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Abstract

RNA-seq data analysis pipelines are generally composed of sequence alignment, expression 

quantification, expression normalization, and differentially expressed gene (DEG) detection. Each 

step has numerous specific tools or algorithms, so we cannot explore all combinatorial pipelines 

and provide a comprehensive comparison of pipeline performance. To understand the mechanism 

of RNA-seq data analysis pipelines and provide some useful information for pipeline selection, we 

believe it is necessary to analyze the interactions among pipeline components. In this paper, by 

combining different alignment algorithms with the same quantification, normalization, and DEG 

detection tools, we construct nine RNA-seq pipelines to analyze the impact of RNA-seq alignment 

on downstream applications of gene expression estimates. Specifically, we find moderate linear 

correlation between the number of DEGs detected and the percentage of reads aligned with zero 

mismatch.

I. INTRODUCTION

Facilitated by next-generation sequencing (NGS) technology, high-throughput RNA 

sequencing (RNA-seq) interrogates the comprehensive profile of transcriptomes [1], 

enabling detailed identification of gene isoforms, translocation events, nucleotide variations, 

and post-transcriptional base modifications [2, 3].

*Corresponding Author: Contact information for the corresponding author: maywang@bme.gatech.edu, Phone: 404-385-2954, Fax: 
404-894-4243, Address: Suite 4106, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA. 

HHS Public Access
Author manuscript
IEEE Glob Conf Signal Inf Process. Author manuscript; available in PMC 2016 September 
02.

Published in final edited form as:
IEEE Glob Conf Signal Inf Process. 2014 December ; 2012: 1376–1379. doi:10.1109/GlobalSIP.
2014.7032351.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A standard RNA-seq data analysis pipeline consists of (1) sequence read mapping, (2) 

expression quantification, (3) expression normalization, and (4) differentially expressed gene 

(DEG) detection, and each step has a considerable number bioinformatics tools. Since a 

pipeline consists of a sequence of the selected tools from each step, the combination of these 

tools provides a number of choices, yet raises the following question: Which pipeline should 

we use? Intuitively, the best pipeline would be composed of the best tool in each step. 

Researchers have conducted comparative analyses for the sequence alignment [4], 

expression quantification [5], expression normalization, and DEG detection [2] tools. The 

evaluation of the tools in a pipeline may be informative for pipeline selection. Based on this 

evaluation, we might select the most accurate alignment, quantification, normalization and 

DEG detection tools to construct a pipeline. However, the combination of the best tools does 

not ensure an accurate analysis result, especially when the performance of the tool is 

sample-related. For instance, Grant et al. [4] found that the base-level accuracy of alignment 

pipelines varies among samples. Until now, few studies systematically compared the 

performance of RNA-seq pipelines. Therefore, it remains uncertain whether the combination 

of best tools will produce a better-performing pipeline. To provide helpful information for 

pipeline selection and understand the mechanism of RNA-seq data analysis pipelines, we 

believe it is necessary to investigate the associations among the steps in RNA-seq pipelines. 

Once we know how the alignment step affects the final results (e.g., DEG detection), we can 

determine which alignment tool we should use and even estimate the number of DEGs with 

alignment metrics that can profile the alignment results.

In this paper, we analyze the impact of RNA-seq alignment pipeline on downstream 

applications of gene expression estimates, e.g., DEG detection. The rest of this paper is 

organized as follows. Section II introduces the experimental design and data analysis. 

Section III discusses the results and the potential impact of alignment on gene expression 

estimates. Finally, Section IV concludes our work.

II. METHODOLOGY

The workflow of this study is shown in Figure 1. To analyze the impact of alignment on 

gene expression estimates, we vary the alignment tools (Bowtie2 [6], BWA [7], GSNAP [8], 

Novoalign [9], and WHAM [10]) while using a fixed quantification tool (RSEM [11]), a 

normalization algorithm (trimmed mean of M-values normalization, TMM [12]), and a DEG 

detection tool (edgeR [13]).

A. Dataset

The dataset consists of SEQC samples A and B [14], which contain Stratagene’s Universal 

Human Reference RNA and Ambion’s Human Brain Reference RNA, respectively. The 

samples were sequenced with the Illumina HiSeq 2000 platform at three official sequencing 

sites, including the Beijing Genomics Institute (BGI), the Weill Cornell Medical College 

(CNL) and the Mayo Clinic (MAY). In this paper, we use only the data sequenced at BGI, 

which includes four replicates with around five million paired-end reads for each replicate. 

Each replicate has sixteen lanes, and we use the first two lanes.
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B. Sequence Mapping and Expression Quantification

To analyze the impact of alignment on gene expression estimates, we vary the alignment 

tools, including Bowtie2, BWA, GSNAP, Novoalign and WHAM. For Bowtie2, GSNAP, 

Novoalign, and WHAM, we use two sequence alignment reporting strategies, single-hit and 

multiple-hit. Whereas single-hit aligners report only one location for a single read, multiple-

hit aligners can report more than one location. BWA only reports single-hit alignments. We 

use the same reference genome (i.e., UCSC hg19) and the same genome annotation (i.e., 

AceView [15]) for all alignment pipelines. For gene expression quantification, we use 

RSEM with both the AceView transcriptome [15] and hg19 as reference genomes. The data 

generated from RSEM are in the form of gene counts.

C. Alignment Profiles

We characterize alignment profiles by using the percentage of reads aligned with zero and 

one mismatch as alignment metrics. Reads aligned with zero or one mismatch are more 

likely to account for gene expression estimates. We extract the percentage of reads aligned 

with no mismatch denoted as ZeroMismatchPercentage, and those with at most one 

mismatch denoted by OneMismatchPercentage. In addition, we count the number of reads 

aligned with single- or multiple-hit reporting. Since each sample has four replicates, we first 

compute the alignment metrics for each replicate, and then calculate the average as the 

alignment metrics of the sample.

D. DEG Detection Specificity

For gene expression estimates, evaluating every gene is not possible, especially when most 

genes have similar expression. As a result, we propose to use DEG detection as a 

downstream evaluation of gene expression estimates. We identify DEGs using the edgeR 

package in R. Before detecting DEGs, we use TMM (trimmed mean of M-values 

normalization) to normalize the data. Since each sample has four replicates (Replicates 1, 2, 

3, and 4), we compare two replicates with the other two to detect DEGs (i.e., Replicates 1 

and 2 vs. Replicates 3 and 4, Replicates 1 and 3 vs. Replicates 2 and 4, and Replicates 1 and 

4 vs. Replicates 2 and 3). With various combinations, we have three groups, that is, we can 

get three DEG numbers for each sample. Because replicates come from the same sample, 

ideally the number of DEGs should be close to zero based on the assumption that the 

pipeline performs well. To capture and model this assumption, we define “DEG index” as 

“each pipeline’s total DEG number” to represent the pipeline’s quality. That is, for each 

pipeline, we add the three DEG numbers as its DEG index. The DEG index can quantify 

differences among pipelines. Meanwhile, the only variable in the comparison of pipelines is 

the alignment tool, which will be the only source of the discrepancy among the DEG indices 

of the pipelines. To investigate the effects of different DEG adjusted p-value thresholds on 

our observation, we detected DEGs with different thresholds (from p = 0.01 to 0.1). As 

larger adjusted p-value thresholds indicate looser constraints for DEGs, we expected more 

DEGs when we gradually increased the thresholds.
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III. RESULTS AND DISCUSSION

Figures 2B and 2D show that, for most alignment tools for both Samples A and B, more than 

60% of reads aligned with zero mismatch, and over 80% of reads aligned with zero or one 

mismatch, suggesting that the percentage of zero and one mismatch can cover the majority 

of reads in the alignment files. For both Samples A and B, alignment pipelines showed 

almost the same trend in ZeroMismatchPercentage and OneMismatchPercentage, suggesting 

that ZeroMismatchPercentage and OneMismatchPercentage in the alignment tools might be 

independent of the samples. We also verified that single-hit alignment pipelines only report 

one hit for each read; in contrast, multi-hit alignment pipelines can report several hits for 

some reads (Figures 2A and 2C).

Figures 3 and 4 show the key finding of our study: The DEG indices of RNA-seq pipelines 

have moderate linear correlation with the percentage of reads aligned with zero or one 

mismatch (ZeroMismatchPercentage and OneMismatchPercentage). Figures 3 and 4 show 

the impact of alignment pipelines on the DEG indices of Samples A and B, respectively. 

Note that single- and multiple-hit alignment strategies are distinctive. We use linear 

regression to measure their impact on DEG indices separately. For Sample A, both multiple-

hit (blue boxes in Figure 3) and single-hit (red boxes in Figure 3) the DEG indices of 

alignment pipelines tended to decrease as ZeroMismatchPercentage increased. However, for 

the OneMismatchPercentage, the correlations between the DEG indices and the alignment 

pipelines were insignificant (Table I). As for Sample B (Figure 4 and Table II), both multi- 

and single-hit DEG indices of the alignment pipeline also had linear correlation with 

ZeroMismatchPercentage. Unlike that of Sample A, both multi- and single-hit DEG indices 

of the alignment pipeline exhibited a moderate linear correlation with 

OneMismatchPercentage in Sample B. This discrepancy might relate to the sample 

differences. Some sample-related metrics can also account for the impact of alignment 

pipelines on DEG index apart from the two metrics above. For Sample A, the sample-related 

metrics might fluctuate among results of alignment pipelines, while for Sample B, the other 

metrics may be consistent, which leads to that discrepancy. In addition, compared with 

single-hit alignment algorithms, ZeroMismatchPercentage of multiple-hit alignment 

algorithms have stronger linear impact on DEG index (Table I and II). Overall, our study 

discovered an alignment pipeline metric – ZeroMismatchPercentage – with moderate linear 

impact on gene expression estimation.

IV. CONCLUSION

We investigated the impact of alignment pipelines on gene expression estimates of RNA-seq 

pipelines. First, we constructed nine different RNA-seq pipelines by combining different 

alignment pipelines with the same quantification, normalization, and DEG detection tools. 

With these RNA-seq pipelines, we computed DEG indices for real datasets. Then, to profile 

alignment pipelines, we calculated the percentages of reads aligned with zero and one 

mismatch. Our study indicated that the ZeroMismatchPercentage of alignment pipelines had 

moderate linear impact on DEG index. Thus, we recommend constructing RNA-seq 

pipelines for DEG detection by choosing alignment tools that result in high 

ZeroMismatchPercentage. Although this preliminary study focused on two samples, nine 
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different pipelines, and two metrics we plan to include additional samples (i.e., SEQC 

samples C and D), pipelines, and metrics in a more comprehensive study.
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Figure 1. 
The workflow for investigating the association between RNA-seq alignment profiles and 

gene expression estimates.
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Figure 2. 
Alignment profiles of Samples A and B, including percentage of reads aligned with single-

hit or multiple-hit and percentage of reads aligned with zero or one mismatch.
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Figure 3. 
The impact of alignment pipelines on gene expression estimation (Sample A). The boxplots 

illustrate the DEG indices of the alignment pipelines with their DEG adjusted p-value 

thresholds.
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Figure 4. 
The impact of alignment pipelines on gene expression estimation (Sample B). The boxplots 

illustrate the DEG indices of the alignment pipelines with their DEG adjusted p-value 

thresholds.
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