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Abstract—In the field of seismic interpretation, univariate data-
based maps are commonly used by interpreters, especially for
fault detection. In these maps, contrast between target regions
and the background is one of the main factors that affect the
accuracy of the interpretation. Since univariate data-based maps
are not capable of providing a high contrast representation,
to overcome this issue, we turn these univariate data-based
maps into multivariate data-based representations using color
blending. We blend neighboring time sections, frames that are
viewed in the time direction of migrated seismic volumes, as
if they corresponded to the red, green, and blue channels of
a color image. Furthermore, we apply color transformations
to extract more reliable structural information. Experimental
results show that the proposed method improves the accuracy of
fault detection by limiting the average distance between detected
fault lines and the ground truth into one pixel.

Index Terms—seismic interpretation, color space transforma-
tions, color blending, perception-based detection, skeletonization

I. INTRODUCTION

The displacement of fractures in the earth’s crust leads to the
formation of faults, which are significant geological structures
for hydrocarbon exploration. The movement of low permeabil-
ity rocks along faults may seal porous reservoir rocks in traps
and results in the formation of reservoir regions. Therefore, oil
and gas exploration require the accurate detection of faults.
Conventionally, experienced interpreters can label faults in
collected seismic data. However, the manual interpretation
of seismic data is very time consuming and labor intensive,
especially with the dramatically growing size of recently
acquired datasets. Thus, the design and the implementation
of automatic or semi-automatic fault detection methods are
catching a renewed interest in both industry and academia.

The characterization of seismic structures is well practiced
in the literature of several fields including but not limited
to seismology and geology. The texture of faults caused by
the movement of rocks, different from the uniform texture
of horizons, represents discontinuities along horizons. Many
seismic attributes such as semblance [1], variance [2], cur-
vature [3], and gradient amplitude [4][5] have been used to
measure discontinuities. In addition to these basic attribute-
based approaches, a number of more complex methods in-
volving image processing techniques have been proposed to
semi-automatically detect faults. Cohen et al. [6] introduced
the use of directional filters to enhance the discontinuity

cube and proposed a thinning process to extract one-pixel-
width fault lines. The Hough transform, as a powerful tool
to detect lines and curves in images, was first proposed by
AlBinHassan and Manfurt [7] to detect fault lines in vertical
sections. Similarly, the authors in [8] applied the cascaded
Hough transform to detect fault surfaces in 3D seismic data. To
obtain more reliable results, Wang et al. [9] proposed detecting
fault features with the Hough transform, removing noisy
features under geological constraints, and labeling fault lines
by optimally connecting the remaining features. Moreover, by
borrowing the idea of motion vectors and utilizing a small
number of detected fault lines, Wang et al. [10] tracked fault
lines throughout the seismic volume with high interpretation
efficiency. Recently, Zhang et al. [11] proposed automatically
detecting faults in time sections by adopting a biometric
algorithm used for extracting the veins of human fingers. The
intuition comes from the structural similarity between faults
and capillary veins.

The methods mentioned so far overlook similarities among
the neighboring structures of time and seismic sections and
focus only on univariate data. However, to facilitate fault
detection for interpreters, we need to increase the contrast
of attribute maps using multivariate representations. This
methodology has been widely used to synthesize images, in
which color spaces could provide more details. Low contrast
may result from limited color tones. Therefore, to adjust
the contrast of different regions and highlight the regions of
interests, the authors in [12] increased the number of tones
in visualization using RGB blending. Similarly, the authors
in [13] and [3] proposed color blending methods to enhance
the visualization of geological elements. In addition to color
blending, color transformations also have the capability of
enhancing visualization by separating chroma channels from
the intensity channel that contains structural information. The
authors in [14] adopted color transformations to map images
from RGB to HSV and sharpened the representations of seismic
attributes in the saturation (S) channel.

In this paper, we combine seismic attribute extraction with
color blending and color transformations to enhance fault
detection accuracy for interpreters. We first derive the sem-
blance maps of neighboring time sections and blend these
maps into a single color representation. Then, we transfer the
blended maps into different color spaces to obtain channels
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Fig. 1: Block diagram of the proposed method

that contain structural information. We enhance these channels
using smoothing and adaptive histogram equalization. Then,
by applying thresholds on these enhanced channels, we high-
light fault regions in binary images. Finally, we combine these
binary images and perform weighted skeletonization to extract
one-pixel-width fault lines. The paper is organized as follows.
In section II, we explain, in detail, the proposed algorithm.
Section III shows experimental results and we conclude our
discussions in Section IV.

II. THE PROPOSED METHOD

The block diagram of the proposed method is shown in
Fig. 1. We explain the main blocks of the proposed pipeline
in the following subsections.

A. RGB Blending of Semblance Maps

To characterize fault regions in time sections, we utilize the
most prominent feature of faults, discontinuities in horizons,
which can be measured using the semblance attribute proposed
by Marfurt et al. [1]. Semblance outperforms other seismic
attributes in identifying the existence of faults by examining
local dip information with a neighboring average. Fig. 2 illus-
trates the time section at t0, denoted St0 and its corresponding
semblance map Dt0 . As shown in Fig. 2(b), the red regions
with high semblance values belong to horizons. In contrast,
the green and blue regions with smaller semblance values
represent likely fault regions.

Based on the semblance attribute, the algorithm proposed by
Zhang et al. [11] extracts fault lines in a single time section.
However, to obtain more accurate attribute maps, we need
to use the highly correlated information of neighboring time
sections. Time section St0 has two neighboring sections, St0−1
and St0+1, the faults of which have shapes and structures
similar to those of St0 , because of the consistent nature of
geological structures. Since semblance maps were proposed
based on geological structures, we select the semblance maps
of three neighboring time sections, referred to as Dt0−1, Dt0 ,
and Dt0+1. Because of the high correlation between these
neighboring semblance maps, we blend them as if they were
red (R), green (G), and blue (B) channels of a single color
image. The color-blended image with high contrast is shown
in Fig. 3(a), in which black stripes correspond to likely fault
regions. Compared to Dt0 , Ct0 acts as a better indicator of
likely fault regions. Thus, color-blended maps can increase
the accuracy in fault detection for the interpreters.

B. Fault Region Highlighting in Various Color Spaces

Each channel in the RGB color space contains both chroma
and luma information. In order to separate the color and

(a) Time section St0 (b) Semblance map Dt0

Fig. 2: The time section at t0 and its semblance map

(a) Ct0 in RGB space (b) L channel in Lab model, Lt0

(c) Smoothed L channel (d) Smoothed L channel after CLAHE, L̂t0

Fig. 3: Color-blended image Ct0 and the enhancement process
of L channel

structure-based components, we can use color space trans-
formations. In the proposed pipeline, we transform the RGB
images into YCrCb, Lab, and HSV spaces and utilize the
luminance (Y), lightness (L), and value (V) channels from
different color spaces. For the visualization of the main blocks
in the pipeline, we use the lightness channel. However, the
same steps are applicable to the luminance and value channels
as well. An intensity map, denoted Lt0 , corresponding to the
lightness channel is shown in Fig. 3(b), in which dark stripes
indicate likely fault regions.

To remove the noise around the likely fault regions, we
smooth lightness channel Lt0 using a Gaussian kernel with
standard derivation σ and size r × r, and the smoothed
lightness map is shown in Fig. 3(c). Furthermore, to enhance
the contrast between faults and horizons, we utilize contrast
limited adaptive histogram equalization (CLAHE) [15]. The
main advantage of CLAHE, compared to other histogram
equalization methods, comes from the contrast threshold that
prevents the majorities from biasing the equalization. In the
case of seismic maps, CLAHE eliminates the contrast en-
hancement of horizon regions and boosts the contrast for
likely fault regions. The enhanced lightness channel, denoted
as L̂t0 , is shown in Fig. 3(d), in which the likely fault regions
become more distinguishable. To highlight these candidates of
fault regions, we apply a threshold, denoted TL, on enhanced
lightness map L̂t0 and obtain a binary map BL,t0 as shown in
Fig. 4(a). The thresholding process is formulated in Eq. (1).

BL,t0(x, y) =

{
1, if L̂t0(x, y) < TL

0, otherwise
, (1)

where x and y represent the inline and crossline directions,



(a) BL,t0 (b) BV,t0

(c) BY,t0 (d) Bt0

Fig. 4: Highlighted fault regions in different channels
(BL,t0 , BV,t0 , and BY,t0 ) and the combined results in Bt0 .

respectively. The same procedure is applied on the luminance
and value channels and the corresponding binary maps are
denoted as BY,t0 and BV,t0 , shown in Fig. 4(b) and Fig. 4(c),
respectively. Since all of these binary images contain similar
fault structures, the combination of these images can lead
to more accurate fault region candidates. Although adding
is a straightforward way to combine these binary images,
it may amplify noise around fault regions. Therefore, we
propose combining these images under geological constraints
as follows:

Bt0(x, y) =



1, if
∑

i=L,Y,V

Bi,t0(x, y) ≥ 2, and Dt0(x, y) ≤ TC

1, if
∑

i=L,Y,V

Bi,t0(x, y) = 1

0, otherwise

, (2)

where TC is a threshold to filter out noisy points with greater
semblance values. Eq. (2) indicates that a pixel belongs to fault
regions if its semblance value is less than TC and it appears in
at least two channels. Moreover, to ensure the connectivity of
fault regions, we also consider pixels detected in only one
channel as fault regions. Under the constraints in Eq. (2),
we obtain the combined binary image Bt0(x, y), shown in
Fig. 4(d).

C. Weighted Skeletonization
To label one-pixel-width fault lines from highlighted fault

regions, we need to apply skeletonization, a thinning process
extracting topological skeletons of shapes, on Bt0 . The skele-
ton of a 2D shape is composed of the locus of the centers
of all maximum inscribed disks, which can not be covered
by any other inscribed disks and have at least two tangential
points with the boundaries of the shape. In this paper, we
propose a weighted skeletonization method to delineate fault
lines more accurately by involving geological constraints. Our
method is based on the Voronoi diagram, a powerful tool
on implementing skeletonization [16]. However, the skeletons
only extracted from the Voronoi diagram are not accurate
enough to represent the structure of faults because of the
undesired branches.

To remove these undesired branches, we define weight
Wt0(x, y) at every point of the initially extracted skeletons

(a) Skeletonization weighted by Wt0 (b) Extracted fault lines

Fig. 5: Fault extraction based on the weighted skeletonization

as the multiplication of two indices explained in Eq. (3):

Wt0(x, y) = Kt0(x, y)×Gt0(x, y), (3)

where Kt0(x, y) and Gt0(x, y) represent the dimensional and
geological weights, respectively. In the maximum inscribed
disk of (x, y), Kt0(x, y) is defined as the length of the longest
arc between two neighboring tangential points [16]. By indi-
cating the dimension of disks, Kt0(x, y) plays an important
role in distinguishing undesired branches near vertices.

Because of the intricate shapes of highlighted fault regions,
we can not easily prune all noisy branches based only on
the dimensional index. Therefore, we propose the geological
index based on the semblance map to remove branches located
around the fault regions with high semblance values, which
correspond to low discontinuities. Since fault regions high-
lighted in Bt0 are the combination of different color channels,
we propose a discontinuity map (D̂t0 ) that incorporates neigh-
boring semblance information, which is calculated as follows:

D̂t0(x, y) = max
i∈[−1,0,1]

|log(Dt0+i(x, y))| , (4)

where D̂t0(x, y) corresponds to the largest discontinuity value
in three neighboring time sections. Then, to remove noise and
enhance discontinuities, we smooth D̂t0(x, y) by averaging
it in its square neighborhood weighted by the power of the
intensity of seismic signals, as shown in Eq. (5):

Gt0(x, y) =

rs∑
i,j=−rs

D̂t0 (x+i,y+j)·S2
t0

(x+i,y+j)

rs∑
i,j=−rs

S2
t0

(x+i,y+j)
, (5)

where Gt0(x, y) corresponds to the obtained geological index
of point (x, y) and rs determines the size of the square
neighborhood. Using this index, a point with larger weight
Wt0(x, y) corresponds to a larger inscribed disk and greater
discontinuity value and has a higher probability of being
located on a fault. By applying a global threshold TW on
the weights of the initially extracted skeletons, we obtain the
binary image It0 containing the pruned skeletons as follows:

It0(x, y) =

{
1, if Wt0(x, y) ≥ TW ,
0, otherwise,

(6)

where TW is set empirically by interpreters. It0 in Fig. 5(a)
illustrates the extracted fault lines with most noisy branches
removed. After removing the isolated line segments and short
branches, we obtain the smoothed delineation of faults in time
section t0, as Fig. 5(b) shows.



III. EXPERIMENTAL RESULTS

In this paper, we applied the proposed algorithm on time
sections of the 3D seismic data set acquired from the Nether-
lands offshore F3 block in the North Sea [17]. The tested
3D seismic volume, a local region extracted from F3 block,
contains distinguishable fault structures and has the dimension
ranging from #199 to #349 in the inline direction, from #300
to #599 in the crossline direction, and from 1396ms to 1848ms
in the time direction with the step of 4ms.

To illustrate the performance of the proposed algorithm,
we take the time section at t0 = 1604ms as an example. As
Fig. 2(a) shows, discontinuous regions in the time section St0

indicate the existence of faults. The semblance map Dt0 in
Fig. 2(b) illustrates contrast between likely fault regions and
horizons. To involve more structural information of faults, we
blend three neighboring semblance maps into a color image,
Ct0 , in RGB model as Fig. 3(a) shows. Then, we transfer Ct0

from the RGB model to the Lab, YCbCr, and HSV models,
all of which contain separated intensity component, referred
to as the L, Y, and V channels, respectively. L channel, as an
example of the intensity component, is shown in Fig. 3(b).
To remove the noise around likely fault regions in the L
channel, we adopt a 2 × 2 Gaussian filter with σ = 10. In
addition, by applying the CLAHE on the smoothed L channel
in Fig. 3(c), we obtain the enhanced likely fault regions in
Fig. 3(d). Furthermore, we set threshold TL = 0.55 on L̂t0 to
highlight fault regions in binary image BL,t0 . Similarly, we
apply smoothing, CLAHE, and thresholding on the Y and V
channels and obtain two more binary images BY,t0 and BV,t0 .
All parameters involved in the CLAHE are set empirically by
interpreters and remain unchanged for the other two channels.
However, we need to tweak the highlighting thresholds in
different channels because of the ranges of different color
spaces. The combination of these binary images leads to Bt0

in Fig. 4(d), which contains fault regions with the highest
accuracy. Finally, we apply the weighted skeletonization on
Bt0 and extract fault lines shown in Fig. 5(a). In Fig. 5(b),
we further remove isolated line segments and short branches
to smoothen the extracted results.

To clearly visualize and compare the performance of dif-
ferent methods, as Figs. 6 shows, we merge the extracted
fault lines into the corresponding semblance map where light
regions indicate horizons and dark regions imply faults. We
recognize that the fault lines extracted by the proposed method
in Figs. 6(a) almost cover all possible fault regions and have
smooth outlines. In contrast, the method proposed in [11]
mistakenly detects fault lines in horizons and generates noisy
branches. Though Zhang’s method is very robust and requires
limited human intervention, the proposed method leads to
a higher detection accuracy by involving color representa-
tions and geological constraints. To quantitatively measure
the difference between the detected results and the ground
truth, we define the distance between two points (x1, y1) and
(x2, y2) as follows: dist = min (|x1 − x2| , |y1 − y2|). We
select several time sections and calculate the corresponding

(a) Results of the proposed method (b) Results of the method in [11]

Fig. 6: The comparison of different fault detection methods in
the time section at 1604ms

average distances in Table I. The first and third column
represent the average distances based on the proposed method
and the method in [11], respectively. In addition, the second
column corresponds to the distances calculated based on the
proposed method without involving color blending and color
transformations. This difference is primarily accredited to
the usage of color representations and the removal of noisy
branches using the semblance index. Furthermore, the highly
parallel structure of the proposed algorithm ensures the real-
time implementation in semi-automatic seismic interpretation,
but this feature will be considered in a future work focusing
on the efficiency.

TABLE I: Objective assessment of different methods

Time Sections Proposed1 Proposed2 Zhang et al. [11]

1576ms 0.8682 1.2655 1.5064
1604ms 0.9236 1.1838 1.8217
1624ms 0.9305 0.9987 1.2582

Note: 1: proposed method with color blending and color trans-
formations involved, 2: proposed method without involving
color representations.

IV. CONCLUSION

In this paper, we combined color blending and color trans-
formations to semi-automatically detect faults in time sections
. We first blended the semblance maps of neighboring time
sections to synthesize a color image in the RGB model. By
transforming the RGB image to Lab, YCbCr, and HSV, we
obtained the separated intensity components, which contain
important structural information related to faults. After the
smoothing, enhancement, and thresholding, we highlighted the
likely fault regions in binary maps. Finally, we proposed the
weighted skeletonization to extract one-pixel-width fault lines.
Experimental results show that the proposed method improves
the accuracy of the fault detection by limiting the average
distance between detected fault lines and the ground truth into
one pixel. Ongoing work focuses on the application of color
blending and color transformations for semi-automatically
detecting other seismic structures.
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