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Abstract—In [doi:10.1109/ICMEW.2014.6890711], a graph- Il. PRELIMINARIES

based denoising is performed by projecting the noisy imageot . L - .
a lower dimensional Krylov subspace of the graph Laplacian, Let us for simplicity first assume that the guiding signal,

constructed using nonnegative weights determined by distwes denoted byy, is available and can be used to reliably detect
between image data corresponding to image pixels. We extendthe locations of the edges and, most importantly, to detegmi
the construction of the graph Laplacian to the case, where the edge-consciounear transformation (matrix)F;, such
some graph weights can be negative. Removing the positivity {hat the action of the filte#” () is given by the following

constraint provides a more accurate inference of a graph moel i . . o i
behind the data, and thus can improve quality of filters for matrix-vector product’,x = F(x). Having a specific con

graph-based signal processing, e.g., denoising, compareaithe Struction of the guided filter matrik, as a function of), one
standard construction, without affecting the costs. can define a self-guided non-linear filter, e.g.,/as, which
can be applied iteratively, starting with the input signettor
xg as follows,x; 1 = F(x;), i=0,1,...,m; cf., e.g., [19].
Constructing efficient signal filters is a fundamental prob- Similarly, an iterative application of the linear guided
lem in signal processing with a vast literature; see, e.giter can be used, mathematically equivalent to applyirgy th
recent papers [1][[2]/[3]/[4],]5],[6] and referencesriie powers of the square matrik,, i.e. z,, = (F,)™ zo, thus
A filter can be described by a transformatiéi often non- naturally called thepower method, which is an iterative form
linear, of an input signal, represented by a vectorinto of PCA; see, e.g[[20]/[21]. To avoid a re-normalization of
a filtered signal, represented by a vectfz). We revisit the filtered signal, it is convenient to construct the matrix
some classical constructions of filters aimed at signalenoiFy in the form F, = Dglwy, where entries of the square
reduction, with the emphasis on bilateral filter, popular imatrix W, are calledweighs. The matrix D, is diagonal,
image denoising [7],[[8],[[9],.[10]. The goal of the filter ismade of row-sums of the matri¥’,,, which are assumed to
signal smoothing, reducing a high oscillatory additiveseoi pbe non-zero. Thuspglwy multiplied by a column-vector
The smoothing can be achieved by averaging, which cafones, gives again the column-vector of ones.
be typically interpreted as a low-pass filter, minimizin@ th  Let us further assume that the matfik, is symmetric
contribution in the filtered signal of highly oscillatory mes, and that all the entries (weighs) Iir, are nonnegative. For
treated as eigevectors of a graph Laplacian; see, e.g., [LHignal denoising, the following observations are the most
It is desirable to preserve edges in the ideal noise-fraportant. The right eigenvectan of the matrix D, W,
signal, even at the costs of an increased PSNR. Edggith the eigenvalue:; = 1 is trivial, just made of ones,
conscious filters detect, often implicitly, the locations oonly affecting the signal offset. Since the iterative matri
the edges and attempt using less aggressive or anisotropjc= D;1Wy is diagonalizable, the power method gives
averaging at these locations. Fully automatic edge detecti m T
in a noisy signal is difficult, typically resulting in non- @ = (Fy)" wo = 85 " (vj Do) vy, 1)
linear filters, i.e. where the filtered vectdi(x) depends non- \here | — lua| > |pe| > ... are the eigenvalues of the
linearly on the_ input vector. However, it can be aSS'Ste_dmatrix D, 'W, corresponding to the eigenvectars scaled
by a guiding signal, having the edges in the same locatioggcp, that’? Dv; = ;. The power method, according fd (1),
as in the ideal signal; see, e.d.| [3]. [12].[13]. suppresses contributions of the eigenvectors correspgrali
Graph signal processing, introducing eigenvectors of thgs smallest eigenvalues. Thus, the maifiy needs to be
graph Laplacian as natural extensions of the Fourier basgsnsirycted in such a way that these eigenvectors represent
sheds new light at image processing; see, €.gl, [14], [1}e noisy part of the input signal, while the other eigenvest
[16], [17]. In [18], graph-based filtering of noisy images iy edge-conscious; cf. anisotropic diffusion [22]] [72H].
performed by directly computing a projection of the image to0 | ot 5 introduce the quiding Laplaciah, = ﬁy _ I;Vy
be flltered onto a lower dl_men5|onal Krylov s_ubspace of tl"_gznd normalized Laplacia®, 'L, = I — D, 'W, matrices.
normalized graph Laplacian, constructed using nonnegatiy, 1g), the power method1) is replaced with a projection of
graph weights determined by distances between image dgfg image vector to be denoised onto a lower dimensional
corresponding to image pixels. We extend the con_structﬁon@rymv subspace of the guiding normalized graph Laplacian
the graph Laplacian to the case, where some weights canlpelLy and implemented, e.g., using the Conjugate Gradient
negative, radically departing from the traditional asstiorp (CyG) method; see, e.gl, [25[. [26]. 127].
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Fig. 1. Discrete cosine transform low frequency modes. Fig. 2. Edge-preserving low frequency eigenmodes.

I1l. MOTIVATION Let us now use formula[]2) for a piece-wise constant

One of the most popular edge-preserving denoising filtegsiiding signaly with the jump large enough to result in
is the bilateral filter (BF), see, e.d.. [28]. [29] and refezes a small valuew;;,1 = w; 1; for some indexi. The first
there, which takes the weighted average of the nearby pixdige vectors of the corresponding Laplacian are shown in
The weightsw;; may depend on spatial distances and signBlgure[2. All the plotted in Figurgl 2 vectors are aware of the
data similarity, e.g., jump, representing an edge in our one-dimensional signal

9 _ 112 but they are also all flat on both sides of the edge! Such a
wi; = exp <_ P _SJH ) exp <_ lyla] =yl ) . (2) flatness is expected to appear for any guiding sigrgiling
20d a small valuew“-H = Wit14-

wherep; denotes the position of the pixel the valuey]i] The presence of the flatness in th(_e low frequency ques
is the signal intensity, and, and o, are filter parameters. ©f the graph Laplacian’, on both sides of the edge in
To simplify the presentation and our arguments, we furthEf€ guiding signaly is easy to explain. When the value
assume that the signal is scalar on a one-dimensional amifd¥ii+1 = wi+1i iS small relative to other entries, the
grid, setting without loss of generality the first multiplim  Matrix L, becomes nearly block diagonal, with two blocks,
@) to bel, and that the weights;; are computed only for WhIC!’l apprOX|ma_te graph LapIaC|.an matnceg of the signal
the nearest neighbors and set to zero otherwise. restrlctgd to sub-intervals of the signal domain to thedeft
Let us start with a constant signal, wheyig] — y[j] = 0. © the right of the edge.
Then,w;_1; = w;; = w;;41 = 1 and the graph Laplacian The low frequency eigenmodes of the graph Lapladign
L, = D, — W, is a tridiagonal matrix that has nonzergpproximate combinations of the low frequency eigenmodes
entries1 and —1 in the first row,—1 and1 in the last row, Of the graph Laplacians on the sub-intervals. But each of the
and[—1 2 — 1] in every other row. This is a standard threelow frequency eigenmodes of the graph Laplacian on the sub-
point-stencil finite-difference approximation of the neéga interval suffers from the flattening effect on both ends @f th
second derivative of functions with homogeneous NeumagHb-interval, as explained above. Combined, it resultfién t
boundary conditions, i.e., vanishing first derivativeshatend flatness in the low frequency modes of the graph Laplacian
points of the interval. Its eigenvectors are the basis veab Ly on both sides of the edge. For denoising, the flatness
the discrete cosine transform; see the first five low frequenef the vectors determining the low-pass filter may have a
eigenmodes (the eigenvectors corresponding to the smallegative effect for self-guided denoising even of piecsewi
eigenvalues) of,, in Figure[1. As can be seen in Figire 1constant signals, if the noise is large enough relative ¢o th
all smooth low frequency eigenmodes turn flat at the eddmp in the signal, as shown in Sectibn V.
points of the interval, due to the Neumann conditions. The attentive reader notices that methbH (1) is based on
The key observation is that the Laplacian row sums iD;lWy, related to thenormalized graph Laplaciad);lLy,
the first and last rows vanish fany signal, according to not the LaplaciarL, used in our arguments above. Although
the standard construction of the graph Laplacian, no mattee diagonal matrixD, is not a scalar identity, and so
what formulas for the weights are being used! Tharg;low the eigenvectors oﬁ)y—lLy, not plotted here, and of,
pass filter based on low frequency eigenmodes of the gramte different, the difference is not qualitative enough to
Laplacian flattens the signal at the end points. noticeably change the figures and invalidate our explanatio
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Fig. 3. Edge-enhancing low frequency eigenmodes, smalkitiveg Fig. 4. Edge-enhancing low frequency eigenmodes, moretimega

IV. NEGATIVE WEIGHTS IN SPECTRAL GRAPH In the context of data clustering formulated as graph parti-
PARTITIONING AND FOR SIGNAL EDGE ENHANCING tioning, that corresponds to negative entries in the adjace

The low frequency eigenmodes of the graph Laplaci atrix. The negative entries in the adjacency matrix are not

play a fundamental role in spectral graph partitioning,akhi allowed in conventional gra_ph spectr_al clustering. NMt
is one of the most popular tools for data clustering; see, e.?ss’ the model of rnecharjlcal V|brat_|ons OT the Spring-mass
[30], [31], [32]. A limitation of the conventional spectral ystemlwnh repulsive springs remains valld_, motivating us
clustering approach is embedded in its definition based B:hcon3|der the effects of negative graph weights.
the weights of graph, which must be nonnegative, e.g., basedn the spring-mass system, the masses, which are attracted,
on a distance measuring relative similarities of each phir ¢ould move together synchronically in the same direction in
points in the dataset. For the dataset representing vafies #W-frequency free vibrations, while the masses, which are
Signa'y e.g., pixe' values of an image' formlﬂh (2) is a tabicrepulsed, have the tendency to move SynChronica”y in the
example of determining the nonnegative weights, leading @Posite direction. Using negative, rather than zero, hisig
the graph adjacency matri¥, with nonnegative entries, asat the edge of the guiding signalfor the purposes of the
assumed in Sectidnlll and in all existing literature. low-pass filters thus is expected to repulse the flatness of
In applications, data points may represent feature vecté?¥ frequency eigenmodes of the graph Laplacdignon the
or functions, allowing the use of correlation for their paise  OPPOSite sides of the edge of the signalmaking the low
comparison. The correlation can be negative, or, more gengduency eigenmodes to be edge-enhancing, rather thian jus
ally, points in the dataset can be dissimilar, contrastiaghe ©d9e-preserving; cfl[34] on sharpening.
other. In conventional spectral clustering, the only alal# Figured 8 andl4 demonstrate the effect of edge-enhancing,
possibility to handle such a case is to replace the anticorgs a proof of concept. Both Figuries 3 ddd 4 display the five
lation, i.e. negative correlation, of the data points witke t eigenvectors for the five smallest eigenvalues of the same
uncorrelation, i.e. zero correlation. The replacemenngea tridiagonal graph Laplacian as that corresponding to Figur
the corresponding negative entry in the graph adjacendgxcept that the small positive entry of the weights, 1 =
matrix to zero, to enable the conventional spectral clisger w;+1: for the same is substituted by-0.05 in Figure[3 and
to proceed, but nullifies a valid comparison. by —0.2 in Figure[4. The previously flat around the edge
A common motivation of spectral clustering comes frorfigenmodes in Figurgl 2 are repelled in opposite directions
analyzing a mechanical vibration model in a spring-ma&$ the opposite sides of the edge in Figures 3[dnd 4.
system, where the masses that are tightly connected hav&legative weights require caution, since even small changes
a tendency to move synchronically in low-frequency fredramatically alter the behaviors of the low frequency eigen
vibrations; e.g.,[[33]. Analyzing the signs of the compomodes around the edge, as seen in Figukres 3Jand 4. Making
nents corresponding to different masses of the low-frequerthe negative value more negative, we observe by comparing
vibration modes of the system allows one to determirféigure[3 to Figuré 4 that the leading eigenmode, displayed
the clusters. The mechanical vibration model may describsing the blue color in both figures, corresponding to the
conventional clustering when all the springs are pre-t&étse smallest nonzero eigenvalue forms a narrowing layer around
create an attracting force between the masses. However, tresignal edge, while other eigenmodes become less affecte
can pre-tense some of the springs to create repulsive fordeg the change in the negative value.
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Fig. 5. Edge-preserving filtering.

V. EDGE-ENHANCING FILTERS
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Fig. 6. Edge-enhancing filtering.

The noise is additive Gaussian, and the noisy signal is

In this section, as a proof of concept, we numerically te§§SPlayed using grey dots. The nonzero weights are computed
the proposed edge-enhancing filters on a toy one-dimerisiopé (2) With o = 0.5 andoy = 0.1 only for j =i —1, 4, i +
example using the classical nonlinear self-guiding BF arld resulting in tridiagonal matrice$)” and L. BF is self-

a guided (by a noiseless signal) BF accelerated with 94ided, withiW and L recomputed on every iteration using
conjugate gradient (CG-BF) method, as suggested in [18]€ current approximationy to the final filtered signat,.

The specific CG algorithm used in our tests is as describ
in Algorithm 1.

Algorithm 1: Conjugate Gradient Guided Filter

Input: signal vector to be filtered,, matricesD, and
Ly
ro = —Ly,TO
for k=0,1,...,m—1do
Sk = D;lTk
if k=0 then
| Po =S50
else
Pk = Sk + Brpr—1, where
Sk, Tk
B = —
(8k—1,7k—1)
end

qr = Lypk

(8k,7k)

(P> aw)

Tp4+1 = Tk + QkPk
Th+1 = Tk — OkQk
end

Output: filtered vector,,

A =

-BF uses the fixed nonzero weights computed als@lby (2),
but for the noiseless signalresulting in the fixed tridiagonal
matricesW, and L,. The number of iterations in BF, 100,
and CG-BF, 15, is tuned to match the errors. Fornfdla (2) puts
ones on the main diagonal &, thus for small positive or
negativew; ;11 = w;11, the matrix D is well-conditioned.

Figure[3 demonstrates the traditional approach with non-
negative weighs. We observe, as discussed in SeCiibn llI,
flattening at the end points. Moreover, there is noticeable
edge smoothing in all corners, due to a large noise and
relatively small number of signal samples, despite of the us
of the edge-preserving formulal (2). We set tuned negative
graph weights-2 x 1073, =103, =108 for ¢ = 100, 250,
and 350 correspondingly, to obtain Figuté 6, which shows
dramatic improvements both in terms of PSNR and edge
matching, compared to Figuké 5.

VI. CONCLUSION

The proposed novel technology of negative graph weights
allows designing edge enhancing filters, as explained the-
oretically and shown numerically for a synthetic example.
Our future work concerns determining the optimal negative
weights, testing the concept for image filtering, and expbpr
its advantages in spectral data clustering using coroglgti
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