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Abstract—The most efficient signal edge-preserving smoothing matrix, which are related to the BF weights. The eigenvector
filters, e.g., for denoising, are non-linear. Thus, their aceleration and eigenvalues of the graph Laplacian matrix allow us to
is challenging and is often performed in practice by tning gytang the Fourier analysis to the graph signals or images as

filter parameters, such as by increasing the width of the loda . > d f f lective filteri fi
smoothing neighborhood, resulting in more aggressive smeung 1" [2] and perform frequency selective filtering operatiams

of a single sweep at the cost of increased edge blurring. We graphs, similar to those in traditional signal processing.
propose an alternative technology, accelerating the origal filters Another very interesting smoothing filter is the guided filte
without tuning, by running them through a special conjugate (GF), recently proposed i [11][1[3], and included into the
gradient method, not affecting their quality. The filter non-  \aATLAB image processing toolbox. Some ideas behind GF

linearity is dealt with by careful freezing and restarting. Our . . . .
initial numerical experiments on toy one-dimensional sigals are developed iri[4]. According to our limited experiencé, G

demonstrate 20x acceleration of the classical bilateral fitr and IS faster than BF. The authors of [11] advocate that GF is

3-5x acceleration of the recently developed guided filter. gradient preserving and avoids gradient reversal arsifact
Index Terms—conjugate gradient algorithm, edge-preserving contrast to BF, which is not gradient preserving.
denoising, low-pass filters The smoothing explicit filters similar to BF and GF can be
interpreted as matrix power iterations, which are, in gaher
|. INTRODUCTION case, nonlinear, or equivalently, as explicit integraiiotime

This papél is concerned with noise removal from a giver®f the corresponding nonlinear anisotropic diffusion e
noisy signal, which is a basic problem in signal processint®l, [10]. The suitable graph Laplacian matrices are deteeqh
with many applications, e.g., in image denoisiny [6]. Maderdy means of the graph-based interpretation of these power
denoising algorithms preserve signal details while remgvi iterations. Our main contribution is accelerating the sthing
most of the noise. A very popular denoising filter is thélters by means of a special variant of the conjugate gradien
bilateral filter (BF), which smooths signals while presaryi (CG) method, applied to the corresponding graph Laplacian
edges, by taking the weighted average of the nearby pixeRatrices. To avoid oversmoothing, only few iterations af th
The weights depend on both the spatial distance between §fe acceleration can be performed. We note that there exist
sampling locations and similarity between signal valukest Several nonlinear variants of the CG algorithm, see, €8j., [
providing local adaptivity to the input signal. Bilaterdtdring However, the developed theory is not directly applicabletn
has initially been proposed in [12] as an intuitive tool with Case because it is not clear how to interpret the vettanz
theoretical justification. Since then, connections betwBe& as a gradient of a scalar function of the signalvhereL(z)
and other well-known filtering techniques such as anisatrogS @ graph Laplacian matrix depending on a signal
diffusion, weighted least squares, Bayesian methods,ekern Il. BILATERAL FILTER (BF)

;?J?\rlzss;g‘r;]and non-local means have been explored; see, €-Qve consider discrete signals defined on an undirected graph
W yi \k. f th h-based f K .G =(V,&),where the vertice¥ = {1,2,..., N} denote, e.g.,
¢ make use ot the graph-based lramework for S'gnf%e instances of a discrete-time signal or pixels of an imag
a_maly5|s developed iri 5], [7]'. \{vhere polynomial IOW'pa_S?he set of edge€ = {(i,5)} contains only those pairs of
filters based on the BF coefficients are proposed. A NG&rticesi and j that are neighbors in some predefined sense.

introduction to signal processing on graphs is found_in [2]. We suppose in addition that a spatial positignis assigned

A s_mgle application of BF can b.e mterpreteq as a vert% each vertex € V so that a distancip; — p,|| is determined
domain transform on a graph with pixels as vertices, 'ntgnsbetween vertices and j

values of each node as the graph signal, and filter coefficient Let z[j], j € V, be a discrete function, which is an input
as link Welghts_ that cap?ure the_ S|m|Iar|t_y betwgen_nod_dma Tsignal to the bilateral filter. The output signgli] is the
BF transform is a special nonllne_ar anisotropic dlffu5|oh,_ weighted average of the signal valuesdip]:
[Ql, [10Q], determined by the entries of the graph Laplacian Wi
yli] = > =——alj]. @
J

> Wij
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The weightsw;; are defined for(i,j) € £ in terms of a dot preceded operations and./ denote the componentwise
guidance signa|:|: multiplication and division. A typical arithmetical comgity
Ips 112 (gli] i])? of the GF algorithm isO(N), where N is the number of
W;; = €Xp (—%) exp (—%) ,  (2) elements inr, see[11].

204 20, The guided filter operation of Algorithm 1 is the matrix
whereo, ando, are the filter parameters [12]. The guidanceansformy = W/(g)z, where the implicitly constructed
signal g[i] is chosen depending on the purpose of filterindransform matrixiW(g) has the following entries, see [11]:
When g coincides with the inputz, the bilateral filter is 1 (g1 — ) (g5 — i)
nonlinear and called self-guided. Wij(9) = — Z <1+ gi /u; 95 — Hk ) 3)

The weightsw;; determine the adjacency matri¥ of jwl o te€

the graphG. The matrix W is symmetric, has nonnega- ) _ . .
tive elements and diagonal elements equal to 1. Debe | h€ Mean filtelficqn (-, p) is applied in the neighborhoods

the diagonal matrix with the nonnegative diagonal entriéd @ spatial radiug around all verticegs € V. The number of

d; = > ;wi;. Thus, the BF operation(](1) is the vectoP'XeISd'n;"k IS (:]enoted byf“g’ th? samegor alk. TEe valugs
transform defined by the aid of the matricé&(g) and D(g) H+ @ndoy; are the mean and variancepbverw;. The matrix
asy =D 'Wz =z — D-'Lx, whereL = D — W is called W is symmetric and satisfies the propeﬁyj Wi; = 1.

the Laplacian matrix of the weighted grajgh with the BF _The standard construction of the graph Laplag:ian matrix
weights. The eigenvalues of the matdx ' are real. The 9Ves L = I — W, becaused; = >, wi; = 1, i.e. the

eigenvalues corresponding to the highest oscillationsdier Matrix D is the identity. The eigenvalues di(g) are real
the origin. nonnegative with the low frequencies accumulated near 0 and

The BF transformy = D~'Wz can be applied iteratively, high frequencies near 1. Application of a single transform

(i) by changing the weightss;; at each iteration using the¥ = W2 attenuates the high frequency modesaofvhile
result of the previous iteration as a guidance signadr (i) aPProximately preserving the low frequency modes, [cf. [7],

by using the fixed weights, calculated from the initial signd2l- Similar to the BF filter, the guided filter can be applied
as a guidance signal, for all iterations. The former altévaa eratively. When the guidance signalis fixed, the iterated
results in a nonlinear filter. The latter produces a linegerfil CF filter is linear. Whery varies, for exampleg = x for the
which may be faster, since the BF weights are computed orffg/-9uided case, the iterated GF filter is nonlinear.
once in the very beginning.

An iterative application of the BF matrix transform is the
power iteration with the amplification matri®—1W. Slow  Since the graph Laplacian matrik is symmetric and
convergence of the power iteration can be boosted by the &Rnnegative definite, the iterative application of the sfarm

of suitable Krylov subspace iterative methods [I],/[14]. ¥ = D~'Waz can be accelerated by adopting by the CG
technology. We use two variants of CG: 1) with the fixed

I1l. GUIDED FILTER (GF) guidance equal to the input signal or to the clean signal, 2)
ith the varyin idance equal to the current valuerof
Algorithm 1 Guided Filter (GF) W varying g au urrent valu

Algorithm 2 Truncated PCG{yax)

k:(4,5) Ewg

IV. CONJUGATE GRADIENT ACCELERATION

Input: z, g, p, €
Output: y Input: xg, g, kmax Output: =
meang = fmean (9, p) x=uxg; r=W(g9)x — D(g9)x
meang = fmean(x, p) for k=1,...,knax — 1 doO
corrg = fmean(g-* g, p) s=D"Yg)r; y=s"r
corrgs = fmean(g. * T, p) if k=1thenp=selsef =~v/v04; p=s5+ 0Bp
VATg = COTTg — MEAN . * MeEAT endif
COVggy = COTT gy — MEANG. * TEAN q=D(g)p—W(g)p;, a=v/(pTq)
a = covgy./(varg + ¢€) T=xT+ap; T =T— Qg Yoid =
b = mean, — a. * meany endfor
meana = fmean(a, p) Algorithm 2 is the standard preconditioned conjugate gra-
meany = fmean (b, p) dient algorithm formally applied to the system of linear
Y = meang. x g + meany equationsLz = 0 and truncated aftet,,,, evaluations of the

Algorithm 1 is a pseudo-code of GF proposed.in [11], whematrix-vector operatior.z. The initial vectorz, is a noisy
z andy are, respectively, the input and output signals on theput signal. This variant of the CG algorithm has first been
graph, described in sectionlll. GF is built by means of suggested in [5].
guidance signal, which equalsz in the self-guided case. Algorithm 3 is a special nonlinear preconditioned CG with
The function f,,cqn (-, p) denotes a mean filter of a spatial,,.x restarts, formally applied td(z)2 = 0 and truncated
radius p. The constant determines the smoothness degreafter k.. iterations between restarts. Restarts are necessary
of the filter—the largere the larger smoothing effect. Thebecause of nonlinearity of the self-guided filtering.



PSNR = 20.0494, SNR = 13.0753

Algorithm 3 Truncated PCGy.x) With [, restarts

Input: xg, kmax, Imae Output: z
Tr = X9
for I=1,...,lnax dO
r=W(z)x — D(z)x
for k=1,...,kmax — 1 doO
s=D"Yx)r; y=sTr
if k=1thenp=selsef =v/vo4; p =5+ Bp 7 _
endif : E:|_ooo 2000 3000 4000
q = D(x)p — W(x)p; a=~/(p"q)
T=T+ap,r=1—0g, Yoid ="
endfor
endfor

- noisy signal
——clean signal

signal

Fig. 1. Clean and noisy signals.

—— clean signal
- = BF: PSNR = 34.3237
——CG: PSNR = 34.2763

V. NUMERICAL EXPERIMENTS

As a proof of concept, our MATLAB tests use the cleal
1-dimensional signak,. of length N = 4730 shown in Fig-
ure[1. We choose this rather difficult, although 1-dimenaipn ‘ ‘ ‘ ‘ , ‘ ‘ ]
example to better visually illustrate both the denoisingl ar 500 1000 1500 2000 2500 3000 3500 4000 4500
edge-preserving features of the filters. The noisy sigriat a
displayed in Figuré]l, is the same for all tests and given |

. . . 0.1 - erré)r BF: éNR :‘27.345‘37’
the formulazy = z. + , where a Gaussmp wh|te_n0|$p . — error CG: SNR = 27.3022
has zero mean and varianeg = 0.01. The bilateral filter is & 905 ’
used witho; = 0.5 and ;. = 0.1. The neighborhood width @ 0
in BF equals 5 so that the band @f consists of 5 diagonals. -2

The guided filter is used with = 0.001 and the neighborhood
width 3. The matrixW of GF also has 5 diagonals. 500 1000 1500 2000 2500 3000 3500 4000 4500

The CG accelerated BF/GF is called CG-BF/CG-GF. Typi-
cal numerical results of the average performance are gisgla Fig. 2. 500 BF iterations versus 20 CG-BF iterations with goédancex..

The signal error after denoising i$— x, wherez stands
for the output denoised signal. We calculate the peak signal 1
noise ratio (PSNR) and signal-to-noise ration (SNR). The p
rameters are manually optimized to reach the best possi
match of the signal errors in the compared filters, resuliting
indistinguishable error curves in our figures.

The results in Figurels] 2 and 3 are obtained by the iterat 0 ‘ ‘ ‘ ‘ | ‘ ‘ B
BF and GF filters with the fixed guidance = z. and by 500 1000 1500 2000 2500 3000 3500 4000 4500
CG-BF and CG-GF implemented in Algorithm 2 with the
same fixed guidance = x.. These tests are performed only 0.1
for comparison reasons because the clean signal guidance

— clean signal
== GF: PSNR = 34.4542
—— CG: PSNR = 34.3978

- - error GF: SNR = 27.4802]|

= ——error CG: SNR = 27.4237,
seems to be ideal for the best possible denoising results. % 0.05 i
We say that Algorithm 3 useg, .. x kmax iterations, if E 0
it executesly., restarts with thek,,.. evaluationsL(z)x .2

I
o
o
a

between restarts. The best denoising performance for sur 1
problem is achieved with the following iteration combirets
of the self-guided CG-BF31 x 3,17 x4, 12x5,9x6,7x7,
6x8 5x9,4x10,3x11, 2 x 19. The best combinations Fig. 3. 90 GF iterations versus 13 CG-GF iterations with thielancez..
for the self-guided CG-GF arél x 3, 7 x4, 5 x 5, 4 x 6,
3 x 7. Figured# andl5 show the results affex 11 iterations
of CG-BF and5 x 5 iterations of CG-GF. VI. CONCLUSION

The numerical tests demonstrate abg0dtimes reduction  Iterative application of BF and GF, including their non-
of iterations for the self-guided bilateral filter artdtimes linear self-guided variants, can be drastically accedetdiy
reduction of iterations for the guided filter with self-gaitte using CG technology. Our future work concerns developing
after the conjugate gradient acceleration. It is also @sttng automated procedures for choosing the optimal number of CG
to observe that both filters with the properly chosen parametiterations and investigating CG acceleration for 2D signal
and iteration numbers produce almost identical outputadggn

500 1000 1500 2000 2500 3000 3500 4000 4500
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----- BF: PSNR = 32.6646
——CG: PSNR = 32.7509
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signal error

‘‘‘‘‘ error BF: SNR = 25.6906

——error CG: SNR = 25.7768

500 1000 iSOO 2000 2500 3000 3500 4000 4500

Fig. 4. 600 iterations of the self-guided BF versus 11 iterations of CG-BF.

ﬂ —— clean signal
‘‘‘‘‘ GF: PSNR = 33.1832
——CG: PSNR = 33.1141
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signal error

‘‘‘‘‘ error GF: SNR = 26.2091
—error CG: SNR = 26.1401¢
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Fig. 5. 75 iterations of the self-guided GF versus 5 iterations of CG-GF.
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