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Abstract—In [doi:10.1109/ICMEW.2014.6890711], a graph-
based denoising is performed by projecting the noisy image to
a lower dimensional Krylov subspace of the graph Laplacian,
constructed using nonnegative weights determined by distances
between image data corresponding to image pixels. We extend
the construction of the graph Laplacian to the case, where
some graph weights can be negative. Removing the positivity
constraint provides a more accurate inference of a graph model
behind the data, and thus can improve quality of filters for
graph-based signal processing, e.g., denoising, comparedto the
standard construction, without affecting the costs.

I. I NTRODUCTION

Constructing efficient signal filters is a fundamental prob-
lem in signal processing with a vast literature; see, e.g.,
recent papers [1], [2], [3], [4], [5], [6] and references there.
A filter can be described by a transformationF , often non-
linear, of an input signal, represented by a vectorx, into
a filtered signal, represented by a vectorF (x). We revisit
some classical constructions of filters aimed at signal noise
reduction, with the emphasis on bilateral filter, popular in
image denoising [7], [8], [9], [10]. The goal of the filter is
signal smoothing, reducing a high oscillatory additive noise.
The smoothing can be achieved by averaging, which can
be typically interpreted as a low-pass filter, minimizing the
contribution in the filtered signal of highly oscillatory modes,
treated as eigevectors of a graph Laplacian; see, e.g., [11].

It is desirable to preserve edges in the ideal noise-free
signal, even at the costs of an increased PSNR. Edge-
conscious filters detect, often implicitly, the locations of
the edges and attempt using less aggressive or anisotropic
averaging at these locations. Fully automatic edge detection
in a noisy signal is difficult, typically resulting in non-
linear filters, i.e. where the filtered vectorF (x) depends non-
linearly on the input vectorx. However, it can be assisted
by a guiding signal, having the edges in the same locations
as in the ideal signal; see, e.g., [3], [12], [13].

Graph signal processing, introducing eigenvectors of the
graph Laplacian as natural extensions of the Fourier bases,
sheds new light at image processing; see, e.g., [14], [15],
[16], [17]. In [18], graph-based filtering of noisy images is
performed by directly computing a projection of the image to
be filtered onto a lower dimensional Krylov subspace of the
normalized graph Laplacian, constructed using nonnegative
graph weights determined by distances between image data
corresponding to image pixels. We extend the construction of
the graph Laplacian to the case, where some weights can be
negative, radically departing from the traditional assumption.

II. PRELIMINARIES

Let us for simplicity first assume that the guiding signal,
denoted byy, is available and can be used to reliably detect
the locations of the edges and, most importantly, to determine
the edge-consciouslinear transformation (matrix)Fy such
that the action of the filterF (x) is given by the following
matrix-vector productFyx = F (x). Having a specific con-
struction of the guided filter matrixFy as a function ofy, one
can define a self-guided non-linear filter, e.g., asFxx, which
can be applied iteratively, starting with the input signal vector
x0 as follows,xi+1 = F (xi), i = 0, 1, . . . ,m; cf., e.g., [19].

Similarly, an iterative application of the linear guided
filter can be used, mathematically equivalent to applying the
powers of the square matrixFy, i.e. xm = (Fy)

m
x0, thus

naturally called thepower method, which is an iterative form
of PCA; see, e.g.,[20], [21]. To avoid a re-normalization of
the filtered signal, it is convenient to construct the matrix
Fy in the formFy = D−1

y Wy, where entries of the square
matrix Wy are calledweighs. The matrixDy is diagonal,
made of row-sums of the matrixWy, which are assumed to
be non-zero. Thus,D−1

y Wy multiplied by a column-vector
of ones, gives again the column-vector of ones.

Let us further assume that the matrixWy is symmetric
and that all the entries (weighs) inWy are nonnegative. For
signal denoising, the following observations are the most
important. The right eigenvectorv1 of the matrixD−1

y Wy

with the eigenvalueµ1 = 1 is trivial, just made of ones,
only affecting the signal offset. Since the iterative matrix
Fy = D−1

y Wy is diagonalizable, the power method gives

xm = (Fy)
m
x0 = Σj µ

m
j

(

vTj Dx0

)

vj , (1)

where 1 = |µ1| ≥ |µ2| ≥ . . . are the eigenvalues of the
matrix D−1

y Wy corresponding to the eigenvectorsvj scaled
such thatvTi Dvj = δij . The power method, according to (1),
suppresses contributions of the eigenvectors corresponding to
the smallest eigenvalues. Thus, the matrixWy needs to be
constructed in such a way that these eigenvectors represent
the noisy part of the input signal, while the other eigenvectors
are edge-conscious; cf. anisotropic diffusion [22], [23],[24].

Let us introduce the guiding LaplacianLy = Dy − Wy

and normalized LaplacianD−1
y Ly = I −D−1

y Wy matrices.
In [18], the power method (1) is replaced with a projection of
the image vectorx to be denoised onto a lower dimensional
Krylov subspace of the guiding normalized graph Laplacian
D−1

y Ly and implemented, e.g., using the Conjugate Gradient
(CG) method; see, e.g., [25], [26], [27].
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Fig. 1. Discrete cosine transform low frequency modes.

III. M OTIVATION

One of the most popular edge-preserving denoising filters
is the bilateral filter (BF), see, e.g., [28], [29] and references
there, which takes the weighted average of the nearby pixels.
The weightswij may depend on spatial distances and signal
data similarity, e.g.,

wij = exp

(

−
‖pi − pj‖

2

2σ2
d

)

exp

(

−
‖y[i]− y[j]‖

2

2σ2
r

)

, (2)

wherepi denotes the position of the pixeli, the valuey[i]
is the signal intensity, andσd and σr are filter parameters.
To simplify the presentation and our arguments, we further
assume that the signal is scalar on a one-dimensional uniform
grid, setting without loss of generality the first multiplier in
(2) to be1, and that the weightswij are computed only for
the nearest neighbors and set to zero otherwise.

Let us start with a constant signal, wherey[i]− y[j] = 0.
Then,wi−1 i = wi i = wi i+1 = 1 and the graph Laplacian
Ly = Dy − Wy is a tridiagonal matrix that has nonzero
entries1 and−1 in the first row,−1 and1 in the last row,
and [−1 2 − 1] in every other row. This is a standard three-
point-stencil finite-difference approximation of the negative
second derivative of functions with homogeneous Neumann
boundary conditions, i.e., vanishing first derivatives at the end
points of the interval. Its eigenvectors are the basis vectors of
the discrete cosine transform; see the first five low frequency
eigenmodes (the eigenvectors corresponding to the smallest
eigenvalues) ofLy in Figure 1. As can be seen in Figure 1,
all smooth low frequency eigenmodes turn flat at the end
points of the interval, due to the Neumann conditions.

The key observation is that the Laplacian row sums in
the first and last rows vanish forany signal, according to
the standard construction of the graph Laplacian, no matter
what formulas for the weights are being used! Thus,any low
pass filter based on low frequency eigenmodes of the graph
Laplacian flattens the signal at the end points.

Fig. 2. Edge-preserving low frequency eigenmodes.

Let us now use formula (2) for a piece-wise constant
guiding signaly with the jump large enough to result in
a small valuewi i+1 = wi+1 i for some indexi. The first
five vectors of the corresponding Laplacian are shown in
Figure 2. All the plotted in Figure 2 vectors are aware of the
jump, representing an edge in our one-dimensional signaly,
but they are also all flat on both sides of the edge! Such a
flatness is expected to appear for any guiding signaly giving
a small valuewi i+1 = wi+1 i.

The presence of the flatness in the low frequency modes
of the graph LaplacianLy on both sides of the edge in
the guiding signaly is easy to explain. When the value
wi i+1 = wi+1 i is small relative to other entries, the
matrix Ly becomes nearly block diagonal, with two blocks,
which approximate graph Laplacian matrices of the signaly

restricted to sub-intervals of the signal domain to the leftand
to the right of the edge.

The low frequency eigenmodes of the graph LaplacianLy

approximate combinations of the low frequency eigenmodes
of the graph Laplacians on the sub-intervals. But each of the
low frequency eigenmodes of the graph Laplacian on the sub-
interval suffers from the flattening effect on both ends of the
sub-interval, as explained above. Combined, it results in the
flatness in the low frequency modes of the graph Laplacian
Ly on both sides of the edge. For denoising, the flatness
of the vectors determining the low-pass filter may have a
negative effect for self-guided denoising even of piece-wise
constant signals, if the noise is large enough relative to the
jump in the signal, as shown in Section V.

The attentive reader notices that method (1) is based on
D−1

y Wy, related to thenormalized graph LaplacianD−1
y Ly,

not the LaplacianLy used in our arguments above. Although
the diagonal matrixDy is not a scalar identity, and so
the eigenvectors ofD−1

y Ly, not plotted here, and ofLy

are different, the difference is not qualitative enough to
noticeably change the figures and invalidate our explanation.



Fig. 3. Edge-enhancing low frequency eigenmodes, small negative.

IV. N EGATIVE WEIGHTS IN SPECTRAL GRAPH

PARTITIONING AND FOR SIGNAL EDGE ENHANCING

The low frequency eigenmodes of the graph Laplacian
play a fundamental role in spectral graph partitioning, which
is one of the most popular tools for data clustering; see, e.g.,
[30], [31], [32]. A limitation of the conventional spectral
clustering approach is embedded in its definition based on
the weights of graph, which must be nonnegative, e.g., based
on a distance measuring relative similarities of each pair of
points in the dataset. For the dataset representing values of a
signal, e.g., pixel values of an image, formula (2) is a typical
example of determining the nonnegative weights, leading to
the graph adjacency matrixWy with nonnegative entries, as
assumed in Section II and in all existing literature.

In applications, data points may represent feature vectors
or functions, allowing the use of correlation for their pairwise
comparison. The correlation can be negative, or, more gener-
ally, points in the dataset can be dissimilar, contrasting each
other. In conventional spectral clustering, the only available
possibility to handle such a case is to replace the anticorre-
lation, i.e. negative correlation, of the data points with the
uncorrelation, i.e. zero correlation. The replacement changes
the corresponding negative entry in the graph adjacency
matrix to zero, to enable the conventional spectral clustering
to proceed, but nullifies a valid comparison.

A common motivation of spectral clustering comes from
analyzing a mechanical vibration model in a spring-mass
system, where the masses that are tightly connected have
a tendency to move synchronically in low-frequency free
vibrations; e.g., [33]. Analyzing the signs of the compo-
nents corresponding to different masses of the low-frequency
vibration modes of the system allows one to determine
the clusters. The mechanical vibration model may describe
conventional clustering when all the springs are pre-tensed to
create an attracting force between the masses. However, one
can pre-tense some of the springs to create repulsive forces!

Fig. 4. Edge-enhancing low frequency eigenmodes, more negative.

In the context of data clustering formulated as graph parti-
tioning, that corresponds to negative entries in the adjacency
matrix. The negative entries in the adjacency matrix are not
allowed in conventional graph spectral clustering. Neverthe-
less, the model of mechanical vibrations of the spring-mass
system with repulsive springs remains valid, motivating us
to consider the effects of negative graph weights.

In the spring-mass system, the masses, which are attracted,
would move together synchronically in the same direction in
low-frequency free vibrations, while the masses, which are
repulsed, have the tendency to move synchronically in the
opposite direction. Using negative, rather than zero, weights
at the edge of the guiding signaly for the purposes of the
low-pass filters thus is expected to repulse the flatness of
low frequency eigenmodes of the graph LaplacianLy on the
opposite sides of the edge of the signaly, making the low
frequency eigenmodes to be edge-enhancing, rather than just
edge-preserving; cf. [34] on sharpening.

Figures 3 and 4 demonstrate the effect of edge-enhancing,
as a proof of concept. Both Figures 3 and 4 display the five
eigenvectors for the five smallest eigenvalues of the same
tridiagonal graph Laplacian as that corresponding to Figure
2 except that the small positive entry of the weightswi i+1 =
wi+1 i for the samei is substituted by−0.05 in Figure 3 and
by −0.2 in Figure 4. The previously flat around the edge
eigenmodes in Figure 2 are repelled in opposite directions
on the opposite sides of the edge in Figures 3 and 4.

Negative weights require caution, since even small changes
dramatically alter the behaviors of the low frequency eigen-
modes around the edge, as seen in Figures 3 and 4. Making
the negative value more negative, we observe by comparing
Figure 3 to Figure 4 that the leading eigenmode, displayed
using the blue color in both figures, corresponding to the
smallest nonzero eigenvalue forms a narrowing layer around
the signal edge, while other eigenmodes become less affected
by the change in the negative value.
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Fig. 5. Edge-preserving filtering.

V. EDGE-ENHANCING FILTERS

In this section, as a proof of concept, we numerically test
the proposed edge-enhancing filters on a toy one-dimensional
example using the classical nonlinear self-guiding BF and
a guided (by a noiseless signal) BF accelerated with a
conjugate gradient (CG-BF) method, as suggested in [18].
The specific CG algorithm used in our tests is as described
in Algorithm 1.

Algorithm 1: Conjugate Gradient Guided Filter
Input: signal vector to be filteredx0, matricesDy and
Ly

r0 = −Lyx0

for k = 0, 1, . . . ,m− 1 do
sk = D−1

y rk
if k = 0 then

p0 = s0
else

pk = sk + βkpk−1, where

βk =
(sk, rk)

(sk−1, rk−1)
end
qk = Lypk

αk =
(sk, rk)

(pk, qk)
xk+1 = xk + αkpk
rk+1 = rk − αkqk

end
Output: filtered vectorxm

50 100 150 200 250 300 350 400 450

si
gn

al

-0.2

0

0.2

0.4

0.6

0.8

1
 clean
 noisy PSNR = 20.1526
 BF.   PSNR = 33.8821
 CG.   PSNR = 34.1034

50 100 150 200 250 300 350 400 450

si
gn

al
 e

rr
or

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
   error BF
  error CG

Fig. 6. Edge-enhancing filtering.

The noise is additive Gaussian, and the noisy signal is
displayed using grey dots. The nonzero weights are computed
by (2) with σd = 0.5 andσ1 = 0.1 only for j = i− 1, i, i+
1, resulting in tridiagonal matricesW and L. BF is self-
guided, withW andL recomputed on every iteration using
the current approximationxk to the final filtered signalxm.
CG-BF uses the fixed nonzero weights computed also by (2),
but for the noiseless signaly resulting in the fixed tridiagonal
matricesWy andLy. The number of iterations in BF, 100,
and CG-BF, 15, is tuned to match the errors. Formula (2) puts
ones on the main diagonal ofW , thus for small positive or
negativewi i+1 = wi+1 i the matrixD is well-conditioned.

Figure 5 demonstrates the traditional approach with non-
negative weighs. We observe, as discussed in Section III,
flattening at the end points. Moreover, there is noticeable
edge smoothing in all corners, due to a large noise and
relatively small number of signal samples, despite of the use
of the edge-preserving formula (2). We set tuned negative
graph weights−2× 10−3, −10−3, −10−8 for i = 100, 250,
and 350 correspondingly, to obtain Figure 6, which shows
dramatic improvements both in terms of PSNR and edge
matching, compared to Figure 5.

VI. CONCLUSION

The proposed novel technology of negative graph weights
allows designing edge enhancing filters, as explained the-
oretically and shown numerically for a synthetic example.
Our future work concerns determining the optimal negative
weights, testing the concept for image filtering, and exploring
its advantages in spectral data clustering using correlations.
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