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Abstract—Very recently, the locally stationary wavelet frame-
work has provided a means to describe the dependencies of
co-varying time-series over a range of multiple scale levels.
However, describing the many interactions between data-streams
at different scale levels with only finite data poses some serious
statistical estimation challenges. We illustrate that existing ap-
proaches suffer from large variance and are sometimes difficult
to interpret. We here propose a sparsity-aware estimator which
furnishes a set of multiresolution, dynamic graphs that describe
how the dependency structure of the variables evolves through
time and over multiple levels of scale. We show that the
regulariser mitigates the variance and that, since the inference is
performed using convex optimisation, it converges quickly to a
global optima and scales well with respect to samples and nodes.
Basic properties of the new method are established on simulated
data. The method is applied to inferring dependency structure
in multivariate EEG data-sets during epileptic seizures where it
reveals evidence of band-limited dependency structure.

I. INTRODUCTION

The introduction of ever more complex sensor networks
has led to an increase not only in the volume of data col-
lected, but also its dimensionality. Traditionally, much of the
literature in non-stationary time-series analysis has focused
on analysing signals in the univariate setting (see [1], [2],
[3], [4], [5]). When attempting to extend such methods to
multivariate scenarios we are often faced with statistical esti-
mation difficulties. Typically the number of parameters under
consideration might grow quadratically with the number of
variables P , whereas the number of data-points T remains
the same. In the convergent disciplines of signal processing,
machine learning and computational statistics, researchers look
towards feature/variable selection methodologies [3], [6], [7],
[8] to reduce the degrees of freedom in such multivariate
(sometimes high-dimensional [9], [10]) settings.

We examine recent proposals [11], [12] to extend wavelet
analysis to the multivariate setting, and in particular to look
at dependency (or coherence) between data-streams. When
considering examples with finite data sets, we demonstrate
that previously proposed estimators for such models may not
be consistent with the model specification. We show that
some of these issues are due to an ill-conditioned estimation
procedure and that the introduction of prior knowledge through
regularisation can be of benefit. Introducing graphical model
estimation [13], [10], [6], [14], [15] to the wavelet setting
our proposed Multiresolution exploratory graphical model
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Figure 1: Band limited coherence structure. (a) Example draw
from a P = 4 dimensional MV-LSW process. (b) Graphical
representation of noise structure limited in this case to band
j = 2, blue and red lines respectively represent non-zero
coherence and partial coherence structure.

(MR-EGM) estimator makes a sparsity assumption about the
conditional dependency structure between data-streams. This
not only acts to stabilise the estimator (improving predictive
performance), but also provides an interpretable representation
of data-stream dependencies at different frequency/scale levels
(see Fig. 1). The paper concludes with an example of our
method applied to real EEG data where we study how depen-
dency structures in brain activity may depend on frequency.

II. PRELIMINARIES
In this section we introduce the Locally Stationary Wavelet

and offer some preliminaries on the interpretation of Gaussian
graphical models for time-series.

Locally Stationary Wavelet Framework
The traditional family of complex exponential functions

{eiωt} used in spectral analysis is not expressive enough to
deal with non-stationarity [2]. To deal with this issue, a theory
of evolutionary spectra was proposed by Priestly [2] (also see
[5], [16]) whereby the exponential family is replaced by the
more general class {φt(ω)}, in particular he considers families
of the form φt(ω) = Ct(ω)eiωt, where Ct(ω) allows one to
localise the basis about point t.

Such processes are constructed in order to generalise Fourier
representations. However, an alternative basis for representing
signals can be found through the application of wavelet
methods [4], [3], [1], [11], [12]. Nason et. al. [1] construct the



locally stationary wavelet (LSW) framework by replacing the
exponential basis eiωt with a set of non-decimated wavelets.
Whilst the non-decimated wavelet transform (NDWT) is over-
complete, it provides invariance with respect to translation and
maintains a constant number of parameters at each scale level,
i.e. for a time-series of length T we have up to T log(T )
coefficients. In this paper we work with the P -variate LSW
process, introduced by Park et. al. [11] and defined as

Xt;T =

∞∑
j=1

∑
k

V j(k/T )ψj,t−kεj,k , (1)

where V j(k/T ) ∈ RP×P is a transfer matrix with lower-
diagonal form (this encodes all dependency and contributions
to the variance by wavelet at given scale/position). The discrete
wavelets ψj,k are formed according to the usual low-high pass
iterative construction (see [1], [11]) based on the quadrature
mirror filters {hk}, {gk}, such that ψ1,l = gl and ψj+1,l =∑
k hl−2kψj,l. Our setup follows that of Park and places all the

dependency structure within the matrix V j(u). The stochastic
elements in the above are thus uncorrelated random vectors,
whereby E[εj,k] = 0 and cov(εij,k, ε

i′

j′,k′) = δj,j′δi,i′δk,k′

(this contrasts with similar work [12] where structure is split
between the transfer matrix and the noise terms).

The principle object for estimation in this work is the local
wavelet spectral (LWS) matrix:

Sj(u) = V j(u)V j(u)> ,

and inverse LWS matrix (iLWS) Θj(u) = (Sj(u))−1.
Loosely speaking, the LWS matrix is a covariance matrix
at a specific scale level j. This is demonstrated by Park et
al [11] who show the local cross-covariance c(p,q)(u, τ) can
be represented in terms of the LWS such that c(p,q)(u, τ) =∑∞
j=1 S

(p,q)
j (u)Ψ(τ), where Ψ(τ) =

∑∞
j ψj,kψj,k−τ is

the discrete auto-correlation wavelet for lag τ (see [17]
for details). Asymptotically one can show |c(p,q)(u, τ) −
cov(X

(p)
uT , X

(q)
[uT ]+τ )| = O(T−1) [11].

Gaussian graphical models
Recent approaches to multivariate estimation using Gaus-

sian graphical models (GGM) [13], [18], [6], [14] have utilised
sparsity inducing priors to introduce bias but control variance
in estimates. Our novel, proposed MV-LWS model extends
these methods to estimation of the iLWS and LWS matrices.

In order to specify a valid probability density for the MV-
Gaussian N (0,Σ) one requires the existence of a unique
inverse covariance matrix (often referred to as the precision
matrix) Θ = (Σ)−1. The sparsity structure of the precision
matrix plays an important role in that it specifies the condi-
tional dependency structure of the resulting Gaussian density.
If the P -variate Gaussian density (with variable index set V =
{1, . . . , P}) can be decomposed as fN (xp, xq|xV \{p,q}) =
fN (xp|xV \{p,q})fN (xq|xV \{p,q}) then the corresponding pre-
cision matrix has entries Θ(p,q) = 0 (see [19] for a review
of GGM). If (p, q) ∈ E denote the variables for which
the Gaussian can be decomposed in the aforementioned way,
then one can interpret the conditional dependency structure of
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Figure 2: Estimation of the channel variance, i.e. Ŝ(p,q)
j using

Eq. (3), for scales j = 1 and j = 5. Whilst the true variance is
equal to one in both cases, we see that the estimation error at
the large scale lengths can cause negative variance estimates.

N (0,Σ) as a GGM G(V,E). Estimating a sparse precision
matrix thus allows us to estimate the adjacency matrix of a
representative graphical model.

III. ESTIMATING SPARSE PARTIAL COHERENCE
STRUCTURES

Previous proposals [11] for estimating the LWS matrix
are based on the estimated wavelet periodogram dj,k =∑T−1
t=0 Xtψjk(t), where the smoothed periodogram matrix is

Ij,k =
1

2M + 1

M∑
m=−M

dj,kd
>
j,k . (2)

Whilst this estimator is consistent, it is unfortunately also
biased due to leakage in the periodogram between scale levels.
To correct for this Park et. al. propose the estimator:

Ŝj,k =

J∑
l=1

B−1jl Ij,k , (3)

where Bj,l = 〈Ψj ,Ψl〉 =
∑
τ Ψj(τ)Ψl(τ) reflects the (deter-

ministic) leakage between wavelet scales.
In the limit M,T → ∞ Park et al [11] demonstrate that

asymptotically the estimator in Eq (3) is both bias free and
consistent. However, in a finite sample setting entries in B−1jl ,

and therefore Ŝ
(p,p)

j,k , may become negative (see Fig. 2). This
not only gives rise to an invalid covariance matrix, it also
contradicts our process construction in Eq. (1) because, for
example, Ŝj,k is no longer guaranteed to be positive-semi-
definite. In this paper, we introduce a means to stabilise
the estimation of the covariance structure, thereby ensuring
that the model assumptions are met and that an interpretable
estimate of the LWS and iLWS matrices is realised. 1.

Statistical estimation
If one assumes that the the wavelet periodogram is drawn

from a multivariate Gaussian, dj,k ∼ N (0,Σj,k) then maxi-
mum likelihood estimation of the covariance matrix is given
by the empirical covariance estimator Σ̂j,k = dj,kd

>
j,k. If

we assume that there are k = 1, . . . , 2M + 1 observations
drawn i.i.d from a Gaussian (such that Σj,k = Σj,l for all
k, l ∈ {0, . . . , 2M+1}) and take into account the deterministic
bias from B, then the estimator in Eq (3) Σ̂ := Ŝj,k is the

1Note: The coherence and partial-coherence referred to in Park/Sanderson
[11], [12] are analogous to the usual definitions of correlation and partial-
correlation whereby one normalises the LWS/iLWS matrices by the square
of the diagonal component.



ML estimator. Unfortunately, as demonstrated the properties
of such an estimate (Ŝ(i,i)

j,k < 0, Ŝj,k 6� 0) are not compatible
with the parameterisation of a P -variate Gaussian [19].

To enable estimation of valid covariance matrices, we pro-
pose to estimate a sparse precision matrix (and thus GGM)
at each scale level j = 1, . . . , J and discrete time-step
k = 1, . . . , T according to the following MR-EGM estimator:

Θ̂j,k := arg min
Z�0

[
− log det(Z) + tr(Ŝj,kZ) +λ‖Z‖1

]
, (4)

where ‖Z‖1 =
∑
p,q |Zp,q|. In the context of estimating the

LWS and iLWS matrices, the above estimator has several
advantages:

1) The bias induced by λ‖Z‖1 imposes a sparsity structure
on the resultant precision matrix estimate. If the assump-
tion of a sparse ground-truth Θ is valid, this can improve
estimation performance and reduce estimator variance.

2) The estimated graphical models enable one to easily
visualise key dependencies within a data-stream.

3) The constrained problem forms a convex optimisation
problem, enabling fast convergence to a global optima.

There are many algorithms developed for solving problems of
the form Eq (4), for simplicity we adopt the approach of Hastie
et al [13] whereby the dual of (4) is solved such that rather
than actively updating Θ̂j we update the constrained covari-
ance estimator Ŵ j = (Θ̂j)

−1. The graphical lasso (glasso)
algorithm [13] iterates through updating columns/rows of this
matrix to arrive at a global optima. One benefit of this method,
is that it can take advantage of the sparsity structure within the
target matrix, generally the sparser we assume the matrix (i.e.
the larger we set λ) the faster a solution will be found. The
process for computing the multi-scale graphical estimators we
propose is outlined in Algorithm 1.

Input: M,λj , ψj,k,Xt;T

Result: Ŵ j,k, Θ̂j,k

for j, l = 1, . . . , J, and k = M, . . . , T −M do
dj,k =

∑T−1
t=0 Xtψjk(t)

Ij,k = 1
2M+1

∑M
m=−M dj,k+md

>
j,k+m

Bj,l =
∑
τ Ψj(τ)Ψl(τ)

end
Ŝj,k =

∑J
l=1B

−1
jl Ij,k

for j = 1, . . . , J , k = M, . . . , T −M do
(Θ̂j , Ŵ j,k) = glasso(Ŝj,k + λjI, λj)

end
Algorithm 1: MR-EGM estimation procedure

IV. SYNTHETIC EXPERIMENTS
In this section we consider synthetic experiments where

we have full knowledge of the ground-truth structure. We
consider the performance of the basic smoothed estimator
and the graphical estimator to recover this structure when the
ground-truth exhibits a degree of sparsity.

Experimental setup
In the LSW framework, data is generated according to Eq

(1). The target of our estimation procedure is the inverse
LWS matrix Θ∗j := S∗−1j = (V ∗jV

∗>
j )−1 (we use ∗ to
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Figure 3: Example of estimation for off-diagonal cross-
covariance S(1,2)

2 (t) structure in band j = 2: Blue - standard
estimator Ŝ(1,2)

2 , Red - MR-EGM estimator Ŵ (1,2)
2 , Grey -

S
∗(1,2)
2 ground-truth cross-covariance. The solid lines repre-

sent the mean from N = 100 realisations of an LSW process,
dashed lines represent empirical uncertainty estimates to one
standard-deviation.

denote ground-truth structures). We simulate a ground-truth
iLWS matrix, which encodes a GGM with adjacency matrix
A ∼ ErdosRenyi(P, n), and then construct:

Θ
∗(i,l)
j =

{
∼ Uniform[−s, s] A

(i,l)
j = 1

0 A
(i,l)
j = 0

, for i 6= l (5)

where s acts to scale the iLWS off-diagonal elements (i.e.
increasing the partial correlation between variables at a given
scale). The transfer function V ∗j (u) can now be derived
through LU decomposition. Realisations of the LWS process
are given by Eq (1). For an example realisation see Fig (1).
Tracking dependency dynamics

To examine the ability to track band-limited structure we
simulate precision matrices {Θ∗j} for P = 4 and T = 1024
j = 1, . . . , log2(T ) = 10. However, we restrict off-diagonal
structure (as generated by Eq. 5) to a specific band j = 2 as
depicted in Fig (1). In the interests of space, we only present
a single example of estimation in this setting and contrast this
to the unregularised estimator.

The example in Fig (3) has piecewise constant ground-
truth S∗j (t) structure, however, we observe both estimators
are somewhat able to track changes. As discussed the Park
estimator is unbiased, however, we observe that it is relatively
sensitive to the data, i.e. has large variance (see dashed lines).
Our proposed MR-EGM estimator has biased estimation in the
active period (t = 300−600), but reduced estimator variance.
We note, that this is especially useful, when one considers
that if the sparsity assumption is true then the imposed bias
actually helps (for example the region t = 600− 900).
Estimator performance

In addition to the smoothing parameter M , the regularised
estimator introduces a sparsity tuning parameter λ. In the
synthetic setting, where the ground-truth parameterisation is
known, one can easily generate test and training sets by simply
simulating more realisations from the LSW process in Eq. (1).
If one desired, both smoothing and regularisation parameters
(M,λ) could be selected according to cross-validation based
on an appropriate risk function.

For model consistency (i.e. selecting the correct sparsity
pattern) one may consider maximising a balance of preci-
sion= |Êj ∩ E∗j |/|Êj | and recall= |Ê ∩ E∗j |/|E∗j |, where
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Figure 4: For each setting of λ we simulate N = 30
realisations and assess the mean recovery performance across
the simulated data. In this case, we don’t consider dynamics
within the generating distribution, i.e. Θ∗(t) = Θ∗(l), for all
t, l ∈ {1, . . . , T}.

Êj , E∗j , denote the estimated and ground truth edge sets
at the jth level. One popular choice for assessing model
selection performance [14] is the F1-score defined as: F1 =
2(precision × recall)/(precision + recall). Alternatively, for
predictive risk (approximating the true distribution) one could
minimize R(Θ̂j) = tr(Θ̂jS

∗
j ) + log det(Θj). See also Zhou

et al. [15] for analysis of such risks in the non-wavelet setting.
Figure (4) gives a demonstration of how model recovery and

predictive performance behave as we change the regularisation
parameter and scale of the smoothing parameter (here we
use P = 10 with n = 10 true edges simulated from
Equation 5). With sparse models (high λ) we observe that
estimator variance is reduced, however bias is increased as
one would expect due to the reduced degrees of freedom. The
high variance inherent within the weakly regularised estimator
is apparent through the large error bars in the predictive
risk for small values of λ. The large variance in estimating
the covariance directly translates into variation within the
predictive risk measure. We observe that regularising has clear
benefits in terms of predictive performance when data is at a
premium (i.e. for small M ), but as M is increased the need
for regularisation is reduced. Additionally, one observes that
estimation of graph structure improves with increasing M .

V. APPLICATION TO HUMAN BRAIN CONNECTOMICS
In this section, we apply the proposed MR-EGM es-

timator in a real life setting with the study of Elec-
troencephalography (EEG) data from the PhysioNet project
(http://www.physionet.org/) [20], [21]. We consider studying
the partial coherence structure of EEG data before and during
an epileptic seizure. In particular we are interested in how the
dependency structure is distributed across scale levels. If such
scale localised features exist they may be useful in further
analysing/diagnosing epileptic activity; for previous work in
this direction see [22]. This study is not meant to form a
complete analysis of EEG patterns or seizure behaviour, but
rather illustrate our proposed method and its ability to analyse
dependencies at different scale levels.

Given the cost of extracting the graphical model scales with
O(T ) we restrict ourselves a short segment of the data (P =
23 electrodes) around 100 seconds either side of a seizure and,
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Figure 5: Estimated partial coherence structure at multiple
scale levels (j = 1, 2, 3) via MR-EGM. In contrast with the
proposed multiresolution approach, the ‘combined’ estimate is
formed by applying graphical lasso directly to the raw data.

for the purposes of this example, down-sample the data from
256Hz to 8Hz and consider T ≈ 1000 data points.

Results
In practice a labelled training set may not available and it

can be difficult to ‘learn’ optimal parameters automatically. An
alternative is to use an in-sample measure of estimation error
by employing criteria such as AIC/BIC that actively penalise
model complexity. However, when used with regularised fea-
ture selection methods such as MR-EGM they often select too
many edges [18], [23]. In this work we take a more pragmatic
approach and simply choose a regularisation parameter λ =
0.3 that produces an interpretable level of sparsity. The results
of our analysis, illustrated in Fig. (5), demonstrate the esti-
mated graphical dependency structure in the partial coherence
matrix, i.e. P (p,q)

j (t) = Θ̂
(p,q)
j (t)/(Θ̂

(p,p)
j (t))

1
2 (Θ̂

(q,q)
j (t))

1
2 .

We observe that for the coarser scale levels, the shrinkage
imposed by the `1 term effectively sets all the off-diagonal
elements to zero. The combined matrices, on the right-hand
side represent the result of applying the graphical lasso without
performing any wavelet decomposition. We notice that the
combined matrix appears to be a fix of edges estimated at
the different scale levels. Interestingly, extracted structure at
the start of the seizure appears to show some evidence of band
limited dependency. Activity in the highlighted regions appear
to only persist at higher frequencies corresponding to j = 1.

VI. CONCLUSION
We have demonstrated a method for extracting conditional

dependency graphs from data-streams assuming a Gaussian
MV-LSW process construction. Our proposed MR-EGM es-
timator enhances previous proposals by reducing estimator
variance and increasing predictive performance in the finite
sample setting. Demonstrations on EEG data suggest that the
graphs extracted by our method may be useful for studying
brain dynamics or other multivariate signals where we expect
that some of the dependency structure may be band-limited.
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