’, IEEE International Computer Conference, 1997.

[11] G.M. Johnson and M.D. Fairchild, ‘Measuring images: differences,
quality, and appearance’, SPIE Human Vision and Electronic Imaging,
2003.

[12] Y. Yang and J. Ming and N. Yu, ‘Color Image Quality Assessment Based
on CIEDE2000’, Advances in Multimedia, 2012.

[13] X. Zhang and B. A. Wandell, ‘A Spatial Extension of CIELAB for
Digital Color Image Reproduction’, SID Journal, 2012.

[14] Y. Rubner, C. Tomasi and L. J. Guibas, ‘The Earth Mover’s Distance as
a Metric for Image Retrieval’, International Journal of Computer Vision,
2000.

[15] H. R. Sheikh, M. F. Sabir and A. C. Bovik, ‘A Statistical Evaluation
of Recent Full Reference Quality Assessment Algorithms ’, IEEE
Transactions on Image Processing, vol. 15, no. 11, pp. 3440-3451, Nov.
2006.


	I Introduction
	II Color-based Image Quality Assessment
	II-A Color Naming
	II-B Color Difference

	III Experimental Evaluation
	III-A Experimental Setup
	III-B Results

	IV Conclusion
	References

